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A model developed by Wilmott et al. (2018) for the advance of a charged oil droplet
along a charged capillary pore is considered. The oil droplet is surrounded by an aqueous
phase filling the pore, and the model considers a uniformly curved capillary static droplet
front plus an aqueous thin film separating the body of the oil droplet from the capillary
wall, with these two regions being joined by a transition region. The methodology fol-
lows a classical asymptotic approach proposed by Bretherton (1961) but incorporates
additional electro-osmotic effects (specifically an electro-osmotic disjoining tension) due
to the charged surfaces. A number of dimensionless parameters control the model’s be-
haviour, of which the most important is denoted χ′ and represents the ratio between
the “nominal” thickness of the aqueous film (as determined neglecting any electrostatic
effects) and the Debye length within the film, which is sensitive to ion concentrations
and hence to salinity. When χ′ is large, electro-osmotic effects are screened and Brether-
ton’s classical results are recovered. However as χ′ decreases, electro-osmotic effects come
into play and the film becomes much thicker than Bretherton’s prediction to ensure that
screening effects are not altogether lost, and also there is a noticeable increase in the
pressure needed to drive the droplet front along. These results apply with minor varia-
tions in the case of singly charged surfaces (charge on either oil or on the capillary wall),
oil and wall surfaces with like charges, or oil and wall surfaces with opposite but un-
equal charges. However in the case of opposite and equal charges, the system’s behaviour
changes dramatically. There is now a conjoining electro-osmotic pressure rather than a
disjoining tension, the film becomes thinner than the analogous Bretherton film, and the
pressure needed to drive the droplet front along decreases. Surprisingly in this case, for
sufficiently small χ′, the work done by the conjoining pressure can exceed the work done
against viscous dissipation, meaning the pressure required to drive the droplet front is
not just smaller than in Bretherton’s predictions but also slightly less than would be
estimated based on capillary forces alone. Although the main effect of reducing salinity
is to increase Debye length and hence reduce χ′, salinity also affects surface charges. A
situation is explored whereby reducing salinity affects charges producing a switch from
disjoining tensions to conjoining pressures and back again: this leads to a non-monotonic
response in film thickness and pressure required to drive the droplet front along.
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1. Introduction

The motion of a non-aqueous phase (be it a gas bubble or an oil droplet) along a
capillary that is initially filled with an aqueous liquid was first analysed by Bretherton
in what is now a classical fluid mechanics study (see Bretherton (1961)). The pressure
drop needed to drive the bubble or droplet along is found to be a capillary pressure
(i.e. the surface or interfacial tension divided by the capillary radius) plus a correction
due to the speed at which the bubble or droplet is moving. The surprising result found
by Bretherton (1961) is that this correction is nonlinear in the bubble/droplet speed. The
reason for this nonlinearity is that the viscous dissipation leading to the aforementioned
pressure drop correction arises from a so called transition region in which a uniformly
curved capillary static interface joins up with an aqueous thin film lining the capillary
wall: see Figure 1. Since the length and thickness of the transition region turn out to be
nonlinear functions of the bubble/droplet speed, the dissipative pressure drop across the
transition region is also nonlinear (Bretherton 1961; Park & Homsy 1984).

The theory of Bretherton and various extensions thereof (e.g. Giavedoni & Saita (1997);
Hazel & Heil (2002); Heil (2001); Laborie et al. (2017); Ro & Homsy (1995); Severino
et al. (2003); Ubal et al. (2008)) have numerous applications in fields such as foam
dynamics (Cantat et al. 2004; Green et al. 2006; Reinelt & Kraynik 1990; Saugey et al.

2006), microfluidics (Cantat 2013) or gas-assisted injection of a polymeric liquid into a
mould (Gauri & Koelling 1999). One important application however is in oil recovery.
Here one has (Cobos et al. 2009) a small oil droplet located within a capillary pore in
an oil reservoir. The oil droplet is typically in contact with water, and an injection fluid
(itself water in the case of waterflooding (Willhite 1986)) is then injected into the pore
to drive the oil out: a Bretherton-like problem then results.

An issue highlighted by Wilmott and co-workers in a recent study (Wilmott et al. 2018)
is that the surfaces of the oil drop and the surrounding pore wall (typically comprised of
clay) can be charged. As a result, as the droplet moves along, it is necessary to account
for not just capillary forces and viscous dissipation forces, but electrostatic forces also,
which (depending on the surface charges present) can be either disjoining or conjoining in
nature. Models incorporating such forces have been considered by Teletzke et al. (1987,
1988): it was shown that disjoining forces make the aqueous film lining the capillary
wall thicker, whereas conjoining forces make it thinner. That said, the faster the droplet
moves, the thicker the aqueous film it leaves behind, and (since electrostatic forces are
screened with distance) the classical Bretherton (1961) theory could then be recovered.

Another complication is that the water used to displace oil might have various different
levels of salinity (Lager et al. 2008; Lee et al. 2010; Ligthelm et al. 2009; McGuire et al.

2005; RezaeiDoust et al. 2011; Yildiz & Morrow 1996). This presents a double complica-
tion in fact: not only does salinity affect the distance over which electrostatic forces are
screened (Wright 2007), but also the charge state of the oil and capillary wall surfaces can
be sensitive to salinity. As explained by Wilmott et al. (2018) the oil and capillary wall
surfaces (the latter typically considered to be comprised of clay) tend to be negatively
charged in low salinity environments, but these surfaces also contain adsorption sites.
As the water salinity increases, positive ions adsorb to the surfaces, tending to reduce
the magnitude of the surface charges (i.e. make the charge less negative). If the water
contains a mix of monovalent and divalent positive ions, adsorption of the divalent ions
can overcompensate for the original negative charges: in this case the net sign of the
charge on each surface can switch from negative to positive.

It was already recognised by Teletzke et al. (1988), that salinity levels and surface
charges would influence electrostatic forces across films, but an explicit representation
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of how that influence would manifest itself was left unspecified. Values of parameters
governing the electrostatic behaviour in oil recovery were however estimated by Wilmott
et al. (2018) using a set of data from literature (Austad et al. 2010; Buckley 1996; Fletcher
& Sposito 1989; Fournier et al. 1998; Joseph 1946; Lewis 1937; Li & Xu 2008; Malmberg
& Maryott 1956; Nelson 2009), and the effects of varying salinity for that particular
parameter set were considered. However one aspect that was not explored in detail is
that parameters governing the surface physical chemistry, e.g. density of adsorption sites
on the capillary wall/clay and the oil (obtained from Lewis (1937); Li & Xu (2008)),
and also the affinity of those sites for adsorption (obtained from Fletcher & Sposito
(1989); Fournier et al. (1998); Joseph (1946)), are likely to be very sensitive to the
chemical composition of the system. Thus, for different compositions, it may be possible
to observe a much wider class of behaviours than those predicted byWilmott et al. (2018).
In this work we consider a wider set of surface charge states for a capillary containing
an oil droplet, and determine the implications for both the thickness of the aqueous film
(left behind on the capillary wall as the oil droplet advances) and the correction to the
capillary pressure drop due to viscous and/or electrostatic effects.
This work is laid out as follows. In section 2 we describe the mathematical model for

the system under consideration and present the overarching governing equation. Then in
section 3 we present the methodology used to solve the governing equation and we also
evaluate model parameters. After that, results predicted by the model are presented in
section 4, and then section 5 offers discussion and conclusions.

2. Model and governing equations

This section is laid out as follows. Section 2.1 presents the overarching governing equa-
tion for oil droplet motion within a capillary pore. Next in section 2.2 the governing
equation is rescaled into a more useful form. Parameters that influence the behaviour of
the governing equation are discussed in sections 2.3–2.4. The technique for evaluating
pressure drop associated with the oil droplet motion is described in section 2.5.

2.1. Governing equation

The problem under consideration has already been formulated by Wilmott et al. (2018)
so only brief summary details of the main governing equation are given here. The notation
used here is slightly different from the study of Wilmott et al. (2018). The reason is that
the study in question considered a given pressure difference was applied and determined
the speed of advance of the droplet as part of the solution of the problem. A capillary
number was therefore defined in terms of the known applied pressure rather than the a
priori unknown droplet speed. Here however we adopt a simpler approach in which the
droplet speed is treated as given. The capillary number then becomes µV/γ where µ is
aqueous phase viscosity, V is droplet speed, and γ is the interfacial tension between the
oil and aqueous phase. This corresponds to the definition used in the original formulation
of Bretherton (1961), so we denote it CaB (so as not to confuse it with the alternative
definition of capillary number employed by Wilmott et al. (2018)).
Solving the problem for advance of an oil droplet requires solving for the shape of

the aqueous film that separates the droplet from the capillary wall: see Figure 1. In
the interests of simplicity we assume a 2-dimensional case (rather than an axisymmetric
system) with the half-thickness of the capillary being denoted R. A static drop in the
capillary would then have a curvature radius exactly equal to R on its front and back
ends. Here however the droplet is moving, so the curvature radius can be perturbed
slightly. The droplet shape can in principle be affected by the ratio between the droplet
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viscosity and aqueous phase viscosity. However analysis by Park & Homsy (1984) has

suggested that, provided the viscosity ratio is no larger than order Ca
−1/3
B (with CaB ≪ 1

in problems of interest), then viscosity ratio has no bearing on the shape.
As alluded to earlier, uniformly curved capillary static regions at the ends of the drop

are joined up with an aqueous thin film across a transition region. Determining the shape
of the transition region then becomes part of the required solution. In what follows, unless
explicitly specified otherwise, we will employ the term “thin film” to refer to the thinnest
part excluding the transition region, and the term “film” more generically including
possibly the transition region in addition to the thinnest part. It turns out moreover
that the shape of the transition region near the rear of the drop (Burgess & Foster
1990; Giavedoni & Saita 1999; Wilmott et al. 2018; Wong et al. 1995a,b) is a little more
complex than the shape near the front. In the interests of simplicity therefore we focus
here solely on the region at the front of the drop.
We switch to a frame of reference moving with the drop. In this frame of reference,

the shape of the drop (i.e. the thickness of the transition region vs distance along it)
should have attained a steady state. Hence an ordinary differential equation (rather than
a partial differential equation) can be solved. In what follows, equations are cast in dimen-
sionless form. Both thickness and distance are scaled by R, pressures are scaled by γ/R
and velocities are scaled by γ/µ. The governing equation for dimensionless aqueous film
thickness h vs dimensionless distance Z along the film (which is derived in appendix A
following Wilmott et al. (2018)) is then

hZZZ = 3CaB
(h− h∗)

h3
−

1

Γ̄

(

σ2
c0 + 2s∗σc0σo0 cosh(h/ǫ2) + s∗ 2σ2

o0

sinh2(h/ǫ2)

)

Z

(2.1)

where CaB is the capillary number, h∗ is the uniform film thickness outside the transition
region (which is a priori unknown), Γ̄ is a parameter (precise mathematical definition
to be given shortly) measuring the relative importance of capillary and electrostatic
terms (specifically referred to electrostatics on the capillary wall), and ǫ2 (again precise
mathematical definition to be given shortly) is the ratio between a Debye screening
length (Wright 2007) and channel half-thickness R.
The bracketed term on the right hand side of equation (2.1) represents an electro-

osmotic tension (Waghmare & Mitra 2008; Yang et al. 2001). The parameter σc0 is the
net charge per adsorption site on the capillary wall, σo0 is the charge per adsorption site
on the oil, and s∗ is the ratio between the density of adsorption sites on the oil and on the
wall. Note that both σc0 and σo0 can vary in principle between −1 (corresponding to all
of the negatively charged adsorption sites remaining unoccupied) and +1 (corresponding
to all adsorption sites being occupied by divalent positive ions). Moreover h/ǫ2 is the
ratio between film thickness and Debye screening length. In general it is necessary to
consider the full h/ǫ2 dependence of the electro-osmotic tension in equation (2.1), which
is relatively complicated. There are however some simpler limiting cases considered in
appendix B. In particular, if h/ǫ2 ≫ 1 electrostatic effects are screened by electrical
double layer effects, and so are weak regardless of the value of Γ̄. The electro-osmotic
tension then reduces to an exponential decay, a case considered by Teletzke et al. (1988).

2.2. Rescaling the governing equation

In order to solve the governing equation (2.1), a number of manipulations are required.
These are standard in the Bretherton case (ignoring electrostatic effects), but in what
follows we review how they are modified in the presence of electrostatic terms. It is known
that (Bretherton 1961) the length and thickness of the transition region scale respectively



Motion of an oil droplet through a capillary with charged surfaces 5

as Ca
1/3
B and Ca

2/3
B , scalings that apply at least nominally in the Bretherton case for

which electrostatic effects are neglected. It is then convenient to define new variables
Ψ = Z/(3CaB)

1/3 and J = h/(3CaB)
2/3. Equation (2.1) then becomes

JΨΨΨ =
(J − J∗)

J3
−

1

Γ̄

(

σ2
c0 + 2s∗σc0σo0 cosh(J χ′) + s∗ 2σ2

o0

sinh2(J χ′)

)

Ψ

(2.2)

where J∗ is the value of J in the thin film region, and χ′ ≡ (3CaB)
2/3/ǫ2 (the ratio

between the characteristic or “nominal” film thickness according to Bretherton (1961)
and the Debye screening length (Wright 2007)).
Since the capillary number has been scaled out, we expect J∗ just to be a function of

the remaining parameters Γ̄, σc0, σo0, s
∗ and χ′. The issue however is that J∗ is a priori

unknown and must be solved as part of the solution of the problem. This is addressed
by rescaling yet again, introducing variables G = J/J∗ and ζ = Ψ/J∗. We also define

Γ∗(Γ̄, J∗) = Γ̄/J∗ (2.3)

χ∗(χ′, J∗) = χ′J∗. (2.4)

The resulting equation is

Gζζζ =
(G− 1)

G3
−

1

Γ∗

(

σ2
c0 + 2s∗σc0σo0 cosh(Gχ∗) + s∗ 2σ2

o0

sinh2(Gχ∗)

)

ζ

(2.5)

the final term in brackets as in equation (2.1) representing the electro-osmotic tension.
We now know that in the thin film region (for small ζ) G → 1, whereas as we approach

the capillary static region (for large ζ) Gζζ must approach some asymptotic value (this
follows because the right hand side of (2.5) vanishes for large G). We denote this large ζ
asymptotic value by Gζζ,∞. Based on the way in which we have defined G, ζ, J and Ψ in
terms of h and Z it follows Gζζ = J∗JΨΨ = J∗hZZ . Since hZZ is expected to approach
unity in the capillary static region, knowing Gζζ,∞ is sufficient to give J∗. Equation (2.5)
can therefore be solved numerically (for any given Γ∗, χ∗, σc0, σo0 and s∗) and hence the
corresponding value of Gζζ,∞ can be determined.
In the Bretherton case, finding Gζζ,∞ completes the solution of the problem. In the

presence of electro-osmotic terms, however this is not the full solution to the problem,
because Gζζ,∞ has been computed for values Γ∗ and χ∗ but these are not given a priori,
but rather are themselves functions of J∗ according to equations (2.3)–(2.4). We are
therefore required to vary a guessed value for J∗ (for fixed Γ̄ and χ′ and therefore variable
Γ∗ and χ∗) and keep computing Gζζ,∞ until the computed Gζζ,∞ equals the guessed J∗.
Finding the required J∗ that satisfies that condition is straightforward if we first solve

the Bretherton problem with no electro-osmotic effects to obtain a well-defined value
J∗
B, and then recall that a disjoining electro-osmotic tension leads to thicker films (and

so must have J∗ > J∗
B) whereas a conjoining electro-osmotic pressure leads to thinner

films (and so has J∗ < J∗
B). Moreover cases with large Γ̄ and/or large χ′ have weak

electro-osmotic effects and hence must be close to the Bretherton case, meaning that we
can easily work downwards from large Γ̄ and/or χ′ to smaller values of these parameters.

2.3. Parameters Γ̄ and ǫ2

Earlier we gave the physical interpretation of Γ̄ and ǫ2 but did not give actual formulae.
Specifically Γ̄ is defined as

Γ̄ = 2γεw/Rq2s∗ 2
c (2.6)

where γ is interfacial tension, εw is electrical permittivity of the aqueous phase, R is
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half-thickness of the capillary, q is the electronic charge, s∗c is the density of adsorption
sites on the wall. Note that Wilmott et al. (2018) employed a related parameter Γ in lieu
of Γ̄ with a slightly different definition, but in the formulation that we present Γ̄ is the
more convenient parameter. Observe (see e.g. equation (2.1) or (2.5)) that the larger the
value of Γ̄ the less important the electro-osmotic terms. In the context of waterflooding,
an increased Γ̄ could be achieved by decreasing R (although it would be challenging to
extract oil from a rock with extremely narrow pores) or by reducing the surface density
of adsorption sites (which presumably could be achieved by changing the chemistry of
the clay comprising the capillary wall).
The parameter ǫ2 is the electrical double layer thickness non-dimensionalised by R

ǫ2 =
(

εwkBT/(2(C
+ + 4C2+)q2R2)

)1/2
(2.7)

where εw is electric permittivity of the aqueous phase, kB is Boltzmann’s constant, T is
absolute temperature, q is electronic charge, C+ is number density of monovalent ions,
and C2+ is number density of divalent ions. However, the parameter that determines
whether or not electro-osmotic effects are screened across the aqueous layer is χ′ (itself
introduced in equation (2.2)) which evaluates to

χ′ ≡ (3CaB)
2/3/ǫ2 = (3CaB)

2/3
(

2(C+ + 4C2+)q2R2/εwkBT
)1/2

. (2.8)

Note that Wilmott et al. (2018) employed a related parameter χ in lieu of χ′ with
a slightly different definition: in the formulation presented here, using the parameter
χ′ turns out to be more convenient. Larger χ′ implies more effective charge screening
making electro-osmotic terms less relevant. Practical ways of altering χ′ when recovering
oil from a given formation include injecting fluid at a different speed (in effect changing
the capillary number) or varying the salinity (changing C+ and/or C2+). In typical
systems of interest, the number density of monovalent ions C+ tends to be rather larger
than that of divalent ions C2+ meaning that to a good approximation χ′ ∝ (C+)1/2. As
will be discussed below, changing C+ and/or C2+ not only affects χ′ but also has a side
effect of changing the charge states of the wall and oil surfaces, denoted σc0 and σo0.
Since the electro-osmotic term in equation (2.2) is sensitive to all these parameters (χ′,
σc0 and σo0), the net effect of changing salinity can potentially be quite complex.

2.4. Determining surface charges on the wall and oil σc0 and σo0

So far we have stated that the charge per adsorption site on the capillary wall σc0 and the
oil σo0 can vary from −1 (no positive ions adsorbed whatsoever) to +1 (divalent positive
ions adsorbed on all sites). In a number of our calculations we will, for simplicity, impose
fixed values for σc0 and/or σo0 between these extremal values ±1. Nevertheless we wish
to establish how σc0 and/or σo0 might be determined more generally.
Following Wilmott et al. (2018) we assume that ion adsorption is governed by a Lang-

muir isotherm. We suppose as above that C+ and C2+ are monovalent and divalent ion
number densities. Moreover we suppose that there are Langmuir constants:K1

c (governing
monovalent adsorption on the capillary wall), K2

c (governing divalent adsorption on the
wall), K1

o (governing monovalent adsorption on oil) and K2
o (governing divalent adsorp-

tion on oil). We next define dimensionless ion concentrations c+ and c2+ by multiplying
each ion number density through by K1

c , and dimensionless Langmuir constants (K1
c , K

2
c ,

K1
o and K2

o) by dividing each Langmuir constant through by K1
c : by definition K1

c equals
unity. Note that this differs from the non-dimensionalisation procedure of Wilmott et al.
(2018) who instead made concentration dimensionless based on an arbitrary concentra-
tion that they selected, considered to be typical of a low salinity waterflood.
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Dimensionless ion concentrations c+ and c2+ are of course affected by the electrostatic
potential, with concentrations being lower in regions of positive potential, and higher in
regions of negative potential. The concentrations of negatively charged balancing counter
ions are affected in the opposite way. Throughout this study, as is standard in Debye-
Hückel theory (Wright 2007), we will assume that the perturbations in ion concentration
induced by electrostatic effects are small compared to the unperturbed concentrations c+0
and c2+0 in the absence of electrostatics. Under this assumption then, these unperturbed
concentrations c+0 and c2+0 will determine the amount of adsorption on the wall and oil
surfaces, despite those surfaces having a non-zero electrostatic potential.
In the notation of Wilmott et al. (2018), the fraction of adsorption sites on the wall

occupied by adsorbed monovalent and divalent positive ions are respectively denoted sc0
and s+c0, the analogous fractions for adsorption on oil being so0 and s+o0. In terms of the
dimensionless concentrations and dimensionless Langmuir parameters these evaluate to

sc0 = K1
cc

+
0 /(1 +K1

cc
+
0 +K2

cc
2+
0 ) (2.9)

s+c0 = K2
cc

2+
0 /(1 +K1

cc
+
0 +K2

cc
2+
0 ) (2.10)

so0 = K1
oc

+
0 /(1 +K1

oc
+
0 +K2

oc
2+
0 ) (2.11)

s+o0 = K2
oc

2+
0 /(1 +K1

oc
+
0 +K2

oc
2+
0 ). (2.12)

Finally the charges per adsorption site are σc0 = 2s+c0 + sc0 − 1 for the wall and σo0 =
2s+o0 + sc0 − 1 for the oil and hence

σc0 = (K2
cc

2+
0 − 1)/(1 +K1

cc
+
0 +K2

cc
2+
0 ) (2.13)

σo0 = (K2
oc

2+
0 − 1)/(1 +K1

oc
+
0 +K2

oc
2+
0 ). (2.14)

The subscripts ‘0’ on all these parameters (sc0, s
+
c0, so0, s

+
o0, σc0 and σo0) reflect the fact

that they can be evaluated at ‘unperturbed’ concentrations c+0 and c2+0 instead of c+ and
c2+. Moreover in the interests of simplicity, it is assumed that sufficient ions are present
in the aqueous film overall such that adsorption onto the capillary wall or oil surfaces
does not lead to any significant change in ion concentration in the bulk.
To summarise, for a number of calculations we will perform, fixed values of σc0 and σo0

will be imposed. In cases however when fixed values are not imposed, equations (2.13)–
(2.14) will be used instead.

2.5. Pressure drop across the droplet front

So far our discussion has focussed on finding how electro-osmotic effects affect the thin
film region, specifically finding the parameter J∗ which determines the thickness of that
region. Also of interest however is the pressure drop. At leading order the (dimensionless)
pressure drop across the capillary static droplet front is unity, since the (dimensionless)
curvature radius at the front is likewise unity. It is of interest however to determine how
much the pressure drop at the front is perturbed by droplet motion. The technique for
doing this was discussed by Wilmott et al. (2018). The finding was that the dimensionless
pressure drop ∆p could be expressed in the form 1+ (3CaB)

2/3∆p∗ where ∆p∗ could be
obtained via ∆p∗ ≡ limζ→∞(GζζG−G2

ζ/2). It follows that not only must Gζζ have a well
defined limiting value as ζ → ∞ at the end of the transition region (thereby determining
J∗) but also GζζG−G2

ζ/2 must have a well defined limiting value that determines ∆p∗.
This completes our presentation of the model and governing equations. To summarise

the key equation we must solve is equation (2.5) forG vs ζ. The large ζ limiting behaviour
of this function G furnishes the information we require, specifically the values of thin
film thickness J∗ and the pressure drop change ∆p∗. Parameter values Γ∗, χ∗, s∗, σc0,
and σo0 must be supplied (the first two parameters mentioned being related to Γ̄ and
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χ′ via equations (2.3)–(2.4), and the final two being related, if required, to Langmuir
parameters (K1

c , K
2
c , K

1
o, K

2
o) via equations (2.13)–(2.14)): an interpretation of each of

these parameters has been summarised in Table 1. In the next section the numerical
methodology for solving the equations and the choices of parameter values are detailed.

3. Methodology and parameter values

This section is laid out as follows. In section 3.1 the numerical solution methodology
is outlined, whereas sections 3.2–3.3 deal with selection of suitable parameter values.

3.1. Numerical methodology

We have solved equation (2.5) using a 4th order Runge-Kutta method (Press et al. 1992).
For sufficiently small ζ we know that G should approach unity. Meanwhile for suffi-

ciently large ζ we know that Gζζ should approach a constant. In order to be able to solve
the equation, we need however, in the small ζ limit, an initial condition for both Gζ and
Gζζ , in addition to that for G. Such conditions are obtained by linearising equation (2.5)
setting g ≈ G− 1. It follows

gζζζ = g − gζ (Γ∗)−1 ∂TEO/∂G|G=1
(3.1)

where TEO is the electro-osmotic tension (i.e. the expression within the brackets in the
final term of equation (2.5)). The solution of equation (3.1) is g = ε exp(Λζ) where ε is
an arbitrarily chosen small parameter (we set ε = 10−5) and

Λ3 = 1− Λ (Γ∗)−1 ∂TEO/∂G|G=1
. (3.2)

Solving this cubic equation to determine Λ is simple. It turns out that there is just one
positive real root, and (at the front end of the drop, which is the case we consider here)
this is the root we require (Wilmott et al. 2018). If Γ∗ is large, the value of Λ is close to
unity, whereas if Γ∗ is small, the two terms on the right hand side come into balance (if
∂TEO/∂G|G=1 > 0) or else the left hand side comes into balance with the second term
on the right (if ∂TEO/∂G|G=1 < 0). Given an initial estimate for Λ we can determine the
exact value by Newton-Raphson iteration. At ζ = 0 we now have G = 1 + ε, Gζ = εΛ
and Gζζ = εΛ2. We integrated forward via Runge-Kutta with a step size δζ = 0.1. The
choice of step size δζ was dictated by the requirement that changes G, Gζ and Gζζ during
any given step should be small compared to the values of G, Gζ and Gζζ at the start of
the step. The integration proceeded until Gζζ had converged to 6 figures.
An issue however is that the other parameter we seek namely GζζG−G2

ζ/2 converges
much more slowly than Gζζ did. In an attempt to obtain convergence for this parameter
we allowed ζ up to very large values (as large as 1000). In that case however both GζζG
and G2

ζ/2 are then large numbers (on the order of ζ2 and hence on the order of a million)
and the value we seek is the difference between these two large numbers. To overcome
this, we devised techniques to accelerate the convergence, as discussed in appendix C.

3.2. Selecting parameter values: χ′, Γ̄ and s∗

With the numerical solution technique now specified, it remains to select the sets of pa-
rameter values for which we solve. Based on literature, Wilmott et al. (2018) proposed
a number of parameter values for displacement of an oil droplet from a capillary. Our
intention here is to consider parameter values comparable with those of Wilmott et al.

(2018), but recognising that a number of parameters are sensitive to surface physical
chemistry, and these might exhibit quite wide variation depending on the chemical com-
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position of the system (see e.g. Newcombe & Ralston (1992) for a situation in which
surface properties are strongly modified by chemistry).

We estimate a capillary number CaB on the order of 10−7. Obtaining this value requires
a conversion between the definition of Ca used by Wilmott et al. (2018) (based on
an imposed pressure) and the capillary number CaB used here (based on an imposed
injection speed). Since CaB is proportional to injection speed we estimate that in an oil
recovery operation it could vary by an order of magnitude either side of 10−7 depending
on how the operation is realised. Meanwhile values of the parameter ǫ2 (the ratio between
Debye length and channel half-thickness) cited by Wilmott et al. (2018) are between 1.5×
10−3 in what they call a low salinity case (corresponding to 17 mol m−3 of monovalent
positive ions) and 2×10−4 (corresponding to 1700 mol m−3 of monovalent positive ions).

Remembering that χ′ ≡ (3CaB)
2/3/ǫ2, we estimate χ′ ≈ 0.03 in the low salinity case

and χ′ ≈ 0.22 in the high salinity case. Given however we commented that CaB could
increase by up to an order of magnitude, and given also that χ′ is sensitive to the half-
thickness of the pore (see equation (2.8)) which varies from rock to rock, it is reasonable
to suppose that the domain of χ′ of interest is somewhere from order unity down to a
couple of orders of magnitude smaller than that. To cover this domain specifically we will
consider values χ′ equal to 5, 2, 1, 0.5, 0.2, 0.1, 0.05 and 0.02. For the χ′ values at the
upper end of the domain charges are screened and electrostatic effects represent only a
small perturbation to the original Bretherton system (Bretherton 1961). For χ′ values at
the lower end of the domain however, electrostatic effects should become very significant.

Concerning the parameter Γ̄, the estimate is Γ̄ ≈ 8. Obtaining this again requires a
conversion from a parameter Γ (used by Wilmott et al. (2018), defined in terms of a
channel length) to the parameter Γ̄ used here (defined using a channel half-thickness).
Since Γ̄ relies on surface physical chemical properties (in particular it depends on the
density of adsorption sites on the capillary wall s∗c , reported by Li & Xu (2008)) there
is likely to be considerable variation in Γ̄ depending on chemical composition. In view of
this, in the interest of simplicity, we set Γ̄ = 10 (instead of the original estimated value
8). We also considered a case with an order of magnitude smaller density of adsorption
sites and hence considerably weaker electrostatic effects. This case had Γ̄ = 1000. We
also considered a case intermediate between these, namely Γ̄ = 100.

Using data from Lewis (1937), it was estimated (Wilmott et al. 2018) that there could
be 75 times as many adsorption sites on oil as on the wall, i.e. s∗ = 75. Again this estimate
is likely to be very sensitive to chemical composition. We chose a value of s∗ = 10,
significantly smaller than the estimate of Wilmott et al. (2018), but still significantly
larger than unity (and hence still with more adsorption sites on oil than on the wall).
The reason for choosing this value s∗ = 10 was to explore the effect of interactions
between the charged oil and the charged capillary wall. When s∗ = 75 the charge on the
oil completely overwhelms that on the wall. When s∗ = 10 however the charge on the oil
remains dominant, but it becomes possible to detect effects arising from the presence or
absence of charge on the wall.

Note one consequence of choosing the combination Γ̄ = 10 and s∗ = 10. Electro-osmotic
effects that refer to the oil (scaling as s∗ 2/Γ̄ in equation (2.2)) and those referring to
the oil-wall interaction (scaling as s∗/Γ̄) can still be important, even though those that
refer to the capillary wall (scaling as 1/Γ̄) might not be. Furthermore it is possible for
the oil-wall interactions to dominate those purely on the oil, as the latter turn out to be
more strongly screened at large distances than the former: see appendix B.
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3.3. Selecting parameter values: Surface charges, Langmuir constants and salinities

Specifying the number of available adsorption sites (via the parameters Γ̄ and s∗) does
not completely specify the surface state of either the capillary wall or the oil. It is also
necessary to know how many ions actually adsorb. This is determined by the values of
Langmuir constants and ion concentrations.

Based on data from Fletcher & Sposito (1989), it was determined (Wilmott et al.

2018) that the product of the Langmuir parameter K1
c and the low salinity monovalent

ion number density C+ was around 1.7 × 10−2. Since a high salinity monovalent ion
concentration was taken to be 100 times the low salinity one, and since concentrations
are made dimensionless here on the scale (K1

c )
−1, it follows that the dimensionless ion

concentrations c+0 will vary from roughly order unity (high salinity) down to about two
orders of magnitude smaller than that (low salinity).

The work of Wilmott et al. (2018) considered a mix of monovalent and divalent ions.
In the low salinity system, there were 3.4 times more monovalent ions than divalent
ones, whereas in the high salinity system there were 18 times more monovalent ions than
divalent, whilst the number of divalent ions also increased 18-fold between the low and
high salinity systems. In this work we decided to consider instead 3 different situations
in respect of the divalent ions, not identical to the cases of Wilmott et al. (2018), but
nevertheless in a similar parameter range. We considered a case with a dimensionless
concentration c2+0 for divalent ions fixed at a low value 0.0025, but with monovalent
ion concentration c+0 varying between 0.01 and 1.0. We also considered a case with a
slightly higher divalent ion concentration c2+0 fixed at 0.05, again with monovalent ion
concentration c+0 varying between 0.01 and 1.0. In addition we considered c2+0 :c+0 held in
a fixed 1:4 ratio, still with c+0 varying between 0.01 and 1.0. For each of these cases we
also allowed χ′ to vary from 0.02 to 0.2 as c+0 itself varied between 0.01 and 1 (noting
that χ′ typically scales like the square root of ion concentration, see section 2.3).

With the salinity levels now specified, we consider the Langmuir parameters. Being
surface physical chemistry properties, we anticipate that Langmuir parameters can be
very sensitive to chemical composition. Here however we scale the system such that
the dimensionless Langmuir constant for monovalent ions on the wall K1

c is unity by
definition. Based on Fletcher & Sposito (1989), it was suggested by Wilmott et al. (2018)
that the analogous constant for divalent ions on the wall K2

c could be some 200 times
larger than K1

c . We select a value with the same order of magnitude but for simplicity
we set K2

c = 100. Regarding the Langmuir constant for monovalent ions adsorbing on oil
K1

o, Wilmott et al. (2018) claimed, based on work of Fournier et al. (1998), that this was
just 1.7 times smaller than K1

c . To within an order of magnitude, we set for simplicity
K1

o = K1
c . Meanwhile K2

o was suggested (based on Joseph (1946)) to be around 0.3 times
K1

c . For simplicity, we chose to set K2
o = 0.1 (an order of magnitude less than K1

c or K1
o).

For the above parameter choices, equation (2.14) indicates that the oil is always neg-
atively charged and in fact σo0 is well approximated by −1/(1 + K1

oc
+
0 ) (which is the

result neglecting the effect of the divalent ions). For low salinity systems in particular,
with c+0 ≪ 1, it then turns out that σo0 is close to −1, and in fact for simplicity we
will perform many of our calculations with σo0 set to −1. The situation with σc0 is a
little more complicated. It is evident from equation (2.13) that σc0 changes sign when
c2+0 = 1/K2

c . Since K2
c = 100 here, the sign change occurs when c2+ = 0.01 which is

well within the domain of divalent ion concentrations of interest. For simplicity we will
consider a number of cases with the charge state of the wall σc0 set to either −1, 0 or 1,
in addition to cases in which σc0 varies according to equation (2.13).

Changing the sign of σc0 may have a relatively limited effect, because (for the current
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set of Langmuir parameters) the charge on the oil σo0 tends to remain negative, and
moreover the density of adsorption sites on the oil is rather larger than on the wall
(by a factor s∗ = 10). Interesting effects can however be predicted for a different set of
Langmuir parameters. If the affinity of the oil for divalent ions is increased significantly
such that K2

o = 25 say (with all other Langmuir parameters remaining unchanged), then
we could see sign changes for the charges on both the wall and oil, occurring respectively
at divalent ion concentrations c2+0 = 1/K2

c = 0.01 and c2+0 = 1/K2
o = 0.04.

For c2+0 between these values 0.01 and 0.04, the charges on the wall and oil are opposite
in sign. If we assume a c2+0 :c+0 ratio of 1:20 (comparable with the 1:18 ratio assumed
by Wilmott et al. (2018) in their high salinity state) then for c2+0 very close to 0.035
(and hence c+0 very close to 0.7) the charges are opposite and equal, i.e. σc0 ≈ −s∗σo0.
In this state, the nature of the electro-osmotic term changes quite dramatically: see
appendix B. Rather than having a strong disjoining tension at small distances, we have a
conjoining pressure. This dramatic change in behaviour is of potential interest meaning
we will analyse this case K2

o = 25 in addition to the original situation with K2
o = 0.1. This

clearly represents a very significant change in the affinity that the oil has for divalent ions,
implying a rather different chemical composition compared to our original parameter set,
but even so the assumed K2

o = 25 for oil still remains less than K2
c = 100 for the wall.

This completes our discussion of the methodology and parameter values to be used
in the study. To summarise, our parametric studies will investigate χ′ values varying
between 5 and 0.02, Γ̄ values either 10 or 100 or 1000, s∗ = 10, as well as σo0 = −1 (at
least in many of our calculations) along with σc0 either −1, 0 or 1. In addition to this
we will consider ion concentrations c+0 varying between 0.01 and 1, with c2+0 being either
0.0025 or 0.05, or else c2+0 : c+0 being in a 1:4 or 1:20 ratio. In such cases χ′, σc0 and
σo0 will be determined based on the ion concentrations, with Langmuir parameters being
specified, whilst Γ̄ and s∗ remain at Γ̄ = 10 and s∗ = 10. Results of these parametric
studies are considered in the next section.

4. Results

The main sets of results we consider are values of J∗ for various combinations of χ′,
Γ̄, s∗, σc0 and σo0 (see section 4.1), and likewise values of ∆p∗ for those same parameter
sets (see section 4.2). After that, in section 4.3, we consider the effect of varying ion
concentrations c+0 and c2+0 , whereas in section 4.4 we consider the effect of increasing the
Langmuir parameter K2

o, thereby increasing the affinity of oil for adsorbing divalent ions:
a key finding in this section 4.4 is that J∗ and ∆p∗ can vary non-monotonically with ion
concentration as a result of changes in the surface charge state.

4.1. Results for film thickness J∗

In what follows we consider the effect on the film thickness J∗ of varying the parameters
χ′ (section 4.1.1) and Γ̄ (section 4.1.2) for various surface charge states. The special case
of opposite and equal surface charges is considered in section 4.1.3.

4.1.1. Effect of varying χ′

Figure 2 plots film thickness J∗ vs the parameter χ′ assuming Γ̄ = 10, s∗ = 10, the
charge state on the oil being σo0 = −1, and three different charge states on the wall:
σc0 = 0 (a singly charged surface with charge on the oil only), σc0 = −1 (same sign
charges on the wall and oil), and σc0 = 1 (opposite but unequal charges).
When χ′ = 5 the system is close to the Bretherton state, and electrostatic effects

remain weak in all cases irrespective of σc0. However as χ′ falls, we see a significant
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increase in J∗ (corresponding to a significant thickening of the film). To guide the eye,
a line is plotted proportional to 1/χ′. It would appear that J∗ ∝ 1/χ′, or in other
words χ∗ ≡ J∗χ′ never falls below a certain level no matter how small the value of
χ′. The physics behind this is clear. The film thickens so that it never explores small
J χ′ values in equation (2.2) thereby avoiding a region in which the electro-osmotic
tension would become prohibitively large. Since J χ′ ≡ h/ǫ2, the thinnest h values that
the film accesses are always comparable with the double layer thickness ǫ2. Thus the
film always benefits somewhat from charge screening. In the limit when h ∼ O(ǫ2) and
χ′ ≡ (3CaB)

2/3/ǫ2 ≪ 1, it also follows (via estimating orders of magnitude of terms in
equation (2.1)), that viscous terms are less important than capillary or electro-osmotic
ones. The χ′ ≪ 1 data therefore correspond to a capillary-electrostatic limit already
identified by Teletzke et al. (1988) termed the “augmented Young-Laplace” limit. Similar
situations in which film thicknesses h tend to an asymptotic value insensitive to capillary
number are also observed in a related dip coating problem (Krechetnikov & Homsy 2005).
At any selected χ′ value, slight differences are seen in Figure 2 between the singly

charged state (charge on the oil only) and the cases with same sign charges (slightly
higher disjoining tension, and hence slightly thicker films) and opposite sign charges
(slightly lower disjoining tension, and hence slightly thinner films). However in all cases
the charge on the oil is the dominant charge, i.e. the magnitude of s∗σo0 exceeds that of
σc0, so what happens on the wall is a small perturbation in relative terms. One interesting
observation in the opposite sign charge case is that the J∗ value for χ′ = 5 is actually
slightly lower than the Bretherton case (although it is difficult to see that on the scale of
the graph). This follows (see appendix B) because the electro-osmotic term involving the
product between the capillary wall charge and the oil charge survives out to comparatively
longer distances than any other electro-osmotic term and (for opposite sign charges at
comparatively large film thicknesses) now becomes a conjoining term.

4.1.2. Effect of varying Γ̄

Figure 3(a) shows the effect upon J∗ vs χ′ of varying the parameter Γ̄ away from the
base case value Γ̄ = 10. Other parameter values are σc0 = 0, σo0 = −1 and s∗ = 10. When
Γ̄ is larger (e.g. Γ̄ = 1000 as shown here) we observe a small perturbation away from the
Bretherton case, at least for χ′ > 1. However when χ′ falls below 1 (keeping Γ̄ = 1000),
we still see a significant thickening of the film, with J∗ increasing proportionally to 1/χ′:
increasing J∗ in this fashion is the only way to keep the electro-osmotic tension in check.
Interestingly (in this small χ′ limit) the value of the product J∗ χ′ has fallen by roughly

one order of magnitude for a two order of magnitude increase in Γ̄. Given that the electro-
osmotic term within equation (2.2) scales proportionally to 1/(Γ̄ (J χ′)2) in the limit
J χ′ ≪ 1, this indicates that the system organises itself to cap the growth of the electro-
osmotic tension. The implication is that J∗ is not just proportional to 1/χ′ in the small
χ′ limit as was identified earlier, but actually should be proportional to 1/(Γ̄1/2χ′). To
investigate this prediction we have plotted data for an additional intermediate Γ̄ value,
Γ̄ = 100, rescaling data in Figure 3(b) into the form J∗ χ′ Γ̄1/2. In the small χ′ limit, we
see that the rescaled data for different Γ̄ values tend to collapse close to each other. The
collapse is better for Γ̄ = 1000 and Γ̄ = 100 than it is for Γ̄ = 10. This is unsurprising: if
J∗ χ′ Γ̄1/2 varies only very slightly with Γ̄, it follows that larger Γ̄ values correspond to
smaller J∗χ′, and the reasoning we invoked above specifically assumed J χ ≪ 1.
This then implies that, for any given Γ̄, the value of χ′ at which J∗ switches from being

close to the Bretherton case (i.e. J∗ of order unity) to growing like 1/(Γ̄1/2χ′) must itself
scale like Γ̄−1/2. In other words, the larger the value of Γ̄, the longer the system manages
to remain close to the Bretherton system as χ′ is decreased.
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4.1.3. Case of opposite and equal charges

Figure 4 reverts to Γ̄ = 10 but considers the case of opposite and equal charges (now
with σc0 = 1, s∗ = 10 and necessarily σo0 = −0.1 in order to satisfy σc0 = −s∗σo0). As
in Figure 2 and Figure 3, when χ′ = 5, electro-osmotic effects are weak, and we see a
film that is similar in thickness to the Bretherton case (Bretherton 1961). However as
χ′ decreases we now see the film becoming thinner rather than thicker: similar findings
have been observed by Teletzke et al. (1988). Nonetheless, in the case considered here,
the amount of thinning is quite modest, only about 10% thinner than in the Bretherton
case. Unlike in the case of unequal charges (in which quite dramatic thickening of the
film is required to avoid diverging electro-osmotic disjoining tensions) here, with opposite
and equal charges, the electro-osmotic conjoining pressure always remains quite modest
(see equation (B 4) in appendix B) and so only perturbs the film thickness slightly.

4.2. Results for pressure drop ∆p∗

This section is laid out similarly to the preceding one but considers pressure drop data
∆p∗ instead of film thickness data J∗. Specifically sections 4.2.1–4.2.2 vary χ′ and Γ̄ for
various surface charge states, whereas sections 4.2.3–4.2.4 consider the special case of
opposite and equal surface charges.

4.2.1. Effect of varying χ′

In Figure 5 we plot ∆p∗ (where recall the pressure drop across the front is ∆p ≡
1+ (3CaB)

2/3 ∆p∗). The parameter values considered are the same as those in Figure 2.
We see that ∆p∗ here for χ′ = 5 is close to the Bretherton case, but as χ′ decreases ∆p∗

is substantially larger. This is unsurprising because the aqueous film on the capillary wall
is thicker, so the curvature across the front of the oil droplet must be tighter. All three
cases considered (the singly charged surface, surfaces with like charges and surfaces with
opposite but unequal charges) are broadly similar, but like charges lead to slightly higher
∆p∗ than the singly charged case, and opposite charges lead to slightly lower ∆p∗. This
is similar to what was found for the film thickness J∗ in Figure 2.
On Figure 5 to guide the eye we have shown a line proportional to 1/χ′. It is clear that

for small χ′, ∆p∗ is proportional to 1/χ′. Relative to the leading order capillary pressure
drop (unity in our system), the change to the total driving pressure namely (3CaB)

2/3∆p∗

now becomes order ((3CaB)
2/3)/χ′. However since χ′ is itself defined as (3CaB)

2/3/ǫ2,
it follows that the change in the pressure drop is order ǫ2 roughly independently of χ′.
How this situation comes about can be explained as follows. In the Bretherton case,

(3CaB)
2/3∆p∗ reflects the work that must be done against viscous dissipation to drive

the droplet along, over and above the interfacial tension cost associated with creating
additional interface. Although not central to the argument, there is also (still in the
Bretherton case) an extra contribution to (3CaB)

2/3∆p∗ reflecting the fact that work
done against interfacial tension is only done across a fraction 1− h∗ ≡ 1− (3CaB)

2/3J∗

of the width of the channel, i.e. the fraction actually occupied by the droplet: the smaller
the fraction of the channel over which work is performed, the larger the driving pressure
needs to be to perform a given amount of work, the bulk of that work being used to create
interfacial energy. In the present problem however there are two elements making up the
energy cost of additional interface. First we must overcome the interfacial tension cost
of creating additional interface. Then we must overcome the electro-osmotic disjoining
tension associated with pushing that newly created interface towards the capillary wall.
In the limit of small χ′ (which is also the limit of small CaB since χ′ = (3CaB)

2/3/ǫ2)
the work done against disjoining tension considerably exceeds that done against viscous
dissipation. If the viscous effects are thereby neglected, energetically we have capillary-
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electrostatic problem (the augmented Young-Laplace limit of Teletzke et al. (1988)): the
“effective” interfacial tension of the thin film (i.e. actual energy cost per unit area of
film including the electro-osmotic effect) exceeds the “raw” interfacial tension (without
electro-osmotic effects). It is this “effective” interfacial tension which contributes to a
higher energy cost (and hence a higher driving pressure) as the droplet displaces along.
The work done against the electro-osmotic tension is obtained from Γ̄−1

∫∞

h
TEO dh.

Extracting the electro-osmotic term from equation (2.1) and integrating yields
∫ ∞

h

TEO dh = 2σ2
c0ǫ2 exp(−2h/ǫ2)/(1− exp(−2h/ǫ2))

+ 2s∗σc0σo0ǫ2/ sinh(h/ǫ2) (4.1)

+ 2s∗ 2σ2
o0ǫ2 exp(−2h/ǫ2)/(1− exp(−2h/ǫ2)).

The lower limit of integration for equation (4.1) is not given a priori, since that depends
upon how thin the film becomes (and that also depends on Γ̄). However we know from
Figure 3 that, in the small χ′ limit, J∗ χ′ is roughly constant for any given Γ̄: since
J χ′ ≡ h/ǫ2, the film thickness h never falls below order ǫ2. Under those circumstances
equation (4.1) predicts a value that is order ǫ2, agreeing with our earlier claim that the
change in the pressure drop due to electro-osmotic effects should likewise be order ǫ2.

4.2.2. Effect of varying Γ̄

The previous subsection examined how ∆p∗ varied with χ′ for a fixed Γ̄. However ∆p∗

also depends on Γ̄ as is seen in Figure 6 by comparing data for Γ̄ = 10 with data for
Γ̄ = 100 and Γ̄ = 1000. Values of σc0, s

∗ and σo0 are as per Figure 3. Qualitatively
the ∆p∗ data in Figure 6(a) follow the same trends as J∗ data in Figure 3(a). Data for
Γ̄ = 1000 stay closer to the Bretherton data for longer as χ′ decreases, and for each Γ̄ the
data scale like 1/χ′ for small χ′. In this small χ′ limit, a two order of magnitude increase
in Γ̄ leads to roughly a single order of magnitude decrease in ∆p∗, again analogous to
what is seen for J∗ in Figure 3. In Figure 6(b) we aim to collapse data with different Γ̄
by plotting ∆p∗ χ′ Γ̄1/2 vs χ′. Although the collapse is not as good as seen in Figure 3(b),
we again see the tendency towards better collapse with increasing Γ̄ value.

4.2.3. Case of opposite and equal charges

In the case of opposite and equal charges σc0 = −s∗σo0 (with parameter values chosen
as per Figure 4) we have plotted ∆p∗ vs χ′: see Figure 7. Unsurprisingly the ∆p∗ values
tend to be smaller than for the Bretherton case. The film is now slightly thinner than the
Bretherton film, so the curvature radius of the droplet front can be slightly larger, and
this is associated with a decrease in ∆p∗. A surprise happens however when χ′ becomes
sufficiently small, namely ∆p∗ switches sign. For these parameter values (Γ̄ = 10, σc0 = 1,
σo0 = −0.1 and s∗ = 10) this switch is observed to happen when χ′ is roughly 0.1.
The sign change in ∆p∗ can be understood as follows. Remember that the total driving

pressure ∆p = 1+(3CaB)
2/3∆p∗ is comprised of a leading order capillary static term, plus

corrections from viscous and electro-osmotic terms, as well as an additional correction
(see section 4.2.1) reflecting the fact that work is only done by the pressure across the
fraction of the channel width actually occupied by the drop. In the present case with
opposite and equal charges on the oil and the wall, work is actually done by the electro-
osmotic conjoining pressure (rather than being done against a disjoining tension). For
small enough χ′, it appears that the work done by the electro-osmotic conjoining pressure
actually exceeds the energy lost to viscous dissipation (plus the additional correction due
to displacing through just a fraction of the channel width), so it is slightly easier to push
the oil droplet along than would be determined by considering capillary effects alone.



Motion of an oil droplet through a capillary with charged surfaces 15

Over the χ′ domain studied here, which (see section 3.2) corresponds to the likely
domain of interest in waterflooding applications, it is much less clear (compared to the
case in section 4.2.1) that ∆p∗ exhibits a scaling proportional to 1/χ′ at small χ′, although
such a scaling is plausible. Recall that in section 4.2.1 we argued that this scaling implied
a pressure change (3CaB)

2/3∆p∗ on the order of ǫ2 (regardless of the value of χ′) and
this came about when ∆p∗ was dominated by an electro-osmotic work contribution. The
“effective” interfacial tension in such a system can be evaluated as the “raw” tension less
the amount of work done by the electro-osmotic pressure as h decreases. This amount of
work can be estimated as Γ̄−1

∫∞

h
pEO dh where

∫ ∞

h

pEO dh = 2|s∗σc0σo0| 2ǫ2(exp(−h/ǫ2)− exp(−2h/ǫ2))/(1− exp(−2h/ǫ2)). (4.2)

The limiting value of this for h ≪ ǫ2 is 2|s∗σc0σo0|ǫ2, which does indeed give a value of
order ǫ2 as anticipated. The difficulty we face here (compared to section 4.2.1) is that
in the present system the work done by electro-osmotic pressures is offset by work done
against viscous forces, and since films thin here (rather than thicken) as χ′ decreases, it
is less easy to justify neglect of those viscous forces.

4.2.4. Implications for contact angles

The fact that the “effective” interfacial tension can be less than the “raw” tension has
an important implication when the system is viewed macroscopically with a uniformly
curved drop front joining up with a thin film along the capillary wall. The situation is
sketched in Figure 8. Since the total pressure drop is now 1 − (3CaB)

2/3|∆p∗| and so is
less than unity, the curvature radius of the front (i.e. the reciprocal of the total pressure
drop) is greater than unity. In the space available across the half-thickness of the channel,
the droplet front can no longer curve sufficiently to meet the capillary wall tangentially.
Denoting the curvature radius by 1+∆r, with ∆r ≈ (3CaB)

2/3|∆p∗| ≪ 1, the front turns
through an angle arcsin(1/(1+∆r)) across the half-thickness, meaning that it meets the
capillary wall at a contact angle π/2− arcsin(1/(1+∆r)) = arccos(1/(1+∆r)). Systems
such as these with finite (apparent) contact angles have been considered already by Cox
et al. (2018); Krechetnikov & Homsy (2005); Teletzke et al. (1988).

Local force balance at the contact point, requires us to balance the “raw” interfacial
tension force on the droplet front projected onto the capillary wall, with the weaker
“effective” interfacial tension force in the thin film. The projection involves the cosine of
the contact angle which evaluates to 1/(1 +∆r). This is however exactly the “effective”
interfacial tension. The work done to advance the front per unit of distance is determined
by the imposed pressure 1/(1 + ∆r) and this work done is reflected in the energy per
unit area of thin film created, which is nothing other than the aforementioned “effective”
tension. Thus a front driven along by a total pressure less than unity, is (at least in
a capillary-electrostatic system) entirely consistent with an “effective” interfacial film
tension less than the raw tension, leading to a finite contact angle at the capillary wall.

4.3. Effect of varying ion concentrations c+0 and c2+0

Whereas the previous sections 4.1–4.2 considered varying χ′ values for a given surface
charge state (which physically could be achieved by moving an oil droplet at a different
speed), here we consider varying χ′ by varying ion concentrations c+0 and c2+0 . As we
shall see, this has the side effect of varying surface charges (section 4.3.1) in addition to
affecting film thickness J∗ and pressure drop ∆p∗ (sections 4.3.2–4.3.3).
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4.3.1. Effect upon surface charges σc0 and σo0

All data examined thus far varied χ′ with the charges per adsorption site (σc0 and
σo0) fixed. Here however we vary χ′ by varying ion concentrations, which affects σc0 and
σo0. Remember from section 3.2 that a χ′ value of 0.22 (or roughly speaking 0.2) along
with a c+0 value of order unity would be typical for a high salinity case, and moreover
(from sections 2.3 and 3.3) that χ′ ∝ (c+0 )

1/2 (which applies as long as monovalent ions
are more plentiful than divalent ones). We suppose χ′ = 0.2 (c+0 )

1/2 and we consider a
range of c+0 values from unity (high salinity) down to 0.01 (low salinity).

A side effect of changing c+0 however is that σc0 and σo0 must also change. An ex-
ample of how these quantities change vs monovalent ion concentration c+ is plotted in
Figure 9. Within this figure, we consider 3 separate sets of divalent ion concentrations as
per section 3.3: a low divalent ion concentration (c2+0 = 0.0025, comparable with what is
assumed in the low salinity state of Wilmott et al. (2018)), a high divalent ion concen-
tration (c2+0 = 0.05, comparable with the high salinity state of Wilmott et al. (2018)),
and a fixed ratio between divalent:monovalent ions (a 1:4 ratio comparable with the ratio
assumed in the low salinity state of Wilmott et al. (2018)).

We see in Figure 9 that for low divalent ion concentrations, the charge per adsorption
site on the the wall σc0 is negative, whereas for high divalent ion concentrations σc0 is
positive, and for a fixed monovalent:divalent concentration ratio σc0 switches between
negative and positive as c+0 changes. Equation (2.13) indicates that what controls the
sign of σc0 is the adsorption of divalent ions, and the wall’s strong affinity for divalent
ions (the Langmuir constant being K2

c = 100) makes these sign changes possible. The
sign change occurs when K2

cc
2+
0 = 1 corresponding to c2+0 = 0.01 for our data, and hence

c+0 = 0.04 (divalent:monovalent ions are kept in a 1:4 ratio for the data set in question).

Considering now the oil rather than the wall, we note that the Langmuir constant for
adsorption of divalent ions onto oil K2

o is very small, namely K2
o = 0.1. As a result σo0

is always negative, making equation (2.14) very insensitive to c2+0 , and hence insensitive
to whether we consider the low divalent ion case, the high divalent ion case or the fixed
monovalent:divalent ion ratio. Indeed as already mentioned in section 3.3, to a good
approximation, σo0 ≈ −1/(1 + K1

oc
+
0 ), where recall K1

o = 1. This means that as c+0 falls
from c+0 = 1 to c+0 ≪ 1, σo0 becomes more negative and roughly doubles in magnitude.

4.3.2. Effect upon film thickness J∗

Having now obtained values of σc0 and σo0, in Figure 10(a) we show data for film
thickness J∗ vs c+0 . Parameter values are as per Figure 9 with also Γ̄ = 10 and s∗ = 10.
The first set of data we examine is for the low divalent ion concentration system (c2+0 =
0.0025). The main effect we see is that J∗ increases as c+0 increases. To guide the eye
we have plotted a line proportional to (c+0 )

−1/2: owing to the square root relationship
between χ′ and c+0 , this corresponds to a line proportional to 1/χ′, as was plotted in
Figure 2. For smaller c+0 values the data are parallel to this line, but if we start from c+0
close to 1, and then decrease c+0 , the J

∗ data rise faster than the line does. The effect we
are seeing here is the increase in the magnitude of the charge on the oil σo0 as c+0 falls.

Data for J∗ vs c+0 for a much higher divalent ion concentration (c2+0 = 0.05) are also
considered. The behaviour of the predicted J∗ values mirrors what is discussed above
in the low divalent ion concentration case (c2+0 = 0.0025). However J∗ values are now
shifted to lower values. This is due to the sign of σc0 having changed. In the previous
case when c2+0 = 0.0025, σc0 is negative and so has the same sign as σo0. However when
c2+0 = 0.05, σc0 has become positive, opposite in sign from σo0, leading to slightly thinner
films than before, i.e. slightly smaller J∗. The effect of changing the sign of the charge on
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the wall remains however a relatively small one, because the oil still has a much bigger
overall charge than the wall, having many more adsorption sites available (i.e. s∗ = 10).
The final case in Figure 10(a) varies overall ion concentration but holds the ratio

between divalent and monovalent ions fixed at 1:4. For these data as c+0 decreases, J∗

rises more rapidly than (c+0 )
−1/2, i.e. more rapidly than 1/χ′. The reason is that reducing

c+0 not only causes χ′ to fall, but also causes σc0 to switch sign, from positive (opposite
in sign from σo0) to negative (the same sign as σo0): that causes the film to thicken.

4.3.3. Effect upon pressure drop ∆p∗

Figure 10(b) shows data for ∆p∗ vs c+0 for the same set of conditions as in Figure 10(a).
Qualitatively the results in the two figures are very similar. As c+0 falls at fixed divalent
ion concentration, ∆p∗ grows slightly faster than (c+0 )

−1/2 reflecting a growth in the mag-
nitude of σo0 in addition to a reduction in χ′. At any given monovalent ion concentration
c+0 , higher divalent ion concentrations, for which the oil and wall are oppositely charged,
give lower ∆p∗ than low divalent ion concentrations, for which the oil and wall have like
charges. Reducing c+0 at a specified c2+0 :c+0 ion ratio leads to greater increases in ∆p∗

than would be observed for any fixed c2+0 value, this being due to a change in sign of σc0

as c+0 decreases when c+0 and c2+0 are held at a specified ratio. The surface of the wall
thereby switches from being oppositely charged from the oil to having a like charge.

4.4. Case with a large K2
o

In sections 4.1.3 and 4.2.3 we saw that the system exhibits quite distinctive behaviours
when surface charges σc0 and s∗σo0 become opposite and equal. In principle such a state
can be achieved by varying concentrations, c+0 and c2+0 . In practice however this did not
happen in section 4.3 because the value of the Langmuir parameter K2

o was such that
very few divalent ions adsorbed on the oil in the concentration range of interest. This
limited the variation of σo0 away from −1, and since s∗ was also significantly larger than
unity, the charge on the oil tended to overwhelm that on the wall. Here we investigate a
case with a much larger K2

o, exploring the effects on the surface charges (section 4.4.1),
as well as on film thickness J∗ (section 4.4.2) and pressure drop ∆p∗ (section 4.4.3). As
we will see, J∗ and ∆p∗ can exhibit non-monotonic behaviour as c+0 and c2+0 vary.

4.4.1. Effect upon surface charges σc0 and σo0

Here we suppose that K2
o = 25 (much higher than the value K2

o = 0.1 considered
previously, but still significantly less than the analogous parameter for the wall K2

c which
equals 100). We assume moreover that the divalent and monovalent ion concentrations are
in a 1:20 ratio (a ratio comparable with what Wilmott et al. (2018) assumed in their high
salinity case). Data for the surface charges σc0 and σo0 are plotted in Figure 11. Both σc0

and σo0 now change sign as the ion concentration c+0 varies. However these sign changes
do not happen at the same c+0 . In fact σc0 switches sign when c+0 = 0.2 (i.e. c2+0 = 0.01)
whereas σo0 switches sign when c+0 = 0.8 (i.e. c2+0 = 0.04). For 0.2 < c+0 < 0.8 therefore,
the values of σc0 and σo0 are of opposite sign, and it turns out there is a particular value
of c+0 very close to c+0 ≈ 0.7 (see Figure 11) at which the charges become opposite and
equal, i.e. σc0 = −s∗σo0 (assuming s∗ = 10).

4.4.2. Effect upon film thickness J∗

In Figure 12 we show results for film thickness J∗ sweeping through concentration
values c+0 from c+0 = 1 down to c+0 = 0.5. Parameter values are as per Figure 11 with in
addition Γ̄ = 10. Instead of a conventional picture in which J∗ increases as c+0 decreases,
the system is now strongly affected by the charge state of the surfaces, with the film
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thickness J∗ falling to a minimum at the point where charges are opposite and equal
(very close to c+0 = 0.7). As is seen in the zoomed view in Figure 12(b), the film thickness
J∗ at this minimum is actually smaller than the Bretherton case (Bretherton 1961).

4.4.3. Effect upon pressure drop ∆p∗

Analogous data for ∆p∗ vs c+0 are presented in Figure 13. Again instead of the conven-
tional picture in which ∆p∗ grows as c+0 falls, we see that ∆p∗ falls to a minimum owing
to the changes in the charge state of the surfaces. In the zoomed view Figure 13(b) we
observe that ∆p∗ falls below the Bretherton equivalent. Recall from section 4.2.3 that we
correlated falling values of ∆p∗ with work done by the electro-osmotic conjoining pressure
which can help the droplet front to move along. Unlike what was seen in Figure 7, here in
Figure 13, ∆p∗ never becomes negative: whilst work can be done by the conjoining pres-
sure, it fails to match the positive contributions to ∆p∗ arising from viscous dissipation
losses plus other effects (a pressure increase is needed to compensate for displacement
only occurring across a fraction of the channel width as per section 4.2.1).
One interesting feature of Figure 13 (a contrast with what is found for J∗ in Figure 12)

is that the local minimum for ∆p∗ appears to occur around c+0 ≈ 0.69 and so does not
coincide with the point of opposite and equal charges which is known to occur at a c+0
value extremely close to 0.7. Recall (see section 3.1 and also appendix C) that there is
more uncertainty in predicted ∆p∗ values than in J∗ values owing to slower convergence.
That notwithstanding, the very slight decrease in ∆p∗ when decreasing c+0 slightly below
0.7 can also be explained by the nature of the conjoining and disjoining terms for charges
that are nearly (but not quite) opposite and equal: details are given in appendix D.

5. Discussion and conclusions

In the context of oil recovery operations, a model for a charged droplet moving along
a charged capillary channel has been considered, based on work by Wilmott et al. (2018)
providing an extension of classical results (for the uncharged case) of Bretherton (1961).
The governing equations of the model contain not only the capillary and viscous terms
considered by Bretherton but also an additional electro-osmotic term. In the interests of
simplicity, we have focussed attention solely on the front part of the droplet, ignoring
what happens at the rear (despite the fact that Wilmott et al. (2018) indicated that
interesting effects could also be observed at the rear).
One of the key dimensionless parameters governing the system behaviour is χ′ which

is the ratio between the “nominal” thickness of the aqueous layer separating the droplet
from the capillary wall and the thickness of the electrical double layer (the Debye length).
The “nominal” thickness here is what would be predicted by Bretherton (1961) ignoring
electrostatic effects (and is proportional to (3CaB)

2/3 where CaB is a capillary num-
ber). When χ′ is large, electrostatic effects are strongly screened and Bretherton’s re-
sults are recovered (Bretherton 1961). However when χ′ is small, significant departures
from Bretherton’s results are found. Corroborating findings by Teletzke et al. (1988),
the aqueous layer then becomes much thicker than Bretherton’s “nominal” value (by an
amount proportional to 1/χ′) and in fact keeps itself of comparable thickness with the
electrical double layer, so that electrostatic effects manage to be screened to some extent.
The pressure needed to drive the oil droplet front along consists of a capillary pressure
plus corrections due to viscous dissipation and due to work being done across just part
of the channel (as already identified by Bretherton (1961)) plus an additional new cor-
rection due to work done against an electro-osmotic tension. In the limit of very small
χ′, the electro-osmotic correction seems to dominate the viscous one, suggesting that a
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capillary-electrostatic limit has been reached (the so called “augmented Young-Laplace”
limit of Teletzke et al. (1988)), in which the “effective” interfacial tension of the system
incorporates the original “raw” tension plus electro-osmotic effects.

Apart from χ′, other key dimensionless groups are Γ̄ which measures the relative
strength of capillary and surface electrostatic effects (referred specifically to the surface
of the capillary wall) and s∗ which measures the density of charge sites on the oil relative
to the wall (the wall is assumed to be constituted of clay). Both parameters Γ̄ and s∗

involve surface physical chemical parameters and as such are likely to be very sensitive to
chemical composition. Although Wilmott et al. (2018) provided some base case estimates
of the likely values of these parameters utilising published literature data, measuring their
values for a wide variety of different oil-bearing rocks, and a wide variety of different oils
within those rocks, is likely to be instructive.

For electro-statics to be unimportant it necessary to have small values of 1/Γ̄, s∗/Γ̄, and
s∗ 2/Γ̄. Even when these parameters are small, it is possible for electrostatics to regain
importance at sufficiently small χ′. Small values of capillary number CaB, leading to small
values of χ′, bring the oil and wall surfaces closer and closer together, but eventually an
electro-osmotic tension must oppose this and prevent the aqueous film between the oil
and wall from thinning any further. The χ′ value below which electrostatic effects start
to become relevant is estimated to scale proportionally to 1/Γ̄1/2. This relationship will
exhibit some s∗ dependence also, but we have not explored that aspect in detail.

The arguments above concern the case when the electro-osmotic term represents a
disjoining tension. This happens when just one single surface (either oil or the wall) is
charged or when the surfaces have charges of the same sign. Disjoining pressures also
apply if the oil and wall surfaces have opposite sign charges of substantially different
magnitude, provided the surfaces are sufficiently closely spaced. However in this latter
case of opposite sign charges, for larger spacings between the oil and the wall, a conjoining
pressure results instead, albeit a comparatively weak one owing to screening. At any
given χ′, films with like charges on both surfaces tend to be thicker than those with
singly charged surfaces, which tend to be thicker again than the opposite (but unequal)
charge case. In all these cases however, as χ′ falls, electro-osmotic effects mean the films
definitely thicken substantially relative to what Bretherton (1961) predicts.

There is however one special case in which the electro-osmotic terms reduce entirely
to a conjoining pressure, without any disjoining tension being present. This is the case
of opposite and equal charges on the oil and the wall. In that special case, the film is
always thinner than in the Bretherton case (Bretherton 1961), although the effect is a
relatively modest one, thinning of up to about 10 percent or so being possible for the
parameter set considered here. A surprising result is however found when one examines
the pressure required to drive the droplet front along. This is comprised of a dominant
(positive) pressure contribution needed to overcome capillarity, plus a (positive) pressure
correction to overcome viscous dissipation (as per Bretherton (1961)), plus an extra
(negative) pressure correction, associated with work done by the conjoining pressure in
the film. For sufficiently small χ′, the magnitude of the conjoining term can exceed the
viscous dissipation term. The net pressure to drive the droplet front along is now less than
would be predicted from capillarity alone. A consequence of having this lower pressure is
that when viewed macroscopically (with a uniformly curved front being assumed to meet
a thin film lying along the capillary wall) the front cannot curve sufficiently to meet the
wall tangentially, but instead appears to meet the wall at a finite contact angle, as also
seen by Krechetnikov & Homsy (2005); Teletzke et al. (1988). This same finite contact
angle is predicted if the system is considered in a capillary-electrostatic limit, since owing
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to conjoining effects, the “effective” interfacial tension of the thin film along the capillary
wall is now less than the “raw” interfacial tension of the uniformly curved front.
Clearly systems with small χ′ regardless of the charge state of the oil and the wall

(whether a singly charged surface, surfaces with like charges, surfaces with opposite
but unequal charges, or surfaces with opposite and equal charges) exhibit interesting
behaviours quite distinct from the behaviour of Bretherton’s original model (Bretherton
1961). For a given oil contained in a given rock sample, there are two quite distinct ways
in which the value of this parameter χ′ can be varied in practice. One way is to vary the
speed at which fluid is injected into pores (thereby changing the capillary number and
hence the “nominal” thickness of the Bretherton film). The other is to change the ion
concentration in the system (by varying salinity) and thereby affect the Debye length,
the result then being that χ′ is proportional to the square root of salt concentration.
Changes in salinity however have a side effect of changing the charge state of the

system, because positively-charged ions from solution are able to adsorb onto negatively-
charged adsorption sites on either oil or the wall. Either monovalent positive ions or
divalent positive ions can in principle adsorb, with the case of divalent ion adsorption
being particularly interesting because if sufficient of these manage to adsorb on one or
other surface, the sign of the charge on that surface can switch. The strength of adsorption
for each species (monovalent vs divalent) is determined by Langmuir parameters. Values
for these were estimated (Wilmott et al. 2018) based on literature data, but as we are
once again dealing with surface physical chemistry properties, such estimates are likely
to be sensitive to chemical compositions. More data on Langmuir parameter values for
a variety of ions in contact with a variety of oils and oil-bearing rocks is likely to be
instructive, particularly now that Wilmott et al. (2018) have established how knowledge
of such parameters is so relevant to waterflooding oil recovery operations.
As in Wilmott et al. (2018), the range of ion concentrations considered here span the

domain from what is considered in oil recovery operations a high salinity waterflood (e.g.
with sea water) to what is considered low salinity. The data of Wilmott et al. (2018)
suggested that divalent ion adsorption onto oil is weak, but monovalent positive ion
adsorption in the high salinity system can neutralise approximately half the negatively
charged oil adsorption sites. In the low salinity system barely any positive ions are ad-
sorbed, so the net negative charge on the oil is roughly double that in the high salinity
state. Reducing ion concentration from high salinity to low salinity therefore not only en-
hances electro-osmotic effects through accessing lower χ′ values (implying less in the way
of charge screening) but also enhances these effects through increasing the magnitude of
the oil’s surface charge. By contrast with what is found for the oil, Wilmott et al. (2018)
suggested that divalent ion adsorption on the capillary wall (comprised of clay) was very
strong. As a result, the wall should be negatively charged in the presence of relatively few
divalent ions, but positively charged when many more divalent ions are present. A low
concentration of divalent ions therefore implied like charged oil and wall surfaces (tend-
ing to increase film thicknesses and required driving pressures) relative to the case with
higher divalent ion concentration which had opposite albeit unequally charged surfaces.
Bearing in mind the likely sensitivity of Langmuir parameters to chemical composition,

we also considered a case with a different set of Langmuir parameters such that the oil,
like the wall, now had a comparatively high affinity for adsorbing divalent ions. As the
salinity varied with a fixed monovalent:divalent ion ratio, this permitted a switch in the
sign of the charge on both the oil and the wall, although the switch did not happen
at exactly the same salinity for oil as for the wall. It was possible to find a window
of salinities over which the oil was negatively charged whereas the wall was positively
charged, and within this window there was one particular salinity at which the charges
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became opposite and equal. As the neighbourhood of this particular salinity level was
approached, both the thickness of the film and the pressure needed to drive the droplet
front along exhibited significant decreases. We can conclude that, given knowledge of
chemical compositions and surface physical chemical behaviour, it may be possible to
use salinity as a parameter to tune the performance of oil recovery operations.

Appendix A. Derivation of the governing equation

In this appendix, the derivation of the governing equation (2.1) (or equivalently (2.5))
is discussed, paying particular attention to the electro-osmotic term within that equation,
which is absent from the classical Bretherton theory (Bretherton 1961): the reason why
that term must have the particular functional form shown in those equations is explained.
Full details are given byWilmott et al. (2018), but since the notation used here necessarily
differs from theirs, some key steps are reproduced below to assist the reader. Note also
that Wilmott et al. (2018) considered the governing equations in a great deal of generality,
but then showed that a number of terms could be simplified or even neglected at leading
order. The derivations below anticipate such simplifications from the outset, making for
a less complex system of equations than what Wilmott et al. (2018) needed to consider.
The analysis proceeds by first solving for the electrostatics of the system (appendix A.1),
and after that solving for the fluid dynamics (appendix A.2). A physical interpretation
of the various terms in the governing equation is offered in appendix A.3.

A.1. Solving for the electric potential

An electrical potential produces variations (via Boltzmann factors (Reif 1965)) in the con-
centrations of ions relative to unperturbed concentrations in the absence of any potential.
It is assumed however that these concentration variations are comparatively small. Hence

c± = c±0 exp(∓φ) ≈ c±0 (1∓ φ) (A 1)

c2± = c2±0 exp(∓2φ) ≈ c2±0 (1∓ 2φ) (A 2)

where the dimensionless potential φ has been scaled by kBT/q (kB being Boltzmann’s
constant, T being temperature, and q being the elementary charge), where concentrations
(c±, c2±) have been scaled by a reciprocal Langmuir parameter (K1

c )
−1 (taken here to

have units of ions per volume, rather than moles per volume), and where a subscript ‘0’
denotes unperturbed concentrations.
Gauss’s equation for the electrical field (Wright 2007) (with the coordinate y across

the film being made dimensionless using the capillary half-thickness R) then reduces to

2ǫ̂22φzz = c−0 exp(φ) − c+0 exp(−φ) + 2c2−0 exp(2φ)− 2c2+0 exp(−2φ)

≈ (c−0 + c+0 + 4c2−0 + 4c2+0 )φ (A 3)

where ǫ̂2 is a dimensionless group defined as

ǫ̂22 = K1
c εwkBT/(2q

2R2), (A 4)

εw being electrical permittivity of the aqueous phase and other parameters being as
above. If we now suppose for simplicity that c+0 = c−0 , c

2+
0 = c2−0 (i.e. equal numbers of

anions and cations in the unperturbed system, for both monovalent and divalent ions),
then we can further define (equivalently to equation (2.7))

ǫ2 ≡ ǫ̂2/(c
+
0 + 4c2+0 )1/2 (A 5)

implying that

ǫ22φyy = φ. (A 6)
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It is possible to relax the assumption used here that c+0 = c−0 and c2+0 = c2−0 provided
overall charge balance c+0 + 2c2+0 = c−0 + 2c2−0 is satisfied, but that leads to a slightly
more complicated formula for ǫ2 than equation (A 5) shows.
Boundary conditions on φy at the capillary wall surface y = 0 are found by integrating

Gauss’s law across this surface (remembering the charges adsorbed on it). This gives

(kBT/(qR))φy|y=0
= −(s∗cq/εw)σc0 (A 7)

where s∗c represents the number of charge adsorption sites per unit area on the capillary
wall, and σc0 is the average charge per site. We define a dimensionless group ξ as ξ ≡
εwkBT/q

2s∗cR, and we also define Φ via φ = ǫ2ξ
−1Φ, and Ŷ via y = ǫ2Ŷ , which yields

ΦŶ

∣

∣

Ŷ=0
= −σc0. (A 8)

Similar arguments at the water-oil interface y = h (where h is the dimensionless thickness
of the aqueous film) or equivalently at Ŷ = H (with H ≡ h/ǫ2) yield

ΦŶ

∣

∣

Ŷ=H
= s∗σo0. (A 9)

We have the opposite sign in equations (A 8)–(A9) compared to Wilmott et al. (2018),
since e.g. a positive σc0 should give an upward directed electric field at Ŷ = 0 and hence
a negative ΦŶ . This sign change has no bearing on the final result we will derive for
electro-osmotic tension (so the final result of Wilmott et al. (2018) is indeed correct).
Returning to consider differential equation (A 6), observe that φŶ Ŷ = φ and moreover

ΦŶ Ŷ = Φ. (A 10)

This equation has a particularly simple form because we have scaled lengths by the Debye
length. The solution for Φ satisfying the boundary conditions is (noting the sign)

Φ = −σc0 sinh Ŷ +
(σc0 coshH + s∗σo0)

sinhH
cosh Ŷ . (A 11)

A.2. Solving for the fluid flow and pressure fields

Having solved for the electric potential Φ we now turn to the fluid flow and pressure
fields. Within the aqueous phase, the momentum equation in the horizontal direction is

uyy = pZ − (kBTR/γ)(K1
c )

−12(c+0 + 4c2+0 )φZφ (A 12)

where Z is dimensionless coordinate along the film (as in the main text), where fluid
velocity u is made dimensionless on the scale γ/µ (γ being interfacial tension, and µ being
viscosity), and pressure p is made dimensionless on the scale γ/R. Here (kBTR/γ)(K1

c )
−1

is a dimensionless group (that we denote Ξ).
Still in the aqueous phase, the momentum equation in the vertical direction is

py − 2Ξ(c+0 + 4c2+0 )φyφ = 0. (A 13)

We now use the fact that φ = ǫ22φyy and that φyφyy ≡ 1

2
(φ2

y)y. We then replace φy in this
expression by ξ−1ΦŶ , and taking into account the definitions of Ξ, ǫ̂2 and ξ, we deduce

py − Γ̄−1(Φ2

Ŷ
)y = 0. (A 14)

Here Γ̄ is defined as per equation (2.6) in the main text, i.e. Γ̄ = 2γεw/(Rq2s∗ 2
c ) and

hence Γ̄−1 = Rq2s∗ 2
c /(2γεw). We can integrate equation (A 14) as follows

p− Γ̄−1Φ2

Ŷ
= po − hZZ (A 15)

where po is the pressure in the oil phase. This equation as written gives the correct
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boundary condition at y = h, which (see Vancauwenberghe et al. (2013); Wilmott et al.
(2018); Xiao et al. (2013)) requires matching pressure and an electro-osmotic Maxwell
stress on the aqueous side, with pressure on the oil side and a curvature term.
Having obtained an expression for the pressure field p we can now substitute it into the

momentum equation in the horizontal direction and solve for the velocity field. Before
proceeding however, it is useful to simplify the final term in the horizontal momentum
equation in an analogous way to what we already did with the vertical equation. Re-
membering φ = ǫ2ξ

−1Φ, the horizontal momentum equation (A 12) becomes

uyy = pZ − Γ̄−1(Φ2)Z . (A 16)

Upon substituting for the pressure from equation (A 15) we deduce

uyy = −hZZZ + Γ̄−1(Φ2

Ŷ
)Z − Γ̄−1(Φ2)Z . (A 17)

What is curious here is that although Φ2

Ŷ
and Φ2 individually depend on Ŷ , their differ-

ence is actually independent of Ŷ . This follows as a consequence of Φ being composed of
hyperbolic sines and cosines, and is also easy to prove by considering

((ΦŶ )
2 − Φ2)Ŷ = 2ΦŶ ΦŶ Ŷ − 2ΦΦŶ (A 18)

which vanishes since ΦŶ Ŷ = Φ. It is sufficient therefore to evaluate the electro-osmotic

terms within (A 18) at any Ŷ , and we choose Ŷ = 0, at which both Φ and ΦŶ are easy
to obtain via equation (A 11). The horizontal momentum equation now becomes

uyy = −hZZZ − Γ̄−1

(

σ2
c0 + 2σc0s

∗σo0 coshH + s∗ 2σ2
o0

sinh2 H

)

Z

(A 19)

the final term on the right hand side of equation (A 19) already being recognizable as
the electro-osmotic term in (2.1) within the main text. Equation (2.1) itself then follows
via a standard Bretherton analysis, solving (A 19) to obtain a Poiseuille profile for u,
integrating across the profile to obtain a flux, matching the rate of change ht to the
divergence of the flux (time t being made dimensionless on the scale Rµ/γ here), and
finally looking for a travelling wave solution h(Z, t) ≡ h(Z − CaBt).

A.3. Physical interpretation of terms in the governing equation

Although the derivations in appendices A.1–A.2 are quite detailed, the end result, equa-
tion (2.1), is easy to motivate physically. The left hand side involves a capillary pressure
gradient, remembering that the capillary pressure in the aqueous film is −hZZ . Mean-
while, the final term in brackets on the right hand side is, as mentioned above, an electro-
osmotic term. If the charges have the same sign, it corresponds to a disjoining pressure
(or more precisely a disjoining tension TEO, tension being the negative of a pressure). If
the charges have the opposite sign, it may correspond to a conjoining pressure pEO.
In view of the above observations, the governing equation (2.1) can be written

−CaBh
∗ = −CaBh+

(

−pC,Z −
pEO,Z

Γ̄

) h3

3
= −CaBh− pT,Z

h3

3
(A 20)

where pC , pEO and denotes capillary and pT ≡ pC+pEO/Γ̄ respectively denote capillary,
electro-osmotic and total pressures. The left hand side of equation (A 20) represents the
liquid flux through the aqueous thin film which has thickness h∗ away from the transition
region: in the reference frame of the droplet, the walls of the capillary are moving to
the left with speed CaB in our dimensionless system. At steady state, the liquid flux
through the film must be the same at all Z locations, even when the transition region
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is entered. Thus the right hand side of equation (A 20) is comprised of a leftward liquid
flux contribution associated with the moving walls of the capillary, which is offset by
a rightward Poiseuille flux associated with the total pressure gradient, which can be
decomposed into capillary and electro-osmotic terms.
The capillary pressure gradient is negative, since the capillary pressure −hZZ falls

from zero in the aqueous thin film to −1 as the capillary static region is approached.
Meanwhile in the case of just a single charged surface (either the wall or the oil but not
both) or else in the case of same sign charges on the wall and oil, the gradient of the
electro-osmotic pressure is positive. This follows because the disjoining tension TEO (the
negative of pEO) falls as h grows. Under these circumstances therefore, the Poiseuille flow
driven by the electro-osmotic term competes with that driven by the capillary pressure,
producing a smaller overall Poiseuille flow. The overall flux to the left (i.e. leftward
flux due to the moving wall less rightward Poiseuille flux) is now greater than in the
case without charged surfaces. Equation (A 20) implies then that h∗ on the left hand
side of the equation must increase compared to the Bretherton case (Bretherton 1961).
Intuitively the disjoining tension has succeeded in pushing the surfaces of the film apart.
When charges on the oil and the wall have opposite signs, we could have a conjoining

electro-osmotic pressure rather than a disjoining electro-osmotic tension, so the capil-
lary pressure gradient and conjoining pressure gradient can co-operate. The rightward
Poiseuille flux thereby produced now exceeds that in the classical Bretherton case. It
then follows that h∗ must be smaller than in the case with uncharged surfaces. In effect,
having opposite sign charges has squeezed the film together.

Appendix B. Asymptotics for the electro-osmotic tension or pressure

We have identified that the bracketed term on the right hand side of equation (2.1) (or
the equivalent bracketed term in equation (2.5)) represents an electro-osmotic disjoining
tension TEO (for surfaces of like charge, and/or singly charged surfaces) or an electro-
osmotic conjoining pressure pEO (in the case of surfaces of opposite charge), with pEO ≡
−TEO by definition. As is evident from equation (2.5), the formula for TEO or pEO is quite
complex depending not only on the dimensionless film thickness Gχ∗ but also on the
surface charge states via the parameters σc0, σo0 and s∗. Despite this complexity, there
are however a number of asymptotic cases in which the formula simplifies considerably.
The purpose of this appendix is to outline these simplified cases.
First consider the situation in which Gχ∗ ≫ 1. Provided both surfaces are charged

TEO ≈ 4s∗σc0σo0 exp(−Gχ∗). (B 1)

If however only one surface (e.g. the surface of the oil) is charged

TEO ≈ 4s∗ 2σ2
o0 exp(−2Gχ∗). (B 2)

This decays more rapidly at large Gχ∗ than in the case when both surfaces are charged.
The opposite limit to consider is the case when Gχ∗ ≪ 1. Here

TEO ≈ (σc0 + s∗σo0)
2/(Gχ∗)2. (B 3)

Unless the charges are opposite and equal (i.e. unless σc0 = −s∗σo0) this suggests a
strong repulsion: the system is likely to avoid ever reaching a strong repulsion state by
allowing the film to thicken. The case of opposite and equal charges (σc0 = −s∗σo0) is
rather different, yielding

TEO ≈ s∗σc0σo0(1− (Gχ∗)2/4). (B 4)
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This is now a negative disjoining tension (i.e. a positive conjoining pressure), which is
convenient to write in terms of pEO via

pEO ≡ −TEO ≈ |s∗σc0σo0|(1− (Gχ∗)2/4). (B 5)

However equation (B 5) only applies for Gχ∗ ≪ 1. In the limit Gχ∗ ≫ 1, equation (B 1)
applies instead, so that

pEO ≡ −TEO ≈ 4|s∗σc0σo0| exp(−Gχ∗). (B 6)

Equation (B 6) also applies when Gχ∗ ≫ 1 in the case of opposite but unequal charges.
However for Gχ∗ ≪ 1 opposite but unequal charge systems revert to equation (B 3)
not equation (B 4). A conjoining pressure at large film thicknesses thereby switches to
a disjoining tension at small thicknesses. The value of Gχ∗ at which the switch occurs
follows by consulting the relevant term within equation (2.5) and turns out to satisfy

cosh(Gχ∗) = (σ2
c0 + s∗ 2σ2

o0)/|2σc0s
∗σo0|. (B 7)

Appendix C. Accelerating convergence for Gζζ and GζζG−G2

ζ/2

The techniques in the main text for obtaining film thicknesses and pressure drops
require the ζ → ∞ asymptotic behaviour of the function G obtained from solving equa-
tion (2.5). Specifically the film thickness J∗ is limζ→∞ Gζζ (see section 2.2) whereas the
pressure drop term ∆p∗ is limζ→∞ GζζG−G2

ζ/2 (see section 2.5). This begs the question

of how much (for any given finite ζ) Gζζ and GζζG−G2
ζ/2 differ from their final limiting

values. In this appendix we provide estimates for these differences, using them as a basis
to correct estimates for the ζ → ∞ limiting behaviour. What we will show is that Gζζ

converges very rapidly to its final ζ → ∞ value (so hardly needs a correction to be ap-
plied). However the convergence of GζζG−G2

ζ/2 is much slower and so can benefit from

applying a correction. Moreover we find at large ζ, the quantity GζζG − G2
ζ/2 involves

a difference between two exceedingly large values, which makes it inherently difficult to
compute numerically. Any way of correcting estimates of this quantity which avoids the
need to compute numerically all the way to exceedingly large ζ is thereby beneficial.
We begin our analysis by noting that for arbitrarily large ζ, the function G becomes

arbitrarily large and hence the right hand side of equation (2.5) becomes arbitrarily small.
As a result G becomes asymptotic to

G ∼ Gζζ,∞(ζ − ζc)
2/2 + ∆p∗ (Gζζ,∞)−1 (C 1)

where Gζζ,∞, ∆p∗ and ζc are constants. The theory presented below is insensitive to the
value of ζc, since the origin of the ζ axis can be set arbitrarily. The values of Gζζ,∞ and
∆p∗ are however of interest. In what follows we use the symbol G∞(ζ) to denote the
asymptotic function on the right hand side of (C 1) and Gζ,∞(ζ) to denote its derivative
with respect to ζ. For large values of ζ, we can use the asymptotic form (C 1) to estimate
how much the right hand side of (2.5) deviates from zero, and hence what the perturbation
to G over and above (C 1) might be. In equation (2.5), the electro-osmotic term cuts off
exponentially at largeG, so the term that survives on the right hand side is the Bretherton
term (G−1)/G3 which only decays algebraically. It follows that, provided we can develop
a technique to improve estimates for G in the large ζ limit that is valid in the Bretherton
case, the same technique can be applied in cases with electro-osmotic terms also.

When ζ is large and hence G is large, we can approximate (G−1)/G3 by 1/G2 and then
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approximate this further as 4/(G2
ζζ,∞(ζ − ζc)

4). Integrating equation (2.5) then leads to

Gζζ ∼ Gζζ,∞ −
4

3G2
ζζ,∞(ζ − ζc)3

(C 2)

Gζ ∼ Gζ,∞(ζ) +
2

3G2
ζζ,∞(ζ − ζc)2

(C 3)

G ∼ G∞(ζ)−
2

3G2
ζζ,∞(ζ − ζc)

(C 4)

where the final term in each equation represents a perturbation. Within each perturbation
term we replace Gζζ,∞(ζ − ζc) by (2G)1/2, and approximate Gζζ,∞ by Gζζ . Rearranging
then allows us to estimate asymptotic behaviours in terms of numerical data at finite ζ

Gζζ,∞ ≈ Gζζ +
4

3(Gζζ)1/2(2G)3/2
(C 5)

Gζ,∞(ζ) ≈ Gζ −
2

3Gζζ(2G)
(C 6)

G∞(ζ) ≈ G+
2

3(Gζζ)3/2(2G)1/2
. (C 7)

These formulae estimate the large ζ asymptotic behaviours (respectively Gζζ,∞, Gζ,∞(ζ),
and G∞(ζ)) in terms of numerical computed values at finite ζ, namely Gζζ , Gζ and G.
The value of ∆p∗ which (from equation (C 1)) is Gζζ,∞G∞ −G2

ζ,∞/2 now becomes

∆p∗ ≈ GζζG−G2
ζ/2 +

4G

3(Gζζ)1/2(2G)3/2
+

2Gζζ

3(Gζζ)3/2(2G)1/2
+

2Gζ

3Gζζ(2G)
(C 8)

where only the leading order perturbation terms have been retained. Recognizing that
within these perturbation terms we can replace Gζ by (Gζζ)

1/2(2G)1/2 we deduce

∆p∗ ≈ GζζG−G2
ζ/2 +

2

(Gζζ)1/2(2G)1/2
. (C 9)

By comparing equations (C 5) and (C 9), we see that the perturbation to ∆p∗ is predicted
to be a factor on the order of G times larger than the perturbation to Gζζ . Since G is
itself a quantity on the order of Gζζ(ζ − ζ)2c/2, it is clear that the estimates for ∆p∗

should converge much more slowly than those for Gζζ .
This is verified in Figure C1. Specifically in Figure C1(a) we plot, as a function of

ζ, both the original Gζζ and the corrected value (including the perturbation term):
the Bretherton case, ignoring any electrostatic effects, is assumed. It is clear that for ζ
greater than about 20, the two values (i.e. uncorrected and corrected) are very close and
have effectively both converged to the same value. Meanwhile in Figure C1(b), we plot
the analogous formulae for ∆p∗ (i.e. the large ζ limiting value of GζζG − G2

ζ/2) both
without and with a correction. Even for ζ = 100 there is a visible difference between the
uncorrected and corrected values. For ζ greater than about 20 however, the corrected
value shows very limited variation with ζ, so we conclude that it gives a better estimate
of the final converged ∆p∗ than the uncorrected formula does.

Appendix D. Perturbing about opposite and equal charge state

A curious observation from Figure 13 is that the pressure drop ∆p∗ required to push
an oil droplet along attains a minimum at an ion concentration c+0 that is not quite the
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same as the concentration at which the surface charges are exactly opposite and equal
(see Figure 11) where the film itself is also thinnest (see Figure 12). The reason for this
“offset” in the minimum pressure drop is explained in this appendix.
Although we have typically discussed disjoining tensions for unequal charges and con-

joining pressures for opposite and equal ones, in reality the electro-osmotic pressure pEO

for opposite but unequal charges can (by consulting equation (2.5)) be decomposed into
the difference between a conjoining term pCJ

pCJ = −
2σc0s

∗σo0(cosh(Gχ∗)− 1)

sinh2(Gχ∗)
=

2|σc0s
∗σo0|(cosh(Gχ∗)− 1)

sinh2(Gχ∗)
(D 1)

and a disjoining term TDJ

TDJ = (σc0 + s∗σo0)
2/ sinh2(Gχ∗). (D 2)

When σc0 = −s∗σo0 (with σc0 > 0 here and σo0 < 0) then it is clear that TDJ is
identically zero and hence pEO is purely conjoining. Suppose however that we perturb
slightly away from this state, replacing σc0 by σc0 − δσc0 and σo0 by σo0 − δσo0. Such
a perturbation can be achieved by reducing c+0 slightly (e.g. from c+0 = 0.7 to c+0 =
0.69 in the case of Figure 13) in which case charges on both the wall and oil shift
towards the negative, meaning that both δσc0 and δσo0 as defined are positive. Under
these circumstances the disjoining term TDJ is now non-zero but is second order in δσc0

and δσo0, so can still be neglected. The conjoining term turns out to have first order
perturbations however, and these depend on the relative amounts that the charges on
the oil and the wall change −δσo0/σo0 and −δσc0/σc0 driven by a decrease in c+0 . Of
these two relative changes affecting the conjoining term, the dominant one is typically
−δσo0/σo0, which follows because σo0 is necessarily s∗ = 10 times smaller in magnitude
than σc0 so as to have opposite and equal charges in the first place. All this is saying is
that when σo0 is small in magnitude, even a modest perturbation δσo0 can be significant
in relative terms. Taking proper account of the signs, the dominant change −δσo0/σo0 is
found to increase the magnitude of the conjoining terms.
In summary a small decrease in c+0 , although it causes the charges to come out of

balance, introduces only a tiny second order disjoining term but increases the strength of
the conjoining term by a first order amount. As an oil droplet migrates along, more work
can then be done on the system by the increased strength conjoining term than needs to
be done against the very tiny disjoining term. This is then reflected by less work needing
to be done by the driving pressure (i.e. lower ∆p∗) in the case when the charges are very
slightly unbalanced, compared to the case of exactly opposite and equal charges.
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Parameter Interpretation

Γ̄ (capillary forces) / (electrostatic forces)
χ′ (nominal film thickness) / (Debye length)
s∗ adsorption sites on oil relative to capillary wall
σc0 average charge per adsorption site on capillary wall
σo0 average charge per adsorption site on oil

K1
c , K

2
c , K

1
o, K

2
o Langmuir parameters for ion adsorption on surfaces

Table 1. Dimensionless parameters affecting the electro-osmotic term in the model. Note
that, although mentioned in the table, K1

c ≡ 1 by definition here.
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Figure 1. Sketch of an oil droplet moving into a capillary initially filled with an aqueous phase
containing ions. From left to right there is an aqueous thin film, a transition region and a
capillary static region: the shapes of these regions are affected by charges on the droplet surface
and on the walls of the capillary. In the frame of reference of the droplet (as is shown here) the
front of the droplet is not moving, but the capillary walls (and the thin film) move to the left.
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Figure 2. Thickness of the aqueous film J∗ as a function of χ′ (the ratio between the “nominal”
thickness of the aqueous film and the Debye length) for various charge states: a singly charged
surface (σc0 = 0, σo0 = −1, s∗ = 10), same sign charges (σc0 = −1, σo0 = −1, s∗ = 10) and
opposite but unequal charges (σc0 = 1, σo0 = −1, s∗ = 10). The electro-capillary parameter is
Γ̄ = 10. The horizontal line indicates the Bretherton case (without electro-osmotic effects). A
line proportional to 1/χ′ is also shown to guide the eye.
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Figure 3. (a) Thickness of the aqueous film J∗ as a function of χ′ for three distinct values of
the parameter Γ̄ measuring the relative strength of capillary and electro-osmotic effects, Γ̄ = 10,
Γ̄ = 100 and Γ̄ = 1000. A singly charged surface is considered σc0 = 0, σo0 = −1 and s∗ = 10.
(b) The same data set rescaled into the form J∗ χ′ Γ̄1/2 vs χ′.
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Figure 4. J∗ vs χ′ for the case of opposite and equal charges, σc0 = 1, σo0 = −0.1, s∗ = 10, with
also Γ̄ = 10. The horizontal line shows the Bretherton case (without electro-osmotic effects).
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Figure 5. The change in the driving pressure drop ∆p∗ (over and above the leading order unit
capillary pressure) vs χ′. The singly charged case, same sign charges, and opposite but unequal
charges are considered. In addition Γ̄ = 10. The horizontal line indicates the Bretherton case
(without electro-osmotic effects). A line proportional to 1/χ′ is also shown to guide the eye.
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Figure 6. (a) Pressure drop ∆p∗ vs χ′ for three distinct values of the parameter Γ̄, namely
Γ̄ = 10, Γ̄ = 100 and Γ̄ = 1000. A singly charged surface is considered. (b) The same data set

rescaled into the form ∆p∗ χ′ Γ̄1/2 vs χ′.
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Figure 7. Pressure drop ∆p∗ vs χ′ for the case of opposite and equal charges, with also
Γ̄ = 10. The horizontal line indicates the Bretherton case (without electro-osmotic effects).
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Figure 8. A macroscopic view of a situation in which the effective interfacial tension on the
thin film at the capillary wall is less than the interfacial tension on the droplet front. The radius
of curvature of the droplet front is greater than unity (unity is the half-distance between the
capillary walls), and the curved front appears to meet the capillary wall at a finite contact angle.
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Figure 9. Charge on the capillary wall σc0 or the oil σo0 vs salinity c+0 (monovalent ion concen-
tration). Langmuir parameters are K1

c = 1, K2
c = 100, K1

o = 1, K2
o = 0.1. For σc0 three different

divalent ion concentrations are considered, low concentration (c2+0 = 0.0025, squares), higher
concentration (c2+0 = 0.05, crosses), and a fixed divalent:monovalent ratio of 1:4 (circles). For σo0

only the fixed divalent:monovalent ratio is plotted (solid line), but results are very insensitive
to the divalent ion concentration (owing to the parameter K2

o being small).
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Figure 10. (a) Film thickness J∗ vs c+0 , assuming χ′ = 0.2 (c+0 )
1/2 but also allowing σc0 and

σo0 to vary with c+0 . Divalent ion concentrations are set as either low (c2+0 = 0.0025), high
(c2+0 = 0.05), or in a fixed divalent:monovalent ratio of 1:4. In addition Γ̄ = 10 and s∗ = 10. A

line proportional to (c+0 )
−1/2 is shown to guide the eye. (b) Pressure drop ∆p∗ vs c+0 .
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Figure 11. Values of surface charges σc0, σo0 and s∗σo0 vs monovalent ion concentration c+0 .
Here s∗ = 10 and the Langmuir constants are K1

c = 1, K1
c = 100, K1

o = 1 and K2
o = 25, and

we consider a ratio of divalent:monovalent ion concentrations of 1:20. The vertical line indicates
the c+0 value giving the opposite and equal charged case namely σc0 = −s∗σo0.
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Figure 12. (a) Film thickness J∗ vs ion concentration c+0 . It is assumed that χ′ = 0.2 (c+0 )
1/2,

Γ̄ = 10 and values of σc0 and s∗σo0 are as per Figure 11. The horizontal line represents the
Bretherton case. (b) Zoomed view.
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Figure 13. (a) Pressure drop ∆p∗ vs ion concentration c+0 . Parameter values are as per
Figure 12 and the horizontal line represents the Bretherton case. (b) Zoomed view.



44 P. Grassia

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100

G
ζζ

ζ

Gζζ
corrected

(b)

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

G
ζζ

 G
 -

 G
ζ2  / 

2

ζ

Gζζ  G - Gζ
2 / 2

corrected

Figure C1. (a) The function Gζζ (which in the large ζ limit should give J∗) and the corrected
value including a perturbation term, equation (C 7). (b) The function GζζG−G2

ζ/2 (which in the
large ζ limit should give ∆p∗) and the corrected value with a perturbation term, equation (C 9).


