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ABSTRACT 
 

Zone melting (or zone refining or floating zone process, FZ) is a 
group of similar methods, specifically conceived for the purification of 
crystals, in which thermally-driven flows of both gravitational and 
surface-tension natures are typically produced when the considered 
material is processed. Since the melt never comes into contact with 
anything but vacuum (or inert gases), there are no contaminants that the 
melt may incorporate. Even though compounds with higher purity and 
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improved quality can be obtained with this technique, a typical drawback 
is represented by the defects potentially induced in the crystalline 
structure by the unavoidable convection emerging in the fluid phase. In 
the present chapter, special attention is paid to a specific category of 
materials known as transparent oxides. A range of conditions is explored, 
differing in the dominant effect (buoyancy or Marangoni flow), the 
thermal conditions (heating being provided along the radial or axial 
direction) and the relative direction of gravity and applied temperature 
gradient. The hallmark of the entire chapter is our commitment to identify 
situations in which “waves” are produced and provide a systematic 
classification of such convective instabilities together with a description 
of related features based on advanced numerical simulations. 
 
 

1. INTRODUCTION 
 
Relevant examples pertaining to the category of oxide transparent 

materials include (but are not limited to): yttrium aluminum (Y3Al5O12), 
yttrium orthoaluminate (YAlO3), spinel (MgAl2O4), sapphire (Al2O3), 
lithium tantalite (LiTaO3) and gadolinium gallium garnet (Gd3Ga5O12). 
These compounds constitute a basis for a variety of advanced industrial 
applications. Indeed, they are used for solid state lasers, and as magnetic 
bubble device substrates, insulating layers for semiconductors, or 
monolithic crystal filters. Moreover, the so-called transparent conductive 
oxides (TCOs), known for their unusual ability to possess transparent and 
conducting properties at the same time (Ohta and Hosono, 2004), are 
typically employed in flat panel displays (such as LCDs, i.e., liquid crystal 
displays), electroluminescent devices (e.g., organic light emitting diodes - 
OLEDs), solar cells and power saving opto-electrical circuitries (Stadler, 
2012). Notably, the transparency property also applies to the related molten 
state, which is typically established at relatively high temperatures (e.g., 

the melting points of sapphire and yttrium aluminum are  2300 K and 

2960 K, respectively).  

The kinematic viscosity () and thermal diffusivity () of all these 

melts have, in general, a comparable order of magnitude (with the former 
being slightly larger than the latter). This behavior formally puts these 
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substances in the general class of high-Pr liquids, where Pr = / is the so-

called fluid Prandtl number. This parameter generally ranges in the interval 

O(1)  Pr  O(10) and this might be regarded as a clear distinguishing 

mark with respect to other transparent insulating materials (e.g., SiO2 
glasses for which Pr = O(103)), organic substances such as molten 
hexatriacontane (C36H74, Pr = 65) and molten tetracosane (C24H50, Pr = 49) 
or opaque liquid metals and semiconductor (or superconductor) melts, for 
which Pr<<1. 

From a purely industrial standpoint, transparent oxides are generally 
crystallized using different methods such as vapor-phase or liquid-phase 
epitaxial techniques or other processes which come under the heading of 
‘crystal-growth-from-the-melt’ (relevant examples being represented by 
the Horizontal or vertical Bridgman technique, the Czochralski (CZ) 
method or the so-called Floating zone (FZ) process, Hurle, 1994; Lappa, 
2009). A related key aspect is represented by the ability to transform the 
considered transparent compound, initially in a polycrystalline state, into a 
single-crystal while keeping the formation of impurities and defects at 
minimum. In such a context, many advantages are provided by the FZ 
process given its (known) matchless ability to reduce melt contamination 
potentially induced by the interaction of the high-temperature melt with 
external walls or parts. 

The FZ process starts from a cylindrical rod of the considered 
polycrystalline material to be melted in a controlled environment (an inert 
gas or vacuum) via the application of localized heating to its surface. Such 

heating is generally provided in order to preserve the initial symmetry of 
the specimen, i.e., by means of a coaxial ring heater or an optical furnace 
relying on curved (circular) mirrors. The rod does not hold a stationary 
position with respect to the heating device. Rather relative motion is 
established between the material and the limited region subjected to 
localized heating. In this way, an ongoing process is maintained where a 
new portion of the polycrystalline bar undergoes melting while the liquid 
re-solidifies as a single crystal (the ‘seed’) at the other side of the liquid 
zone. This means that, at any instant, the entire amount of molten material 
is suspended (in the form of a ‘liquid bridge’) between the initially impure 
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solid and the seed (which illustrates why these crystallization processes 
come under the common heading of “Floating Zone” approach). 

The intrinsic advantages become readily evident if one considers that 
the liquid is never in contact with a container or a crucible, which may 

dissolve thereby altering its composition. As a result, crystals with higher 
purity can be produced (see, e.g., Benz, 1990). These advantages have 
made these methods increasingly popular for the production of a wide 
range of materials, including metals, semiconductors (Cröll et al., 1998), 
high-temperature superconductors, new magnetic materials and oxides 
(Saurat and Revcolevsch, 1971; Shindo et al., 1979; Shindo, 1980; 
Balbashov and Egorov, 1981; Kimura and Kitamura, 1992; Revcolevschi 
and Jegoudez, 1997; Moest et al., 1998). In particular, transparent oxides 
typically processed with the FZ are substances such as β-Ga2O3 (Villora et 
al., 2004) or TiO2 (Higuchi and Kodaira, 1992; Watauchi et al., 2012), and 
more complex compounds such as CuGeO3 (Revcolevschi and Jegoudez, 
1997) and Y3Fe5O12 (Balbashov et al., 1975; Shindo et al., 1979; Balbashov 
and Egorov, 1981). The interested reader is referred to the works by 
Dabkowska and Gaulin (2003) and Dabkowska and Dabkowski (2010) for 
an exhaustive review of materials processed with the FZ technique.  

Here, we concentrate on a specific aspect, that is, the fluid convection 
occurring in the molten zone (the aforementioned “liquid bridge”), given 
its known ability to induce undesired (often unavoidable) compositional 
and structural defects in the final crystals (Muller, 1988). 

Fluid motion obviously arises as a consequence of the significant 
thermal gradients being present in the melt as a result of the temperature 
difference between relatively cold regions (where the material is solid) and 

those where heating is applied. 
Remarkably, these gradients can support two concurrent mechanisms 

driving fluid motion, the first being obviously represented by the well-
known dependence of the density of liquids on temperature (which, by 
enabling buoyancy effects, can lead to convection of thermogravitational 
nature). The second relates directly to the existence of a free surface in the 
considered process, namely the interface that separates the melt region 
from the external environment (be it an inert gas or vacuum). The stable 
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existence of this surface is allowed by surface tension () that, by 

counteracting gravity, prevents the liquid from being pulled down. As the 
surface tension depends on temperature (the higher the temperature, the 

smaller ), any temperature gradient established along the interface is 

directly turned into a gradient of surface tension forcing the fluid to move 
from warmer surface regions towards colder ones. The related mechanism 
is generally known as thermocapillary (or Marangoni) convection.  

Even though their relative strength can vary depending essentially on 
the considered fluid and the effective extension of the liquid zone, in 
typical industrial applications these two forms of convection are always 
simultaneously present (Lappa, 2009, 2012). Their relative importance or 
weight can also have a remarkable impact on the so-called hierarchy of 
bifurcations, i.e., the specific path followed by these systems when the 

temperature difference (T) is increased. A rise in the T typically results 

in the flow undergoing various symmetry breaking phenomena and in the 
onset of time-dependence. The precise sequence of events, however, does 
depend on various parameters and on the dominant driving force. 

The present chapter is entirely devoted to a focused review of these 
modes of convection in physical domains with cylindrical symmetry 
(assumed to mimic the real FZ process), together with a critical analysis of 
very recent findings. 

Given the impressive amount of literature existing on these subjects, 

we limit ourselves to discussing fluids with Pr  O(1) representative of 

transparent oxides, the reader being referred to Lappa (2007) for an 
analogous treatment concerning liquid metals and semiconductor melts. 

Emphasis is also given to aspects relating to the “pattern formation”, 
particularly for the circumstances in which thermocapillary and 
thermogravitational convection, in disjoint or combined form, can produce 
undesired waves traveling in the considered fluid system. With the descend 
of scale, localized defects produced by such waves in the material start to 
be dominating with respect to other types of defects induced by large-scale 
flow; complex interplay of these together contributes to significant 
manufacturing challenges (Hurle, 1994). 
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In order to place all these phenomena in a proper theoretical context, 
we provide relevant details about the overarching fluid-dynamic equations, 
typical mathematical models used for the FZ technique, the related 
boundary conditions and underlying assumptions. Along the same lines, 

the discussion is supported by a variety of numerical results to show the 
considered dynamics with a level of detail that is hardly achievable by 
experimental analysis and/or direct flow visualization. 

 
 

2. MATHEMATICAL MODELS 
 

2.1. Governing Equations 
 

Referring velocity and temperature to the scales /L and T, 

respectively and scaling all distances on L, where L is a characteristic 

length for the considered problem and  is the liquid thermal diffusivity, 

the overarching balance equations for mass, momentum and energy 
transport in the molten material can be cast in condensed form as : 

 

0 V  (1) 

 

  giTRaVVVp
t

V
PrPr 2 


  (2) 

 

  TTV
t

T 2

  (3) 

 
where V, T and p are the nondimensional velocity, temperature and 
pressure, respectively and ig is the unit vector along the direction of 

gravity. The parameter 
3

Tg TL
Ra





 , known as the Rayleigh number, 

essentially results from the application of the so-called Boussinesq 
approximation (Lappa, 2009) to the term accounting for the buoyancy 
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force in the momentum equation (where a linear relationship is assumed 

between density and temperature via the thermal expansion coefficient T). 

The Rayleigh number formally measures the relative importance of 
buoyancy and viscous forces. 

Closure of the problem from a mathematical point of view, however, 
also requires that proper boundary conditions are used to complement eqs. 
(1)-(3). This means that a more complete mathematical framework must be 
defined, i.e., an abstraction of physical reality sufficiently simple to allow 
the treatment of the considered problem with a limited number of 
parameters and, at the same time, able to retain the physical mechanisms 
which are thought to be significant or of specific interest. Along these 
lines, the next section is entirely devoted to a presentation of the 
mathematical models which have enjoyed widespread use over recent 
years for the FZ process.  

 
 

2.2. Geometrical Models of the FZ Technique 
 
As explained above, the approach is to consider surrogates of the FZ 

that incorporate the presumed influential (behavior-determining) 
process(es). Irrespective of the approach used to define them, these 
configurations are approximate, i.e., a series of choices have to be made in 
their formulation, which may be dictated by convenience or simplicity or 
by the need to concentrate on some specific aspects.  

In general, these distinct models can be delineated by retaining or 
disregarding the possible symmetries of the real FZ along different spatial 
directions. Prior to embarking in the description of them, we wish to 
remark that the existence of these symmetries implies the possibility of 
symmetry breaking (a very important concept in fluid-dynamics, given its 

deep connections with the notion of flow instability and bifurcation, which 
will be treated later in this chapter). 

The simplest approximation for the FZ process is represented by a 
liquid zone with cylindrical interface held between two disks at different 
temperature, ideally assumed to model the heat and mass transfer processes 
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occurring between the equatorial plane of a real floating zone (where 
heating is applied) and one of the two horizontal solid surfaces (where 
liquefaction or solidification takes place depending on the considered 
portion of the rod). As this model accounts only for half size of the 
effective liquid region, it is generally known as the ‘half zone’ (Figure 1a). 
As the main direction along which the temperature difference is applied is 
axial, for simplicity, the free interface is generally approximated as an 
adiabatic boundary.  

This assumption, however, must necessarily be removed when the 
more sophisticated ‘full zone’ is considered (Figure 1b). With this alternate 
configuration, heat is injected into the liquid through the free surface 
(along the radial direction, as it occurs in reality). The two ends of the 
domain perpendicular to the axial direction are therefore set at the same 
temperature (ideally mimicking the melting/solidification point of the 

considered material).  
 

 

Figure 1. Main models of the FZ process and related boundary conditions: a) the Half 
Zone, b) the Full Zone.  
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The aspects, for which the two models can be distinguished, however, 
are not limited to the direction along which heat is injected into the liquid. 
As the reader may expect (given the introductory arguments given at the 
beginning of this section), a substantial difference can be found in the 

symmetries that can be broken by the flow. With the half zone, obviously, 
any processes that depend on the rupture of symmetry with respect to the 
vertical direction are excluded.  

This degree of freedom, however, is present in the full zone, where the 
fluid can cross the equatorial plane. While a single toroidal roll is 
established in the half zone as a result of thermally driven convective 
effects, the full zone typically features two opposite toroidal rolls in the 
two regions which extend from the equatorial plane towards the solid 
supports. The ideal mirror symmetry of these two counter-rotating 
circulation systems with respect to the equatorial plane can be lost, leading 
to overlying rolls displaying different axial extension or even coalescing. 

As a common feature, obviously both models allow symmetry 
breaking with respect to the azimuthal direction, which explains why the 
half zone has enjoyed so much attention over the last years as a relevant 
configuration to investigate the onset and propagation of the 
aforementioned waves (which in such systems travel essentially in the 
azimuthal direction).  

From a purely mathematical standpoint, assuming the two supporting 
disks to be located at z = 0 and z = 1, respectively (reference length L 
equal to the distance separating the disks), for the half zone, the relevant 
thermal boundary conditions can be cast in condensed form as: 


(z = 0, r,  , t) = TBottom 0 1/ Hr A   ; 0 2   (4a) 

 

(z = 1, r,  , t) = TTop 0 1/ Hr A   ; 0 2   (4b) 

 

where AH = L/D is the aspect ratio,  is the azimuthal angle and TBottom 

= 0 and TTop = 1 or TBottom = 1 and TTop = 0 according to whether the liquid 
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bridge is heated from above or from below, respectively. At the free 

interface the condition of adiabaticity simply results in: 

 

( , 1 / 2 , , ) 0H

T
z r A t

r

 


   (5) 


For the full zone, as explained before, the two ends must be set at the 

same temperature. Assuming as reference length L the axial distance 

between the equatorial plane containing the ring heater and one of the 

supporting disks (see Figure 1b), related thermal conditions read: 


(z = -1, r,  , t) = 0 0 1 r AF/  ; 0 2   (6a) 

 

(z = 1, r,  , t) = 0 0 1 r AF/ ; 0 2   (6b) 

 

where AF = 2L/D = 2AH. In this case, a slightly more complex treatment is 

required for the interface as the condition of no heat flux (eq. (5)) must be 

replaced by an adequate mathematical expression accounting for the 

radiative heat transfer from the heating system to the liquid surface. Many 

models have been proposed in literature to simulate surface heating due to 

a ring heater (see, e.g., Otani et al., 1988; Rivas and Vazquez-Espi, 2001). 

Following Lappa (2016), the radiative flux generated by a coaxial ring 

heater with negligible thickness located at a fixed distance h from the free 

surface can be modeled in a relatively straightforward way starting from 

the radiative contribution brought to the overall flux by each infinitesimal 

portion of the ring. Indeed, taking into account the details shown in  

Figure 2, this contribution can formally be expressed as: 

 

)cos(
4

11
)(

2






Q

L
zj 






  (7a) 

 

where Q is the overall power consumed by the ring heater,  represents the 

distance between two generic points lying respectively on the ring heater (C) 
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and on the interface (P) and  denotes the angle comprised between the 

direction PC and the unit vector n


 perpendicular to the free surface in P.  

 

 

Figure 2. Sketch of the floating zone and related ring heater. 

Integration of the infinitesimal contribution along the entire 

circumferential extension formally gives the effective (local) flux as: 
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where: 
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
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)1(

1
cos

~ 1

FhA
   (8c) 

 

and  is the free-surface emissivity. Therefore, eq. (5) must be replaced by  

 

)(),,/1,( zJtArz
r

T
F  


  (9) 

 

Yet from a mathematical point of view, problem ‘closure’ also requires 

relevant kinematic conditions along the boundary. For solid surfaces these 
reduce to the trivial condition of no-velocity (no-slip), i.e., V = 0. 

On the free surface, however, the velocity cannot be imposed directly. 

Indeed, it must satisfy a dynamic balance between the viscous shear stress 

in the liquid and the gradient of surface tension. In non-dimensional form 

such a balance can be cast in compact form as: 

 

   ˆ ˆ ˆ2
s

V n Ma I nn T       
 (10) 
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where  
2

T
s

o

V V
V

 
 

 
and Ma is the so-called Marangoni number, 

Re Pr T TL
Ma





  ( being the fluid dynamic viscosity and T the 

derivative of surface tension with respect to temperature). This number 

plays for thermocapillary flows the same role that the Rayleigh number has 

for thermogravitational flows.  

Accordingly, a relevant parameter used to characterize the relative 

importance of surface-tension driven and buoyancy effects (the so-called 

dynamic Bond number) can be introduced as: 

 

d

Ra
B

Ma
  (11) 

  

There are many numerical techniques that can be used to solve directly 

all these equations (and related boundary conditions) or get useful 
information from simplified versions of them (e.g., via linear stability 

analysis). Clarifying the advantages or bottlenecks associated with each 

different approach is not as straightforward as one would imagine. In this 

section we will merely touch on this subject, which would otherwise 

occupy the entire chapter (the reader specifically interested in these aspects 

may consult the extensive information reported in a companion chapter of 

this book, Lappa and Ferialdi, 2019).  

In particular, we limit ourselves to pointing out that the so-called 

category of projection methods has already proven to be a relevant choice 

for the simulation of the fluid-dynamic instabilities in floating zones, as 

witnessed by the many research articles appearing in the literature 

(Yasuhiro et al., 1997, 1999; Lappa et al., 2000 and 2001; Melnikov et al., 

2005; Shevtsova et al., 2001, 2003, 2011; Lappa, 2016). Remarkably, with 

gained confidence in the validity of these methods, research on these 

subjects is still progressing and it can still be considered nowadays as a 

very active line of inquiry. 

All the (representative) numerical results described in this chapter have 

been obtained in the framework of such techniques.  
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Given the spirit of the present book, conceived to provide readers with 

applicative aspects and insights into recent findings, such examples are 

essentially used to support the discussion and explain the ‘physics’ of the 

considered phenomena (Sects. 3 and 4). For the above reasons, details 

about the used meshes, numerical schemes and accuracy are glossed over, 

the reader being referred directly to the articles cited in the text for 

additional details.  

In particular, most of results are presented for Pr > 10 given the 

widespread use of such liquids in the literature as surrogate models of 

oxide melts. 

 

 

3. THE LIQUID BRIDGE 
 

This section is entirely devoted to the popular classical liquid bridge or 

half zone (hereafter these two terms will be used as synonyms), given its 
success over the years as an archetypal model for the study of the 

fundamental properties of Marangoni flows and related hierarchy of 

bifurcations. As illustrated in Sect. 2.2, this configuration offers several 

advantages to investigators, especially, the possibility to set a precise 

temperature difference ‘a priori’ and assess the system response for 

increasing values of it, which explains why this model has attracted the 

attention of research groups with various interests and motivations, leading 

over the years to the emergence of a common theoretical framework that is 

generally referred to as the liquid-bridge problem. In the following we 

present a brief account of the historical perspective that led to this 

framework and its diverse reverberations in the science of fluids and 

materials. 

 

 

3.1. Pure Thermocapillary Flow 
 

The mathematical aspects of this problem have been defined in the 

previous section (see, in particular, Figure 1a and eqs. (4)-(5)). The liquid 
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bridge or half zone can essentially be seen as a differentially heated portion 
of liquid delimited by a cylindrical free liquid-gas interface. The 
thermocapillary (Marangoni) flow established in the liquid is initially 
steady and laminar and reflects the symmetry properties of the hosting 
domain (i.e., it is axisymmetric). However, when the temperature 
difference is sufficiently increased (the Marangoni number exceeds a given 
threshold), the flow becomes three-dimensional. For the case of oxide 
melts (in particular) and for all high-Pr liquids (in general), the symmetry 
breaking process is intimately associated with the onset of time-
dependence, i.e., the flow becomes 3D and oscillatory at the same time.  

This field has reached a certain level of maturity. Experiments 
conducted in space (e.g., on-board sounding rockets or on the space 
shuttle, see, e.g., Schwabe et al., 1982; Schwabe and Scharmann, 1984; 
Monti, 1987; Monti et al., 1995; Chun and Siekmann, 1995; Monti et al., 

1998; Schwabe, 2002 and 2005, etc.) have been instrumental in clarifying 
that this type of instability does not depend on gravity and it should 
therefore be regarded as an intrinsic ‘property’ of Marangoni flow (Figure 
3).  

 

     

Figure 3. Typical structure of oscillatory Marangoni convection in the meridian plane 
of a half zone (the motion of tracers is used to visualize the flow; tracers are 
illuminated by the light generated by a laser diode forming a light sheet perpendicular 
to the main optical path of a CCD camera; the two snapshots refer to experiments 
carried out during the Spacelab D2 mission; courtesy of the Microgravity Advanced 
Research and Support Center). 
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From an historical standpoint, interestingly, the analysis of this specific 

problem has progressed through relevant synergy between experimental 

activities and mathematical arguments based on the application of stability 

analyses (Neitzel et al., 1992; Kuhlmann and Rath, 1993a; Wanschura et 

al., 1995; Kuhlmann et al., 1995; Chen et al., 1997). As evident after 

comparative readings of these studies, starting from considerations based 

on the axial symmetry of the liquid bridge, it has been shown that 1) the 

oscillatory disturbances always emerge as a couple of waves traveling in 

opposite directions (namely, a pair of clockwise and anticlockwise oriented 

trains of disturbances) and 2) the specific patterning behavior displayed by 

the unstable flow in the supercritical regime essentially follows from the 

interplay of such waves.  

As originally illustrated by Kuhlmann and Rath (1993b), by modeling 

each wave as a disturbance with expression 

  ( , ) exp ( , )F B r z i m t G r z       (where B(r,z) is the wave 

amplitude, G(r,z) is the phase, m is the wavenumber and  = 2f is the 

angular frequency), and by denoting with  the wave amplitude ratio, the 

functions expressing wave superposition can be cast in condensed form as:  

 

)),(cos()cos(),(2 zrGtmzrBF    ( = 1)  (12) 

 

 tGmmzrBF   ),(bcos)(a),(  (0 <  < 1) (13) 

 

with  )(cos)1()(a 22
omm    2

122 )(sin)1( om     (14a) 

 

and ),(b Gm ),()tan(
1

1
tan 1 zrGm o 











 

  (14b) 

 

Assembled in this way, eqs. (12) and (13) have a straightforward 

physical interpretation. As the reader will easily realize, they differ 

essentially for the location of the group of variables (m) at the right hand-

side. While in eq. (13) this group is an integral part of the oscillatory term 
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 cos b( , )m G t  , in eq. (12) the dependences on space () and time (t) 

manifest in disjoint form, namely, cos( )m  and cos( ( , ))t G r z  . This 

apparently innocuous observation has significant consequences on the 

spatio-temporal dynamics. While in the first case, the maxima and minima 

of the function F at given azimuthal positions can periodically swap their 

position as soon as cos(t-G(r,z)) changes its sign, in the second case the 

phase of the oscillations depends continuously on  (which indicates that 

maxima and minima can continuously travel along the azimuthal 

direction). 

Put differently, according to such arguments, while the superposition 

of two counter-propagating waves with the same amplitude should simply 

result in a pattern where the disturbance nodes occupy fixed positions in 

space (a waveform with disturbances growing and shrinking in time at 

fixed locations in the azimuthal direction), different amplitudes should lead 

to a pattern whose hallmark is the visible rotation of features about the 

symmetry axis. Using typical nomenclature introduced in the relevant 

literature, these two possible spatiotemporal modes of convection 

(waveforms) can also be simply referred to as: the standing wave (featured 

by disturbance nodes pulsating at fixed azimuthal positions, also known as 

pulsating pattern) and a rotating pattern (with disturbances traveling 

circumferentially, for simplicity generally called traveling wave).  

Continuing with historical developments, it is worth mentioning that 

the existence of these states has been confirmed by experiments conducted 

both in space and on the ground (see, e.g., Velten et al., 1991; Frank and 

Schwabe, 1997; Savino et al., 2001; Schwabe, 2002). In facts, these spatio-

temporal behaviors have been directly observed through visualization of 

tracer particles dispersed in the fluid (through one of the supporting disks 

made of a material transparent to visible light), or they have indirectly been 

detected through analysis of the temperature signals provided by 

thermocouples at fixed positions evenly distributed along the 

circumferential direction. 
Following up on this point, the related rationale can directly be 

gathered from eqs. (12) and (13). As predicted by the first of these two 
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equations, when the flow is a standing wave, all the signals measured by 
thermocouples located at the same axial and radial coordinates (with 
different azimuthal positions) must be in phase or in phase opposition (put 

simply, only two values of phase shift are possible, namely G = 0 or  

G = ). For the traveling wave, the set of allowed phase shifts is 

continuous with G (as illustrated, e.g., by Lappa et al., 2001, the phase 

shift is linearly proportional to the angular distance separating the 

thermocouples, provided such a distance  is shorter than /m). 

 

 
a) 

b) 

Figure 4. Snapshot of temperature distribution in a section perpendicular to the liquid 
bridge axis (left view, red and blue colors correspond to regions of relatively hot and 
cold fluid, respectively) and related temperature signals (right view) provided by four 
numerical probes periodically positioned at different azimuthal stations along the entire 
circumferential extension (AH = 1, Pr = 30, Ma = 3x104, m = 1): a) pulsating 
temperature pattern (standing wave), b) rotating temperature pattern (traveling wave).  
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In parallel to experiments, numerical simulations have also been 

instrumental in leading to an exhaustive characterization of these dynamics 
(see, e.g., Lappa, 1995; Yasuhiro et al., 1997, 1999; Tang et al., 1997; 

Bazzi et al., 1999; Zeng et al. 1999a,b; 2001b; Leypoldt et al., 2000; 

Melnikov et al., 2005; Shevtsova et al., 2001, 2003, 2011).  

As an example, Figure 4 shows the case for which four thermocouples 

equally spaced along 360 are used to compare the temperature signals 

relating to a flow with azimuthal wavenumber m = 1.  
It can be seen that in this case the pattern in a cross section 

perpendicular to the liquid bridge is characterized by the presence of an 

inner region of colder fluid (this being a typical signature of Marangoni 

flow in liquid bridges). For m = 1 this region has approximately a circular 

shape and takes an eccentric position with respect to the point 

corresponding to the axis of the liquid bridge. 

When the flow behaves as a standing wave, such a cold region 

undergoes back and forth motion along a fixed direction (highlighted by 

the double black arrow in Figure 4a). As a result the signals measured by 

the thermocouples display the behavior shown in the underlying plot, i.e., 

their peaks and valleys align at fixed time stations (in the figure, the valley 

measured by T3 and the peak measured by T1 correspond to the left-most 

displacement of the internal cold region and vice versa).  

For the traveling wave, as evident in Figure 4b, all the peaks and 

valleys are aligned along the horizontal direction and the temporal distance 

between two consecutive peaks or valleys is always the same. This 

indicates that there is no preferred position for the disturbance nodes along 

the circumferential extension of the liquid bridge and that the center of the 

aforementioned inner eccentric region simply describes in space a circle, 

i.e., it travels continuously along the azimuthal direction (in this case the 

valley measured by each thermocouple corresponds to the instant at which 

the distance between the considered probe and the inner eccentric region 

attains a minimum).  

Besides temporal features, some differences can also be seen in the 
spatial morphology taken by the isosurfaces of the azimuthal velocity 

component at a given instant. As shown in Figure 5a yet for the mode m = 
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1, for the standing wave, the isosurfaces located in proximity to the free 
surface look like two opposite “pillows” (corresponding to positive and 
negative values of the azimuthal velocity, respectively), each confined to 
one of the two halves of the liquid bridge that would be obtained by cutting 
it with a plane perpendicular to its bases and containing its axis. As evident 
in Figure 5b, however, such a ‘mental divisibility’ is no longer applicable 
to the traveling wave; when the disturbances rotate, no plane can be 
identified satisfying such a property regardless of the considered instant. 
The two pillows are inclined with respect to the axial direction and 
oriented in such a way that regions of the surface exist where the velocity 
component close to the bottom disk is positive while it has the opposite 
sign close to the top (and vice versa). 

Additional examples about the typical behavior of standing and 

traveling waves have been reported in Figures 6 and 7 for a different value 
of the azimuthal wavenumber.  

As the reader will easily realize by inspecting these figures, a general 
description in terms of eqs. (12)-(14) would still be possible provided m = 
1 is replaced with m = 2.  

 

a) b) 

Figure 5. Isosurfaces of azimuthal velocity component for the same conditions shown 
in Figure 4a and 4b, respectively (red and blue colors correspond to regions of positive 
and negative azimuthal velocity, respectively).  
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Figure 6. Snapshot of temperature distribution in a section perpendicular to the liquid 
bridge axis (AH = 0.4, Pr = 30, Ma = 3.6x104, m = 2, Standing Wave, red and blue 
colors correspond to regions of relatively hot and cold fluid, respectively). 

 

Figure 7. Snapshot of temperature distribution in a section perpendicular to the liquid 
bridge axis (AH = 0.4, Pr = 30, Ma = 3.6x104, m = 2, Traveling Wave, red and blue 
colors correspond to regions of relatively hot and cold fluid, respectively). 

Having completed a characterization of these dynamics from a 
mathematical point of view, a further understanding of the instability is 
now gained by considering the mechanism by which the two counteracting 
hydrothermal waves postulated for the derivation of eqs (12)-(14) can be 
initiated in the physical reality (and lead to the subsequent stages of 
evolution with pulsating or rotating flow features, such as those shown in 
Figure 4-5 and Figures 6-7 for m = 1 and m = 2, respectively). 

In particular, following Chun (1980), we introduce a relatively simple 
physical interpretation for such mechanisms by considering a localized 
disturbance on the free surface of the liquid bridge. As originally argued by 
this author, a temperature disturbance emerging spontaneously on the 
surface can immediately induce a convective disturbance in the velocity 

field given it ability to produce locally a temperature gradient in the 
circumferential direction and therefore a gradient of the surface tension. 
The modification of the velocity field with respect to that existing prior to 
the spontaneous emergence of the temperature disturbance, in turn, can 
alter the temperature distribution. This process can enable and sustain a 
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feedback mechanism by which the original disturbance is amplified or 
mitigated depending on the considered conditions. 

This is shown in detail in Figure 8a-8d. An initial hot disturbance can 
generate two opposite surface currents moving far away from it. For 
continuity, liquid present in the bulk tends to move along a radial direction 
from the internal region (which, as explained before, is generally colder 
than the surface) towards the position of the initially hot disturbance. As a 
result, the radial current of cold flow can turn the initial hot disturbance 
into a cold perturbation. Once a cold spot has been produced, it can induce 
a modification of the axial component of the surface velocity (Figure 8e). 
Indeed, the strength of surface flow axially directed from the hot disk to 
the cold one will increase locally (in a position located upstream with 
respect to the disturbance). This final effect can overheat the initial cold 
disturbances, thereby leading the system to recover its initial condition 

with the hot spot located in that position (Zeng et al., 2004).  
 

 
 

e) 

Figure 8. Amplification mechanism (sketch) leading to the emergence of counter-
propagating hydrothermal waves (Marangoni convection in liquid bridges).  
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These dynamics are not possible for low-Pr because as in the case of 

liquid metals or semiconductor melts, owing to the relatively high thermal 

diffusivity of the liquid, any temperature disturbance would quickly be 

damped, thereby preventing it from coupling with convective effects as 

illustrated in Figure 8. By contrast, for PrO(1) the mechanism 

summarized in Figure 8a-8e by which the hot and cold disturbances 

replace periodically can be turned into an everlasting phenomenon. This 

figure also makes evident how a disturbance initially emerging at a given 

azimuthal position can indirectly induce disturbances at other positions, 

thereby leading to the emergence of a spatially extended pattern, i.e., a 

given number of circulations in the generic section perpendicular to the 

liquid bridge axis (a total of 2m convective cells, m cells with the fluid 

circulating in the clockwise direction and m cells oriented in the opposite 

direction). 

Interestingly, some useful considerations on the relationship between 

the azimuthal wavenumber m and the aspect ratio of the liquid bridge can 

be introduced on the basis of relatively simple geometrical arguments. As 

illustrated experimentally by Preisser et al. (1983), the radial penetration 

depth of convection in the bulk of the liquid is approximately given by the 

extension along z of the toroidal convection roll (LV); as schematically 

shown in Figure 8d, the azimuthal extension of the convective cells 

induced by the flow instability in the cross sections perpendicular to the 

liquid zone axis is also approximately equal to the radial extension (LV) of 

the toroidal vortex; this leads to the conclusion that the 2m circulations 

cells cover a circumference 2mLV. By expressing the circumference of the 

toroidal vortex as DV where DV is its diameter, these arguments finally 

give rise to the following analytical relationship: 

 

1
2V HmA mA


    (15) 

 

where AV = LV/DV and AH = L/D are the aspect ratio of the Marangoni 

toroidal vortex and of the half zone, respectively. The agreement between 
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this formula and available results is witnessed by both existing experiments 
(Figure 9) and numerical results (see, e.g., Figure 10) 

 

a) 

b) 

Figure 9. Critical azimuthal wavenumber versus the aspect ratio AH for different values 
of the Prandtl number Pr1 as determined in landmark experiments (with liquid 
bridges heated from above in normal gravity conditions): a) Pr < 10, b) Pr > 10. 

 

Figure 10. Snapshots of temperature distribution in a section perpendicular to the 
liquid bridge axis for decreasing values of the aspect ratio (Pr = 30, red and blue colors 
correspond to regions of relatively hot and cold fluid, respectively): a) AH = 1, Ma = 
3x104, m = 1; b) AH = 0.4, Ma = 3.6x104, m = 2; c) AH = 0.25, Ma = 3.8x104, m = 3; d) 
AH = 0.2, Ma = 3.9x104, m = 4. 
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Interestingly, as shown in Figure 10, when the aspect ratio of the liquid 

bridge is decreased and, accordingly, the azimuthal wavenumber becomes 

higher, the pattern formed by the isolines of the temperature field evolves 

from the eccentric cold circular region visible in Figure 10a for m = 1 to a 

configuration displaying a regular polygonal structure (with number of 

sides equal to the wavenumber, as shown in Figures 10c and 10d, 

respectively), passing through a stage in which the shape of the inner cold 

region is elliptic (Figure 10b, m = 2).  

For the sake of completeness (and to promote cross comparison with 

some of the dynamics which will be illustrated for the full zone in Sect. 4), 

however, we should expressly mention that the liquid bridge problem is 

known to gain complexity as the Marangoni number is further increased. In 

particular, when the Marangoni number largely exceeds the critical value, 

supercritical states with coexisting fundamental modes become possible 

(the resulting pattern in the cross section displays at the same time features 

relating to two or more different values of m, that is, the temperature 
distribution can give rise to complex polygonal irregular structures 

resulting from the superposition of different geometric shapes such as the 

fundamental ones shown in Figure 10). In order to understand this concept, 

it is sufficient to recall that the loss of symmetry generally implies the 

existence of a new solution that bifurcates from the initial state due to the 

selection and ensuing amplification of disturbances. Every time that the 

system undergoes a bifurcation, new disturbances are excited (a new mode 

m). If the characteristic number is increased many times, the bifurcations 

become faster (bifurcations sequence) and faster until the system becomes 

chaotic from both spatial and temporal points of view. The interested 

reader being referred to the studies by Frank and Schwabe (1997, 1999), 

Ueno et al. (2003ab), Shevtsova et al. (2003) for additional details. 

 

 

3.2. Thermogravitational Flow 
 

Though the amount of literature dedicated to the analysis of Marangoni 

flow in liquid bridges is really impressive, unfortunately only a handful of 
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results have been produced for what concerns the development of 
convective modes of purely gravitational nature in this specific 
configuration. 

Obviously, as the interface is assumed to be adiabatic for the half zone, 
such modes can emerge only if heating is provided from below (top disk 
cold, bottom disk hot), the opposite situation (top disk hot, bottom disk 
cold) representing an intrinsically stable state (able to maintain initially 
quiescent and thermally diffusive conditions ad infinitum).  

As another important distinguishing mark, buoyancy convection 
(Rayleigh-Bénard flow) can be excited only if a given threshold is 
exceeded in terms of Rayleigh number (unlike Marangoni flow for which 
no threshold needs to be exceeded to produce axisymmetric fluid motion, 
Lappa, 2009). A further difference is represented by the nature of the 
emerging thermogravitational flow, this being always steady and three-

dimensional over a wide range of aspect ratios. In the following we refer to 
the linear stability analysis by Wanschura et al. (1996) 

 

 

Figure 11. Stability limits for Rayleigh-Bénard convection in liquid bridges (Racr based 
on the axial distance between the disks; courtesy of H. Kuhlmann).  
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These authors found a dependence of the critical wavenumber m on the 
liquid bridge aspect ratio such as that reported in Figure 11 (where it is also 
shown that the wavenumber m = 0, corresponding to axisymmetric flow, 
can enter the dynamics only for slightly larger values of Ra).  

The origin of the convective disturbance pertaining to this specific 
mode of convection is much more intuitive if compared to the companion 
problem relating to the genesis of the waves in Marangoni flow. Yet, it can 
be illustrated in a relatively simple way by considering the impact of a 
localized hot disturbance on an initial quiescent fluid with unstable 
temperature stratification (i.e., a linear temperature distribution, see Figure 
12). 

Being lighter than the surrounding fluid, the parcel of fluids affected 
by the disturbance will obviously tend to rise, i.e., a rising current will be 
generated locally. As a result (due to continuity) other relatively warm 

fluid located underneath will be pulled up, thereby leading once again to a 
self-sustaining mechanism in which rising currents transporting hot fluid 
from the bottom towards the top cold boundary alternate in space with 
descending currents transporting relatively cold fluid in the opposite 
direction. 

 

 

Figure 12. Amplification mechanism (sketch) leading to the emergence of Rayleigh-
Bénard convection in a liquid bridge (heated from below, cooled from above and with 
adiabatic free surface).  
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Figure 13. Isosurfaces of azimuthal velocity component for Rayleigh-Bénard 
convection in liquid bridge (AH = 1, Pr = 28.1, Ra = 4x103, steady state with m = 1, red 
and blue colors correspond to regions of positive and negative azimuthal velocity, 
respectively). 

The notable difference relating to the origin of the 3D flow for 
Marangoni and RB convection also extends to the structure of related 
disturbances. Additional insights along these lines can directly be gathered 
from Figure 5.  

While for Marangoni flow the isosurfaces of the azimuthal component 

of velocity look like curved “pillows” located in proximity to the free 
surface, for Rayleigh-Bénard convection they take the shape of ‘bells’ or 
multi-petal ‘flowers’ (with axes perpendicular to the axial direction and 
radial penetration depth equal to the radius of the liquid bridge, Figure 13). 

Distinguishing marks, however, are not limited to the structure and 
stationary nature of the emerging 3D flow. What sets Rayleigh-Bénard 
(RB) convection apart, indeed, is its ability to produce multiple states of 
convection, that is, different solutions are allowed for the same (fixed) 
values of Ra and AH. Such solutions exist in the space of parameters as 
independent attracting sets. However, the flow effectively emerging in a 
numerical simulation (or in the physical reality) essentially depends on the 
specific initial conditions considered. Using relevant language borrowed 
from the companion field relating to the analysis of non-linear systems, 
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these multiple solutions can generally be considered as coexisting 
“attractors” in the space of phases.  

Accordingly, they can be identified or studied resorting to a specific 
strategy of analysis based on the variation of the related “basin of 
attraction” (that is the set of initial conditions that leads the trajectory of 
the system in the space of phases to meet a specific attractor).  

 

a)  b) 

Figure 14. Isosurfaces of azimuthal velocity component for Rayleigh-Bénard 
convection in liquid bridge (AH = 0.315, Pr = 28.1, Ra = 4x103, red and blue colors 
correspond to regions of positive and negative azimuthal velocity, respectively) - 
Multiple steady solutions are possible: a) m = 3 (Mercedes pattern), b) four-roll state 
(initial conditions corresponding to 3D sinusoidal disturbances with arbitrary value of 
the azimuthal wavenumber added to a purely axisymmetric distribution of temperature, 
which increases linearly along the direction of gravity). 

a) b) 

Figure 15. Temperature distribution in a section perpendicular to the liquid bridge axis 
for the same conditions shown in Figure 14 (red and blue colors correspond to regions 
of relatively hot and cold fluid, respectively). 
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For instance, Figures 14 and 15 show the different equilibrium states 

that can be attained by a liquid bridge heated from below (Pr = 28.1) with 

aspect ratio AH = 0.315, for a fixed value of the Rayleigh number (Ra = 

4000) when the initial conditions are changed. While, in one case (Figures 

14a and 15a) a state with three localized peaks of negative and positive 

azimuthal velocity can be discerned (also known as “mercedes” structure 

by similarity with the logo of the well-known company, Borońska and 

Tuckerman, 2010a,b), in the other case (Figure 14b and 15b), the central 

symmetry of the pattern is no longer a recognizable feature; the flow in 

Figure 15b, indeed consists of four rolls all approximately aligned along 

the same direction (flow with dominant horizontal distribution of 

vorticity).  

For the sake of completeness, we should mention expressly that these 

behaviors are not an exclusive prerogative of RB convection in liquid 

bridges as similar studies have been produced for the case of fluids 

encapsulated in cylindrical containers (no free liquid-gas lateral interface). 
As an example, the interested reader may consider the experimental 

work by Hof et al. (1999), who could observe a multitude of steady stable 

patterns for the same final Rayleigh number Ra = 14200 in a cylinder with 

A = 0.25 and a fluid with Pr = 6.7. Such states were categorized as “rolls 

with hot fluid rising along the center”, “rolls with cold fluid falling along 

the center”, “spoke patterns with cold fluid falling along the spokes”, 

“spoke patterns with hot fluid rising along the spokes” and “axisymmetric 

pattern with hot fluid rising in the center”.  

Similar results have also been obtained by means of numerical 

simulations. As an example, Borońska and Tuckerman, 2010a,b) re-

examined the case originally addressed experimentally by Hof et al. 

(1999), with the intent to shed some additional light on the fascinating 

emergence of multiple solutions reported by those authors. In the 

experiments by Hof et al. (1999) a large number of convective patterns had 

been produced by increasing and decreasing the Rayleigh number in a 

variety of ways. Borońska and Tuckerman (2010a) explored the same 

parameter space using two different types of initial conditions (namely, 

quiescent fluid with a linear temperature distribution in the vertical 
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direction or fully developed flow). They initialized their numerical 

simulations with a slightly perturbed diffusive solution; such simulations 

provided different patterns, depending on Rayleigh number, which then 

were used as initial states at other (smaller or larger) Rayleigh numbers.  

This study and other similar analyses have clarified that, unlike 

Marangoni flow in liquid bridges (which tend to favor ‘axial vorticity’), 

RB convection emerging in cylindrical domains does not display 

necessarily the morphology of a toroidal roll (given its known tendency to 

produce parallel rolls, especially in relatively shallow containers as already 

shown in Figure 15b). Moreover, the liquid in the inner region can either 

be colder or warmer than that located more externally (for Marangoni flow 

in liquid bridges only the first condition is allowed).  

Transition to time dependence is obviously possible also for RB 

convection (Lappa, 2009). For the case of convection in cylinders with 

aspect ratio of O(1), this transition generally occurs for relatively large 

values of the Rayleigh number (much higher that the value required for the 
onset of convection from the initial quiescent state). As illustrated by 

Boronska and Tuckermann (2006), in some circumstances these oscillatory 

modes can resemble those typical of Marangoni flow, i.e., traveling waves 

or standing waves.  

 

 

3.3. Mixed Flow 
 

While each of the convective effects considered in Sects. 3.1 and 3.2 

on its own presents significant challenges to a full understanding of the 

physics controlling the behavior of the FZ, when combined they may even 

give rise to novel and/or unexplored phenomena. This has been clearly 

demonstrated by relevant studies produced over the years in which half 

zones supporting combined thermocapillary and thermogravitational 

effects (liquid bridge heated form below) have expressly been considered.  

The main outcome of these studies (e.g., Wanschura et al., 1997 

considered a liquid bridge with Pr = 4 and AH = 0.5) is that, while in the 

absence of Marangoni effects there exist two equivalent convective 
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solutions potentially emerging from the thermally diffusive (quiescent) 
state, which consist of flow states with up or downflow at the center of the 
liquid bridge (corresponding to toroidal rolls with warm or relatively cold 
fluid in their center, respectively), for Bd > 1 the presence of weak surface-
tension-driven effects can break this symmetry making the bifurcation 
‘imperfect’. 

As a result, the emergence of a single toroidal vortex with sense of 
circulation supported by both buoyant and thermocapillary forces (surface 
fluid moving from the lower hot disk towards the upper cold one) is 
favored (generally known as strong state (a), see Figure 16a).  

 

 

Figure 16. Multiple axisymmetric basic-flow solutions for hybrid Marangoni-buoyancy 
convection in half zones (for each sketch: heated and cooled disks on the bottom and 
on the top, respectively): (a) Strong state; (b) and (c) Weak states.  

If the Rayleigh number is increased, however, other solutions become 
possible, namely the so-called weak states (b), and (c) shown in Figures 
16b and 16c, respectively. For these states, buoyant and Marangoni effects 
oppose each other, and as a result, two alternate situations can be 
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established. In one case (weak state (b)), a strong internal toroidal vortex 

with fluid sinking along the free surface and rising in proximity to the axis 

is formed, while the surface-tension driven effects are confined to a small 

counter-rotating cell located in the corner between the cold (top) disk and 

the interface. Otherwise, two separate vortices can be maintained, with an 

external roll (featuring fluid rising along the interface), which takes an 

axially stretched shape and coexists with a counter-rotating internal one. 

By studying the stability of these multiple axisymmetric (basic) states 

with respect to 3D disturbances, Wanschura et al. (1997) found the 

emerging three-dimensional flows to be essentially steady. Moreover, they 

even identified a range of Rayleigh numbers for which the axisymmetric 

convection is linearly re-stabilized and the two different axisymmetric 

states (a) and (b) can remain stable. 

Similar analyses for the opposite situation in which Marangoni effects 

are dominant (Bd < 1) have shown that, regardless of whether the liquid 

bridge is heated from below or from above, the set of possible 3D modes is 
greatly reduced from the multiplicity allowed by pure Rayleigh-Bénard 

flow or mixed convection with Bd > 1 to the only two competing solutions 

already discussed in Sect. 3.1 for the case of pure Marangoni convection 

(i.e., standing and traveling waves).  

Rotating and pulsating regimes have been observed both 

experimentally and numerically for mixed thermocapillary-thermogravi-

tational flow in half zones over relatively wide regions of the space of 

parameters. Among other things, these studies have led to the conclusion 

that pulsating or rotating waveforms are generally selected depending on 

the considered initial conditions (in this regard they may still be regarded 

as “multiple solutions” associated to a specific basin of attraction like those 

of RB convection) and that the former are generally unstable as they tends 

to be replaced by traveling waves as time increases (Lappa et al., 2000).  

The two fundamental situations considered over the years for Bd < 1 

obviously differ with regard to the aiding or opposing roles of buoyancy 

and thermocapillarity. For the case in which the system is heated from 

below, the velocity along the free surface undergoes an increase in 

magnitude due to the combined effect of these two forces. In the opposite 
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conditions for which heating is applied from above, buoyancy and surface-
tension-driven forces oppose each other at the free interface (in the absence 
of surface-tension effects the pattern would reduce to a linear thermally 
diffusive distribution of temperature in a motion-less liquid bridge).  

 

a) 

b) 

Figure 17. Snapshots of temperature distribution in a section perpendicular to the 
liquid bridge axis (AH = 0.4, Pr = 30, liquid bridge in normal gravity conditions, red 
and blue colors correspond to regions of relatively hot and cold fluid, respectively): a) 
Ma = 3.6x104, liquid heated from above, m = 2; b) Ma = 4.3x104, liquid heated from 
below, m = 1.  

In a rather counterintuitive way, mixed convection has been found to 
be much more stable when the heating from below is considered (Velten et 
al., 1991; Wanschura et al., 1997). Moreover, this condition can lead to 
significant changes in the emerging wavenumber with respect to the 
situation in which the liquid bridges is heated from above for the same set 
of parameters (AH, Pr, Ra and Ma, Lappa et al., 2000, Figure 17).  
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Lappa et al. (2000) explained this trend on the basis of the physical 

mechanism responsible for the development of the instability, i.e., the 

sequence of stages of evolution shown in Figure 8. In particular, they 

ascribed the observed stabilization of Marangoni flow in liquid bridges 

heated from below to the expected weakened influence played by potential 

small surface temperature disturbances on the surface flow due to the 

increased strength of this flow induced by the coupling between Marangoni 

and buoyancy effects. An alternate point of view based on vorticity 

arguments was elaborated by Wanschura et al. (1997). According to these 

authors, the stabilization of the basic state of a half zone heated from below 

with respect to heating from above (or pure Marangoni flow) should be 

interpreted taking into account the incompatible nature of the axial 

vorticity associated with Marangoni flow and the horizontal vorticity 

favored by buoyancy convection (two mechanisms excluding each other 

thereby leading to stabilization of the basic state).  

 
 

4. THE FULL ZONE 
 

As illustrated in Sect. 3, we now are in a situation where the study of 

the half zone has reached a sort of maturity, in the sense that numerical and 

experimental techniques are in position to yield useful and relevant 

information concerning most of the questions we may ask on the problem.  

The analysis of the full zone, however, is a considerably less 

developed area. This model does obviously introduce an additional level of 

complexity into the dynamics described so far (see, e.g., the experiments 

by Sakurai et al., 1998 and Kudo et al., 2014). As highlighted in Sect. 2.2, 

it carries another degree of freedom, namely the possibility for the flow to 

break the symmetry with respect to the equatorial plane. In the absence of 

gravity (pure Marangoni flow), this formally enables two different 

categories of 3D disturbances, i.e., modes which are symmetric (preserving 

the reflection symmetry) or antisymmetric (breaking the symmetry) with 

respect to z = 0 (Figure 1b).  
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Unfortunately, only a few theoretical studies addressing the bifurcation 

to 3D flow have been appearing in the literature for Pr > 1 (Chen, and 

Chieh, 1995; Lan, 2003; Bouizi et al., 2007; Motegi et al., 2017).  

As an example, for pure Marangoni flow Bouizi et al. (2007) 

investigated the transition from the initial axisymmetric state to three-

dimensional (3D) flow using a Chebyshev spectral numerical method over 

a relatively large range of Prandtl number values (10-3≤Pr≤102). It was 

shown that the main conclusions related to more than three decades of 

studies on the companion half-zone problem could qualitatively be applied 

to the full zone (the flow becoming unstable against oscillatory 

disturbances of hydrothermal nature, which manifest as “waves”). 

Antisymmetric modes and standing waves were found to be dominant in 

this study for the case of high-Pr fluids (e.g., Pr = 20 and Pr = 100). 

Though, technically speaking, a classification of the disturbances 

based on the distinction in symmetric and antisymmetric modes would no 

longer be applicable to the full zone in the presence of gravity (as 
buoyancy effects clearly prevent the flow from retaining reflection 

symmetry with respect to the equatorial plane), Motegi et al. (2017) 

extended this nomenclature to this case loosely re-defining these two 

classes of disturbances as modes for which the temperature disturbances 

occurring at a fixed azimuthal station above and below the equatorial 

plane have the same or opposite signs.  

In particular, considering conditions similar to those originally 

investigated by Wanschura et al. (2007) for the classical liquid bridge (half 

zone, see Sect. 3.3), Motegi et al. (2017) performed a linear stability 

analysis for a full zone with Pr = 4 and AF = 1 and increasing values of the 

Rayleigh number. They found antisymmetric modes to be the most critical 

disturbances (like the case of microgravity conditions) for relatively small 

values of Ra (with buoyancy essentially leading to an appreciable increase 

in the value of the required critical Marangoni number). The antisymmetric 

modes, however, were observed to be taken over by symmetric 

disturbances as the most critical ones for a further increase in Ra 

(exceeding a given threshold). Moreover, this switch in the symmetry was 

found together with a remarkable change in the trend displayed by the 
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critical Marangoni number, starting to behave as a decreasing function of 

Ra beyond such a threshold. In this range of values of the Rayleigh 

number, most interestingly, these authors found the slope of the curve 

Ma(Ra) to become very steep, which they ascribed to a transfer of the 

instability source from the toroidal roll in the upper half of the liquid 

bridge to the one in the lower half induced by an increase in the buoyancy 

effect. According to their analysis, moreover, on further increasing Ra, 

symmetric hydrothermal disturbances are finally replaced by a non-

oscillatory 3D mode similar to those previously found for the half-zone 

with dominant buoyancy. 

Even though at this stage, on the basis of LSA results such as those 

yielded by Motegi et al. (2017), the reader might have already realized the 

increased level of complexity due to the interaction of Marangoni and 

buoyancy effects in the full zone, recent experiments have shown that 

reality might even be more complex. 

As an example, Kudo et al. (2014) opened up a new perspective on the 
study of situations in which the Marangoni flow is dominant with the 

experimental discovery of a sort of chaotic state (for Pr = 28.1) in a region 

of the space of parameters where according to existing theories and earlier 

research studies for the half zone, mixed thermocapillary-

thermogravitational convection should be laminar with a regular structure 

in space and a periodic behavior in time (single-frequency and single 

wavenumber flow).  

Most interestingly, in such experiments, disturbances with different 

azimuthal wavenumbers m = 1, 2, and 3 were found to coexist for slightly 

supercritical conditions (i.e., as soon as the flow becomes unstable). 

Moreover, these modal structures were observed to behave in a relatively 

random (unpredictable) way, switching irregularly from the typical 

dynamics of a standing wave to those of traveling waves and vice versa. 

These remarkable results have demonstrated that circumstances exist 

for which classical models might inherently be flawed. 

Lappa (2016) addressed this apparent conundrum through solution of 

the Navier-Stokes equations (eqs. (1)-(3)) in their complete, time-

dependent and non-linear form. For the same cases considered by Kudo et 
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al. (2014), notably, these numerical results have shown that this specific 
problem may yet been interpreted in the frame of models and theories 
about the existence of ‘multiple solutions’.  

As explained in Sects. 3.2 and 3.3, modes of convection, existing 
independently in the space of states, can manifest separately depending on 
the initial conditions. However, if the critical conditions for their onset are 
relatively close, they can also be excited at the same time thereby leading 
to hybrid states.  

This concept, which is not straightforward as one would imagine, can 
be developed in a proper way starting from the description of the specific 
structure of the flow established in the generic meridian plane of the full 
zone (Figure 18). 

 

 

Figure 18. Typical structure of oscillatory Marangoni convection in the meridian plane 
of a full zone; Pr = 28.1, AF = 0.68; courtesy of I. Ueno). 

 

4.1. Spatial Flow Structure 
 
As shown in Figure 18, in place of the single roll typically established 

in the half zone (Figure 3), two overlying toroidal rolls with different 
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strength and morphological properties represent the dominant convective 
systems in the full zone. The different flow structure and intensity are 
obviously related to the different interplay of the buoyancy and surface-
tension-driven effects according to the considered region.  

Roughly speaking, the upper half of the full zone can be seen as a 
liquid bridge heated from below, and vice versa for what concerns the 
lower half (akin to a half zone with heating from above). Notably, reversal 
of the dominant temperature gradient when crossing the equatorial plane 
(Figure 1b) implies that buoyancy can play the role of a force aiding 
surface Marangoni flow or counteracting it depending on the considered 
half (the reader being also referred to the similar arguments elaborated in 
Sect. 3.3). It is as a result of such effects that the upper roll is always 
stronger (due to concurrent Marangoni and buoyant effects) and extends to 
a large extent into the lower half (Kudo et al., 2014), thereby forcing the 

(weaker) bottom roll into a region of relatively small radial extension 
located in proximity to the liquid/gas interface (where it takes an axially 
stretched shape, Lappa, 2016).  

 

 

Figure 19. Snapshots of azimuthal velocity distribution at different times in cross-
sections perpendicular to the full-zone axis (z = 1/2, upper half, AF = 0.63, Pr = 28.1, 
Ma  2.3x104, Ra  4.2x103, red and blue colors correspond to regions of positive and 
negative azimuthal velocity, respectively). 
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In order to deal with such intricacies, Lappa (2016) examined the 
multicellular structures emerging due to the flow instability in selected 
cross sections (perpendicular to the z-axis) of the two opposing toroidal 
rolls located in the upper and lower halves of the full zone. For Pr = 28.1, 

AF = 0.63, Ma  2.3x104, Ra  4.2x103, as an example, the ‘multiplicity’ of 

the involved azimuthal modes was found to be N = 4, with the azimuthal 

wavenumbers m = 1, 2, 3 and 4 manifesting at selected instants in isolated 
or combined form. Such instantaneous states are shown in Figures 19 and 
20. These figures also provide interesting information on the relative 
amplitude of disturbances in the two opposing halves of the full zone. 

Indeed, by denoting with ),,()( tzrf mdown  and ),,()( tzrf mup  the amplitude of 

the generic disturbance with azimuthal wavenumber m in the lower and 
upper roll, respectively, by cross-comparison of sections at z = 1/2 and z = 
-1/2, the reader will realize that for a given z > 0, the following inequality 
holds: 

 

),,(),,( )()( tzrftzrf mdownmup  , with ),,(),,( )()( tzrftzrf mupmdown   

 (16) 
which in some circumstances and for some specific modes (compare 
Figures 19 and 20) even reduces to  

 

0),,()(  tzrf mdown   (17)  

 

 
Figure 20. Snapshots of azimuthal velocity distribution at different times in cross-
sections perpendicular to the full-zone axis (z = -1/2, lower half, AF = 0.63, Pr = 28.1, 
Ma  2.3x104, Ra  4.2x103, red and blue colors correspond to regions of positive and 
negative azimuthal velocity, respectively). 
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Figure 21. Isosurfaces of azimuthal velocity (snapshots) at different times (AF = 0.63, 
Pr = 28.1, Ma  2.3x104,Ra  4.2x103). The isosurfaces correspond to three distinct 
values of the nondimensional azimuthal velocity (-7x10, 2x10, 1.1x10).  

These results are particularly interesting for the insights they provide 
into the ability of coexisting toroidal rolls to increase the complexity in 
terms of disturbance evolution and related patterning behavior. In 
particular, while for the lower roll a limited number of modes is excited 
(disturbances with m = 1 and m = 2 in disjoint or combined form with 
some occasional manifestations of the m = 3 mode), a rich set of azimuthal 
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wavenumbers is allowed for the upper roll (m = 1,2,3,4 and related 

combinations or ‘hybrid states’ as explained before). The same conclusion 

can be drawn via careful analysis of the isosurfaces of the azimuthal 

velocity in space (Figure 21), where an abrupt change in the spatial 

structure of disturbances can be seen when the equatorial plane is crossed.  

While perturbation ‘nodes’ are evident for z > 0 in the form of disjoint 

‘pillows’ with different colors located along the circumferential direction, 

an almost patternless state is established for z < 0. As formalized by eq. 

(17), no disturbances with m = 3 and m = 4 can be identified under the 

equatorial plane (this equation being satisfied essentially in the large 

wavenumber part of the spectrum of disturbances). 

 

 

4.2. Temporal Dynamics  
 

Also in this case additional useful information on the considered 
phenomena can be obtained by resorting to an alternate point of view based 

on the analysis of temperature signals. Following the same approach 

illustrated in Sect. 3.1 for the half zone, the history of temperature recorded 

at fixed positions (by experimental or ‘numerical’ probes) distributed along 

the azimuthal direction (Figure 22) can help to discern the prevailing 

spatio-temporal behavior. Along these lines, Figure 23 obtained for the 

same case shown in Figures 19-21, is particularly meaningful. 

Scattering of peaks for z = 1/2 (Figure 23a) as opposed to ordered 

accumulation of minima and maxima at certain temporal locations for z = -

1/2 (Figure 23b), indeed, indicates that ‘on average’ the lower roll is 

characterized by a pulsating behavior, whereas the upper one supports 

disturbances propagating circumferentially (as already explained to a 

certain extent in Sect. 3.1, recognizable clustering of maxima and minima 

should be seen as the typical signature of spatially fixed disturbance nodes, 

whereas significant scattering of such extrema should be regarded as 

evidence for traveling waves). 



Convective Effects and Traveling Waves … 43 

 

Figure 22. Sketch showing nine numerical thermocouples equally spaced along the 
azimuthal direction covering an angular extension of 180.  

Still following Lappa (2016), an explanation for this scenario can be 

elaborated in its simplest form resorting to a spatial perspective based on 
the simple realization that, as clarified in Sect. 4.1, the two overlying 
toroidal rolls have different properties.  

Notably, if these rolls were completely independent, on the basis of 
past findings for the classical liquid bridge (Sect. 3), as a natural 
consequence of their different strength and geometrical properties they 
should undergo rather a different evolution. This argument might be used 
as a first key argument to explain the observed differences in terms of 
prevailing disturbances in the two halves of the full zone and related 
spatio-temporal dynamics.  

Superimposed on these aspects, however, is the fact that the two rolls 
are not uncoupled, as they can interact and exchange momentum and heat. 

In earlier studies focused on liquid metals (see, e.g., Lappa, 2003, 
2004ab, 2005 for Marangoni flow in a full zone made of silicon melt), it 

was found that when a two-roll configuration is considered, the interaction 
between the two opposing toroidal convective systems can cause a 
significant decrease in the value of the critical Marangoni number with 
respect to the liquid-bridge case and make the supercritical state 
significantly more complex. A similar trend was also highlighted by 
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Gelfgat et al. (2000), who examined buoyancy convection in a cylindrical 
configuration relevant to the so-called vertical Bridgman crystal growth 
method. These authors identified several azimuthal modes which become 
critical at relatively close values of the Rayleigh number.  

 

a) 
 

b) 

Figure 23. Signals provided by the numerical probes shown in Figure 22 (AF = 0.63, 
Ma  2.3x104, Ra  4.2x103): a) z = 1/2 (upper half), a continuous phase shift is 
allowed; b) z = -1/2 (lower half), only discrete values of phase shift can be seen.  
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These effects can still be invoked to justify the peculiar pattern-

forming mechanism seen for the complete floating zone for Pr > 1. As 

explained before, two superposed toroidal rolls are embedded in the full 

zone, and it can be argued that their interaction can significantly expand 

the set of allowed instability modes (thereby lowering the critical 

threshold). Moreover, the multiplicity of solutions and their diversification 

according to the roll (upper or lower), can be justified according to the 

different geometrical properties of such convective systems and the 

effective interplay between gravitational and thermocapillary effects 

(which, in turn, depend on the relative position of the considered liquid 

region with respect to the equatorial plane). 

The same arguments can also be used to explain the differences 

relating to the temporal behavior. According to Figure 23a, the prevailing 

flow in the upper larger roll can be interpreted as a combination of waves 

traveling with distinct azimuthal wavenumbers (m = 1,2,3,4) and different 

amplitudes, as witnessed by the variety of phase shifts displayed by the 
signals. By contrast, owing to the peculiar geometric configuration of the 

lower roll (axially stretched and with limited radial extension), the variety 

of modes is largely reduced (m = 1,2) and only two phase shifts are 

allowed, which indicates the coexistence of these disturbances results in 

standing-wave modes (waves that overlap with similar amplitude thereby 

leading to an essentially pulsating behavior). 

As a final aspect deserving discussion, we limit ourselves to recalling 

that these arguments can also be used to shed some light on the apparently 

“intermittent” response of the system observed by Kudo et al. (2014). The 

random switching from the dominant rotating (pulsating) mode of 

convection to the pulsating (rotating) one can obviously be ascribed to the 

interference (non-linear interaction) among all such modes. Indeed, the 

related interconnected feedback loops can make the system extremely 

sensitive to the interaction between the upper and lower rolls. In turn, this 

effect can cause frequent changes in the instantaneous spatio-temporal 

mode of convection and allow intermediate (hybrid) situations in which the 

resulting scenario is apparently erratic (as confirmed by the numerical 

simulations by Lappa, 2016). 
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CONCLUSION 
 

The production of oxide materials with the floating zone technique 

should be regarded as a relatively complex process if it is considered under 

the perspective relating to the convective modes which can potentially be 

excited in the melt.  

This chapter has attempted to assemble a simple, physically intuitive 

and reasonably self-contained discussion of all the possible flow 

instabilities in liquid volumes with free cylindrical surface supporting both 

surface-tension driven and buoyancy convection.  

These range from the classical axisymmetric mixed Marangoni-

buoyancy convection and related supercritical three-dimensional regimes, 

which can be studied using a classical liquid bridge (half zone) held 

between differentially heated supporting disks, to the much more complex 

states enabled when heat is injected into the system through the lateral free 

surface (full zone).  
The limited multiplicity of solutions known for pure or dominant 

Marangoni flow in half zones (just two alternate fundamental spatio-

temporal modes of convection being allowed when the critical threshold 

for the onset of oscillatory convection is exceeded) is greatly expanded 

when pure buoyancy (Rayleigh-Bénard) convection is considered (liquid 

being uniformly heated from below). Remarkably, this is also a feature of 

mixed Marangoni-buoyancy convection in the full zone even though 

situations in which gravitational effects relatively weak with respect to 

thermocapillary ones are considered. Rather than being an intrinsic feature 

of the mixed convection, the multiplicity of modes allowed in this case 

results from the additional degree of freedom represented by symmetry 

rupture with respect to the equatorial plane and the coexistence of two 

toroidal rolls with different properties. Distinct azimuthal modes can 

become critical at the same time, thereby making the emerging flow 

apparently erratic in nature. 

A general conclusion stemming from the present discussions is that the 

use of surrogate models of the real FZ allows more efficient exploration of 

wide regions of the space of parameters and, in this regard, the half zone 
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has proven instrumental in unraveling processes that are interwoven or 

overshadowed in a real floating zone. In the future, however, additional 

studies will be required to explore the behavior of the full zone, which still 

hides a not-fully-understood competition of complex and diverse physical 

mechanisms. It is expected that the fundamental information gained from 

these investigations will be crucial in our ambitious goal to elaborate a 

general theoretical framework for the FZ process and derive a generalized 

set of principles to predict its evolution in many circumstances. 
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