
epl draft

Modelling thermal flow in the transition regime using a lattice

Boltzmann approach

Y.-H. Zhang ∗, X. J. Gu, R. W. Barber and D. R. Emerson

Centre for Microfluidics and Microsystems Modelling, Computational Science and Engineering Department, CCLRC

Daresbury Laboratory, Warrington, WA4 4AD, UK

PACS 05.10.-a – Computational techniques in statistical physics and nonlinear dynamics
PACS 44.10.+i – Heat conduction
PACS 47.45.-n – Dynamics of rarefied gases

Abstract. - Lattice Boltzmann models are already able to capture important rarefied flow phe-
nomena, such as velocity-slip and temperature jump, provided the effects of the Knudsen layer
are minimal. However, both conventional hydrodynamics, as exemplified by the Navier-Stokes-
Fourier equations, and the lattice Boltzmann method fail to predict the nonlinear velocity and
temperature variations in the Knudsen layer that have been observed in kinetic theory. In the
present paper, we propose an extension to the lattice Boltzmann method that will enable the
simulation of thermal flows in the transition regime where Knudsen layer effects are significant.
A correction function is introduced that accounts for the reduction in the mean free path near a
wall. This new approach is compared with direct simulation Monte Carlo data for Fourier flow
and good qualitative agreement is obtained for Knudsen numbers up to 1.58.

Recent technological progress has enabled major ad-
vances in the development of miniaturised devices and
this has led to significant interest in trying to under-
stand low-speed rarefied gas flow in the slip and transi-
tion regime. Traditional numerical approaches for mod-
elling high-speed rarefied flow, such as the direct sim-
ulation Monte Carlo (DSMC) method, are very ineffi-
cient for low-speed flows whilst solving Boltzmann’s equa-
tion directly still remains a formidable challenge. Al-
though conventional hydrodynamic approaches based on
the Navier-Stokes-Fourier (NSF) equations are computa-
tionally efficient, they quickly break down when the flow
enters the transition regime. In contrast, the lattice Boltz-
mann method has been developed from kinetic theory and
has a computational efficiency comparable to NSF meth-
ods [1–4]. Moreover, numerous authors have shown that
the lattice Boltzmann equation (LBE) can simulate low-
speed micro- and nano-scale flows e.g. [5–21]. To date,
most LBE work has focused on capturing velocity-slip un-
der isothermal conditions. However, for the case of planar
Couette flow, we have recently demonstrated [22] that a
thermal LBE model can produce reasonably accurate heat
transfer predictions in the slip-flow regime.

In the transition regime, nonequilibrium effects within
the Knudsen layer become increasingly important. To cap-
ture flows in the transition regime, current LBE models
clearly need to be improved. One approach is through the
construction of new LBE schemes that ensure the conser-
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Fig. 1: Schematic diagram of Fourier flow showing the tem-
perature profile in the Knudsen layer for a constant heat flux
normal to the wall, where Tw represents the wall temperature
and Tkin and TNSF correspond to the gas temperatures pre-
dicted by kinetic theory and the NSF equations, respectively.

vation of the higher-order velocity moments [23]. However,
in the present paper, we propose an alternative treatment
that extends the LBE method into the transition regime
through the implementation of a Knudsen layer correction.
The phenomenological nature of this approach retains the
computational efficiency and simplicity of existing LBE
codes.

The behaviour of a gas near a solid surface will clearly
be affected by the interactions between the molecules and
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the wall. This leads to the formation of a kinetic boundary

layer, or Knudsen layer, with a thickness ∼ O(l), where l is
the mean free path. In the Knudsen layer, the mean time
between collisions is less than in the core region and this
will lead to a reduction in the mean free path close to the
wall. Conventional hydrodynamic approaches based on
the Navier-Stokes-Fourier equations are not appropriate in
the Knudsen layer but remain valid in the core region. The
gas temperature in the Knudsen layer is markedly different
to the predictions obtained from the NSF equations, as
shown schematically in fig. 1.

The effect of the wall on the mean free path has recently
been discussed by Guo et al. [24] where the authors pro-
posed a correction function that depended on the Knudsen
number. As the authors observed, this approach did not
allow the LBE method to capture the effects of the Knud-
sen layer although there was a slight improvement in the
prediction of the slip velocity. However, the presence of a
Knudsen layer implies a spatial variation in the mean free
path that depends on the distance from the wall. In the
present approach we propose that the effective mean free
path, le, can be expressed as

le =
l

1 + ψ(x/l)
, (1)

where x is the distance normal to the wall and the mean
free path is given by l = µ/p

√

πRT/2, where µ is the vis-
cosity, p is the pressure, T is the temperature and R is
the gas constant. The correction factor, ψ(x/l), will de-
pend on the distance from the wall and is chosen to be
negligible outside the Knudsen layer. The influence of the
density and temperature on the effective mean free path
is imposed through l. Once the correction factor for the
Knudsen layer is known, the effective viscosity, µe, and
thermal diffusivity, αe, can be determined from

µe(x/l) =
µ

1 + ψ(x/l)
, (2)

and

αe(x/l) =
ν/Pr

1 + ψ(x/l)
, (3)

where ν is the kinematic viscosity and Pr is the Prandtl
number. The effective viscosity (2) and thermal diffusivity
(3) can readily be used to extend the capability of NSF
approaches.

From kinetic theory, the mean free path can be related
to the viscosity and the mean molecular velocity, c̄, by

µ = aρc̄l, (4)

where c̄ =
√

8RT/π, ρ is the density, and a is a constant
with an approximate value of 0.499 [25]. For flows involv-
ing thermal variations, the viscosity will depend on the
temperature, T , according to

µ ∝ Tω, (5)

where the value of ω depends on the molecular interaction
model and varies between 0.5 for hard-sphere molecular
interactions and 1 for Maxwellian interactions [25]. The
influence of any temperature and density variations on the
mean free path is therefore given by

l

lref
=
ρref

ρ

(

T

Tref

)ω−0.5

, (6)

where lref and ρref are the mean free path and density
at some reference temperature, Tref . The effective mean
free path, le, can therefore be written as

le
lref

=
1

1 + ψ(x/l)

ρref

ρ

(

T

Tref

)ω−0.5

. (7)

The current lack of data makes it difficult to directly
evaluate the correction factor, ψ(x/l), for the mean free
path. However, we can take advantage of previous work
by Lockerby et al. [26] on phenomenological models of the
Knudsen layer. For Kramers’ problem, the correction fac-
tor for the mean free path can be approximated by

ψ(x/l) =
7

10
e−Cx/l, (8)

where C is a constant that depends on the governing equa-
tions (e.g. NSF, regularised Burnett, BGK-Burnett) [26].
This constant effectively controls the extent of the Knud-
sen layer and in the present paper we have assumed C = 1.
Equation (8) was developed for isothermal flows where the
Knudsen layers do not overlap. As discussed by Chen et

al. [27], there is a similarity between turbulence and finite
Knudsen number phenomena. Therefore, this Kundsen
layer correction has some analogy with the van Driest wall
damping function used in turbulence modelling.

In previous work [22], we have shown that the LBE
method can predict low-speed thermal rarefied gas flows
in the slip-flow regime. The present model, which is based
on the work of He et al. [28] and Shi et al. [29], can be
summarised as follows:

fk(x + ekδt, t+ δt) − fk(x, t) = −1

τ
[fk(x, t) −

feq
k (x, t)] + δt

(eki − ui)Fi

c2sρ
feq

k (x, t), (9)

and

gk(x + ekδt, t+ δt) − gk(x, t) = − 1

τt
[gk(x, t) − geq

k (x, t)],

(10)
where fk(x, t) and gk(x, t) are the distribution functions at
position x and time t for the number and energy densities,
respectively, feq

k and geq
k are the distribution functions at

equilibrium, eki is the lattice velocity, ui is the macro-
scopic velocity, cs is the lattice speed of sound, Fi is the
external body force, and τ and τt are the nondimensional
relaxation times for the number and energy density distri-
bution functions, respectively. The relationship between
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the two distribution functions is given by

gk =
(ei − ui)

2

2
fk. (11)

Following Shi et al. [29], the viscosity, ν, is given by (τ −
0.5)c2sδt and the thermal diffusivity, α, is (τt − 0.5)c2sδt.
The Prandtl number, Pr, can then be determined from
(τ − 0.5)/(τt − 0.5). Once the distribution functions are
known, the macroscopic properties can be obtained from

ρ =

∫

fdei, ρui =

∫

feidei, ρǫ =

∫

gdei, (12)

where ǫ = DRT/2 and D is the number of physical di-
mensions. If we consider a two dimensional, nine-velocity
lattice model (D2Q9), the lattice velocities can be written
as

e0 = 0,

ek = c(cos[(k − 1)π/2], sin[(k − 1)π/2]), k = 1, 2, 3, 4,

ek =
√

2c(cos[(k − 5)π/2 + π/4], sin[(k − 5)π/2

+ π/4]), k = 5, 6, 7, 8, (13)

where c =
√

3RT is the rms molecular speed. The equilib-
rium distribution function for the number density is given
by

feq
k = ρωk

[

1 +
ekiui

c2s
+

(ekiui)
2

2c4s
− uiui

2c2s

]

, ω0 =
4

9
;

ωk =
1

9
, k = 1, 2, 3, 4; ωk =

1

36
, k = 5, 6, 7, 8, (14)

and the equilibrium distribution function for the energy
density is given by

geq
k = ǫfeq

k . (15)

To simulate rarefied conditions, the relaxation time of
the LBE model is a function of the Knudsen number,
Kn, which relates the mean free path to the character-
istic length scale of the flow domain, H. For a D2Q9
lattice BGK model, the Knudsen number can be written
as Kn =

√

8/3π(τ − 0.5)/NH , where NH is the number
of lattice sites across H [30]. The relaxation time due to
the reduction in the mean free path in the Knudsen layer
can therefore be written as

τ =

√

3π

8

KnNH

1 + ψ(x/l)

ρref

ρ

(

T

Tref

)ω−0.5

+ 0.5, (16)

where Kn = lref/H, and the thermal relaxation time is
determined from

τt = (τ − 0.5)/Pr + 0.5. (17)

It should be noted that the local Knudsen number depends
on the temperature and can therefore be evaluated as part
of the numerical simulation. One advantage of using a

two-distribution function thermal LBE model is that the
Prandtl number is no longer fixed.

The kinetic boundary condition proposed by Niu et al.
[7] has been used to model the slip velocity at the wall.
Assuming the molecular reflections at the wall are fully-
diffuse leads to

|(ek − uw) · n| fk =
∑

(e
k′−uw)·n<0

|(ek′ − uw) · n|

Rf (ek′ → ek)fk′ , (18)

where k′ and k are the incident and reflected directions of
the particles, uw and ρw are the velocity and density at
the wall, n is the unit normal and Rf is the the scattering
kernel given by

Rf (ek′ → ek) =
AN

ρw
[(ek − uw) · n]feq

k |u=uw
. (19)

The coefficient, AN , can be evaluated from

AN = ρw

∑

k |(ek − uw) · n| fk

|(ek − uw) · n| feq
k |u=uw

∑

k |(ek′ − uw) · n| fk′

.

(20)
The Maxwellian diffuse reflection boundary condition as-
sumes the reflected molecules are in thermal equilibrium
with the wall, and therefore the energy density distribu-
tion function can be determined from

gk =
DR

2
Twfk, (21)

where Tw is the temperature of the wall.
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Fig. 2: Nondimensional temperature profiles for Fourier flow
between two parallel plates at a Knudsen number of 0.005.
Comparison of the LBE solution with the Knudsen layer cor-
rection (—), and the LBE solution without the Knudsen layer
correction (◦).

The present model has been applied to rarefied Fourier
flow between two horizontal parallel plates and the grid
independent results are compared to the DSMC simula-
tions reported by Gallis, Rader and Torczynski [31]. The
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temperatures of the upper and lower walls are assumed to
be T2 and T1, respectively, and the reference temperature,
Tref , is (T1 + T2)/2. The nondimensional temperature is
given by T ∗ = (T − T1)/(T2 − T1), while the nondimen-
sional distance is defined as L = x/H.
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Fig. 3: Nondimensional temperature profiles for rarefied
Fourier flow between two parallel plates using the Maxwellian
gas molecular interaction model, i.e. ω = 1.0.

As Kn increases, the Knudsen layers attached to each
plate will grow and will eventually start to overlap. Our
LBE model assumes this effect to be additive. For exam-
ple, if the distance between the parallel plates is H, then
the effective mean free path in the overlapping Knudsen
layers is assumed to be

le =
l

1 + ψ(x/l) + ψ [(H − x)/l]
, (22)

where x is the distance from the lower wall and H − x is
the distance from the upper wall.

The effect of the Knudsen layer correction should be
minimal when the Knudsen number is small and this is
illustrated in fig. 2 which shows the temperature profiles
at a Knudsen number of 0.005. As expected, the LBE
predictions with and without the Knudsen layer correc-
tion are almost identical. Figures 3(a)-3(c) compare the
LBE and DSMC predictions at Knudsen numbers of 0.158,
0.475 and 1.58, and illustrate the growing influence of the
Knudsen layer in the transition regime. The temperature
profiles without the Knudsen layer correction follow an al-
most linear variation between the plates. However, when
the correction is incorporated into the LBE model, the ac-
curacy of the predictions is significantly improved and the
model is able to capture the nonlinear temperature pro-
file within the Knudsen layer. Even at a Knudsen number
as high as 1.58, the results are in good qualitative agree-
ment with the DSMC data but the computational cost is
significantly less.

In conclusion, the Knudsen layer correction for thermal
LBE models offers an effective approach for the simulation
of nonisothermal rarefied gas flow in micro- and nano-scale
devices. The proposed technique has been successfully
applied to Fourier flow and offers the computational ef-
ficiency of NSF methods but with a qualitative accuracy
comparable to DSMC simulations. In this letter, we have
used a new wall function concept which modifies the local
mean free path to take into account the nonequilibrium
effects in the Knudsen layer. In the next step, the model
will be applied to more complex problems involving ther-
mal and pressure-driven rarefied flows in the transition
regime where the NSF equations fail to capture the ob-
served nonequilibrium phenomena.
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