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The Navier-Stokes-Fourier equations, with boundary conditions that account for the effects of

velocity-slip and temperature-jump, are compared to the direct simulation Monte Carlo method for

the case of a lid-driven micro-cavity. Results are presented for Knudsen numbers within the slip-

flow regime where the onset of nonequilibrium effects are usually observed. Good agreement is

found in predicting the general features of the velocity field and the recirculating flow. However,

although the steady-state pressure distributions along the walls of the driven cavity are generally

in good agreement with the Monte Carlo data, there is some indication that the results are starting

to show noticeable differences, particularly at the separation and reattachment points. The modi-

fied Navier-Stokes-Fourier equations consistently overpredict the maximum and minimum pressure

values throughout the slip-regime. This highlights the need for alternative boundary formulations

or modeling techniques that can provide accurate and computationally economic solutions over a

wider range of Knudsen numbers.
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1. INTRODUCTION

The use of micro-electro-mechanical systems (MEMS) has

been proposed in many applications, including industrial

engineering, biomedical analyses, environmental control,

micro-processor cooling and high-precision printing. As a

result, terms such as micro-ducts, micro-heat-exchangers,

micro-pumps, and micro-sensors are now commonly used

in many diverse fields. One area where the research com-

munity is particularly active is trying to understand gas

dynamics in micron and sub-micron sized domains. The

flow characteristics in miniaturized systems are known

to differ significantly from those found in conventional

devices. For example, the Navier-Stokes-Fourier (NSF)

equations with no-slip boundary conditions are no longer

valid when the characteristic length scale enters the micron

range.1

The inadequacy of the NSF equations in modeling gas

dynamics in micron-sized domains can be explained by the

fact that they are only able to describe flows that are close

to thermodynamic equilibrium. However, at small length

scales, nonequilibrium effects are frequently observed in
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gas flows. Collisions between the molecules are the only

mechanism for a gas to maintain equilibrium. If a gas is

too rarefied or confined in a micro-geometry, the number

of intermolecular collisions will be significantly reduced

and nonequilibrium effects will start to dominate. The

degree of rarefaction of a gas is defined through the

Knudsen number, Kn, which is given by Kn = �/L, where

� is the mean free path (i.e. the average distance travelled

by the gas molecules between successive collisions) and L

is the characteristic size of the domain.

The majority of numerical studies to date have mainly

involved simple geometries, such as planar channels

(Couette flow, Poiseuille flow) or annular configurations

(cylindrical Couette flow), where the aim has been to

improve our understanding of near-wall flow phenomena.

In this paper, we focus on how the nonequilibrium physics

will affect the predicted flow field in a geometrically sim-

ple but complex flow environment. The lid-driven cavity

will therefore be used to highlight how the NSF equations,

modified to take into account the effects of velocity-slip

and temperature-jump, perform in a recirculating flow. In

the absence of experimental data, the NSF predictions are

compared to results obtained using the direct simulation

Monte Carlo (DSMC) method.
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2. MODELING APPROACHES

The Boltzmann equation is the fundamental governing

equation for a dilute gas undergoing binary collisions. The

basic form of the Boltzmann equation can be written as
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where f is the particle distribution function which is a

function of time, t, the position vector, xi, and the molec-

ular velocity vector, ci. The term on the right-hand side

of Eq. (1), �f /�t�C , is a production term for f resulting

from the binary collisions and is commonly referred to as

the collision operator. The Boltzmann equation is able to

describe gases that are in equilibrium and nonequilibrium

alike but its solution is a non-trivial task due to the com-

plexity of the collision term.

Various methods have been proposed to simplify Eq. (1)

with each method attempting to retain an acceptable level

of accuracy in describing the fundamental physics. There

are essentially two main approaches for simulating rar-

efied gases; in one approach, discrete molecular modeling

is used to describe the fluid through a microscopic for-

malism, i.e. as a collection of moving molecules which

interact through collisions or very close proximity poten-

tials. Discrete modeling can be performed using either

statistical ensemble averages, as in the direct simulation

Monte Carlo approach,2 or through deterministic meth-

ods, such as molecular dynamics.3 Although discrete meth-

ods achieve a realistic representation of the microscopic

behavior, their application has been restricted to geomet-

rically simple flows due to their computationally inten-

sive nature.4 However, the information preservation (IP)

method5�6 may offer a promising approach for reducing the

computational requirements of DSMC techniques while

Baker and Hadjiconstantinou7 have recently demonstrated

that the statistical scatter associated with Monte Carlo

methods can be reduced by considering only the deviation

from the equilibrium condition.

An alternative approach is to retain a continuum formu-

lation to develop simpler representations of the Boltzmann

equation. In this case, the fluid is assumed to be continu-

ous and infinitely divisible so that velocity, density, pres-

sure, and other properties can readily be defined at any

point in space and time. One such approach is through

the use of an extended hydrodynamic approximation of

Eq. (1). This can be obtained by performing a Chapman-

Enskog expansion,8 where the distribution function, f , is

expanded in a power series based on the Knudsen number.

The power series can be truncated at any power of Kn and

will yield the Euler, NSF, Burnett, or higher-order descrip-

tions. Another approach is the method of moments9–11

where the distribution function is multiplied by a function

that depends only on the molecular velocity. The transport

equations can then be derived from a power series involv-

ing Hermite polynomials. It should be noted that there are

a number of challenges with the foregoing approaches. For

example, the Burnett equations have stability issues and

are unable to capture Knudsen layers whilst moment meth-

ods do not provide a closed system and also require addi-

tional boundary conditions. However, there are advantages

in these approaches because they are globally second-order

(or higher) in Knudsen number and will naturally recover

the NSF equations when the Knudsen number is small.

Alternatively, it is possible to combine the NSF equa-

tions with simple phenomenological extensions. Such

techniques include the application of velocity-slip12 and

temperature-jump13 boundary conditions. It is also possi-

ble to develop second-order boundary conditions for the

velocity-slip14�15 or to derive more accurate boundary con-

ditions based on higher-order constitutive relations, such

as the Burnett equations.16 These techniques improve the

accuracy of mass flow rate predictions but often fail to cap-

ture nonlinear phenomena in the near-wall region. More

recently, the development of constitutive law re-scaling, in

the form of a wall function,17 has been shown to offer the

potential of replicating the nonlinear stress/strain behav-

ior in the vicinity of solid walls. For the present analysis,

we use a boundary formulation derived from Grad’s 13

moment equations.11

3. CLASSIFICATION OF THE FLOW REGIME

Several distinct regimes can be defined that characterize

the state of a particular flow:1

• For Kn< 0�001, the flow is in the continuum regime and

the conventional no-slip boundary condition is considered

to be valid since the flow is in thermodynamic equilibrium.
• For 0�001<Kn< 0�1, the gas is in the slip-flow regime.

The NSF equations are considered to be adequate provided

the effects of velocity-slip and temperature-jump at the

wall are taken into account.
• For 0�1< Kn < 10, the flow is said to be in the transi-

tion regime. The use of the NSF equations becomes ques-

tionable and alternative approaches are needed to model

such flows using either discrete (particle-based) methods,

extended hydrodynamics, or the method of moments.
• For Kn> 10, the flow is in the free-molecular regime. In

this regime, the frequency of intermolecular collisions is

very low and the mean free path is large compared to the

characteristic length scale of the flow domain. The con-

tinuum hypothesis is no longer valid and a collisionless

form of the Boltzmann equation can be used to describe

the flow.

The limiting Knudsen numbers in the above classifica-

tion scheme are somewhat empirical, and are generally

based upon simple flows that have a predominant flow

direction and pronounced gradients normal to the stream-

wise direction, e.g., Couette or Poiseuille flow. In the case

of more complex flows, however, the boundaries between

the different regimes may depend upon the particular

geometric details of the problem. As will be demonstrated
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later for a driven-cavity flow, nonequilibrium effects are

discernible at Knudsen numbers well below the conven-

tionally accepted upper limit of the slip-flow regime.

4. THE DRIVEN CAVITY PROBLEM

Cavities, steps and cut-outs occur frequently in many

engineering designs. Such configurations generate sharp

changes in the flow variables and their gradients. At the

macroscopic scale, modeling the flow phenomena asso-

ciated with cavities is challenging, particularly at high

Mach numbers. However, at the microscale, other com-

plexities can arise due to the loss of local thermodynamic

equilibrium.

The lid-driven cavity, shown schematically in Figure 1,

has been extensively investigated in a completely differ-

ent context since the problem is often used as a validation

test for numerical schemes. Despite its geometric simplic-

ity, the problem is rich in flow physics associated with the

recirculating eddy. Many of the investigations in the liter-

ature are presented in an incompressible NSF framework

and are solved using either a pressure–velocity coupling

or a streamfunction-vorticity formulation.18�19 In general,

the objective of these studies is to investigate the effective-

ness of convective numerical schemes over a wide range

of Reynolds numbers.

In the present paper, we investigate a micro-scale lid-

driven cavity since very few studies are available for rar-

efied cavity flows. Su et al.20 presented solutions obtained

using the Bhatannagar-Gross-Krook (BGK) approximation

of the Boltzmann equation while Jiang et al.21 compared

the DSMC and information preservation (IP) methods, and

investigated the validity of the IP method for low-speed

flows. More recently, Naris and Valougeorgis22 have con-

ducted a comprehensive study of the driven cavity prob-

lem over the whole Knudsen number regime using the

discrete velocity method to solve the linearized Boltzmann

equation. They showed that for low Mach number flows,

DA

B C

Fig. 1. Schematic diagram of a driven cavity.

the temperature variations were small. In the present study,

we compare NSF predictions with results obtained from

the DSMC method. In particular, we highlight some of the

limitations of the NSF approach in the slip-flow regime.

5. NUMERICAL SOLUTION OF THE
NSF EQUATIONS

The Navier-Stokes-Fourier equations have been discretized

on a collocated grid using the finite-volume pressure-

velocity-density coupling approach proposed by Demirdzic

et al.23 Since the Reynolds number is relatively small, a

central-difference scheme is considered appropriate.24 The

central-difference scheme was implemented at cell bound-

aries for both the convective and diffusive fluxes while

the source terms were computed at cell centres. A mesh-

resolution study was carried out using grids composed of

40×40, 80×80 and 160×160 cells. In all test cases, the

results were numerically equivalent for the 80× 80 and

160×160 grids. We present here only the grid-independent

results.

5.1. Velocity-Slip and Temperature-Jump

Boundary Conditions

The application of velocity-slip and temperature-jump
boundary conditions in the NSF equations is a simpli-
fied phenomenological approach to represent both non-
equilibrium and gas-surface interaction effects near the
solid walls. These boundary conditions were first proposed
by Maxwell12 and von Smoluchowski,13 respectively.
Using Grad’s closure approximation for the distribution
function, f , the boundary conditions can be written as:11

vislip
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−viwall

=
�−�2−��/��

√

�

2

√
RT ��1�ijnj −ni�jknjnk�− 1
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where vislip
is the slip velocity at the wall, vigas

and viwall
are

the gas and wall velocities, Twall and T are the wall and gas

temperatures, � and �T are the tangential momentum and

energy accommodation coefficients, respectively, and �ij
and qi are the viscous stresses and heat flux. The term, ni,

is the normal vector, p is the pressure, � is the density, and

R is the specific gas constant. The terms, �1, �2, and �1

are Knudsen layer correction coefficients and are

set to �1 = 1�114, �2 = 1�34533, and �1 = 1�127,

respectively11 while the tangential momentum and energy

accommodation coefficients are assumed to be unity.

A second-order one-sided difference scheme was used

to determine the required gradients for the boundary

conditions.
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6. DIRECT SIMULATION MONTE CARLO
SOLUTION

The DSMC method used in this study follows the approach

proposed by Bird2 where the gas molecules are represented

by a much smaller number of “stochastic” particles. The

algorithm is divided into two main stages consisting of

translational movement of the particles and binary colli-

sions between the particles. Solid boundaries are taken into

account in the translational stage of the algorithm and a

special recursive treatment is implemented in the vicinity

of the corners of the cavity. A Maxwellian scattering ker-

nel with perfect accommodation is assumed at the walls

and the “no time counter” method is used to simulate the

collision interactions.

In the present paper, we are interested in the steady-

state solution. Since the DSMC method is a kinetic for-

mulation (i.e. dependent on time, molecular velocity, and

position), the macroscopic variables are computed using

time-averaged moments over a number of kinetic time

steps. The moments are spatially averaged within the cell

volumes. In particular, we have computed the following

moments: m, mc̄i, mcici/2, mCiCj , and mCiCiCj/2 where

m is the molecular mass and Ci is the peculiar veloc-

ity defined as the deviation of the molecular velocity, ci,

from the average velocity ui (i.e. Ci = ci−ui), the overbar

indicates time-averaged values and repeated indices rep-

resent the usual Einstein convention of tensor summation.

These averages yield moments corresponding to the den-

sity, bulk velocity, internal energy, viscous stress, and heat

flux, respectively.

The DSMC simulations employed a hard-sphere model

of argon with a molecular mass of 6�63× 10−26 kg and

a molecular diameter of 3�42 × 10−10 m. The computa-

tional domain was discretized using a uniform distribution

of cells with a grid resolution of either 50×50 or 60×60

cells, depending upon the Knudsen number. Typically, the

DSMC simulations employed 50 particles per cell although

this was increased to approximately 300 particles per cell

for the lowest Knudsen number case. Over 10 million sam-

pling time steps were used to reduce the statistical scatter

in the DSMC results.

7. RESULTS AND DISCUSSION

The lid-driven cavity has been investigated for two

Knudsen numbers, Kn = 0�05 and Kn = 0�1. For conve-

nience, the results are presented in a nondimensional form

given by the following:

X = x1

L
� Y = x2

L
� S = s

L
� P = p

Po
�

U = v1

Ulid

and V = v2

Ulid

(4)

where x1 and x2 are the horizontal and vertical distances,

respectively, L is the cavity length, s is the distance along

(a)

(b)

Fig. 2. Velocity streamlines for Kn = 0�05: (a) NSF solution and

(b) DSMC data.

the walls of the cavity (starting from A in Fig. 1 and pro-

gressing in a clockwise direction), Po is the initial pres-

sure in the cavity (Po = 101135 N m−2), v1 and v2 are the

velocity components in the x1 and x2 directions, and Ulid is

the velocity of the moving wall. The upper case symbols

represent the nondimensional quantities.

Figures 2 and 3 compare the streamlines predicted by

the NSF and DSMC approaches at the two Knudsen num-

bers. The simulations have considered a driven cavity with

a unit aspect ratio. In both cases, the Mach number, defined

as Ma = Ulid/
√

2RT0, where T0 is the reference tempera-

ture (273 K), was 0.09. In general, the agreement between

the two modeling approaches is very good and the NSF

equations predict the overall features of the flow with rea-

sonable accuracy, including the location of the centre of

the eddy. Figure 4 compares the predicted velocity pro-

files along the centreline of the cavity (x1/L = 0�5 and

x2/L = 0�5). Once again, the two modeling approaches

yield very similar results but the NSF equations overpre-

dict the velocity-slip along the moving wall at Kn = 0�1.
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(a)

(b)

Fig. 3. Velocity streamlines for Kn = 0�1: (a) NSF solution and

(b) DSMC data.

In the cases considered, the flow field consists of a single

primary recirculating eddy with the flow having insuffi-

cient inertia to generate secondary vortices in the corners

of the cavity.

Figure 5 shows the nondimensional pressure distribution

along the walls of the cavity. For both Knudsen numbers, it

can be seen that there is reasonable agreement between the

NSF solution and the DSMC predictions. However, in both

cases, the NSF predictions show considerable discrepan-

cies in the vicinity of the uppersr left-hand  and  right-hand

corners of the cavity (S = 1 and S = 2), where separa-

tion and reattachment occur. The DSMC predictions are

very similiar to the pressure distributions obtained by Jiang

et al.21 In contrast, the NSF equations overestimate the

pressure difference between these two corner points (B and

C in Figure 1) leading to an incorrect pressure distribution

along the moving wall of the cavity. The accurate predic-

tion of reattachment pressures is particularly important and

the present results show that, for the driven cavity prob-

lem, nonequilibrium effects are causing inaccuracies well

(a)

(b)

Fig. 4. Velocity profiles along the centreline of the cavity (x1/L = 0�5

and x2/L= 0�5): (a) Kn = 0�05 and (b) Kn = 0�1. Comparison of DSMC

data (•) and the NSF solution (—).

before the conventionally-accepted upper limit of the slip-

flow regime.

8. CONCLUSIONS

A comparison between the Navier-Stokes-Fourier equa-

tions and the direct simulation Monte Carlo method has

been carried out for a driven micro-cavity problem. The

NSF equations are normally assumed to be valid up to

a Knudsen number of Kn = 0�1 and good agreement has

been observed for many aspects of the flow. However, for

this particular problem, the predicted pressure along the

moving wall is clearly affected by nonequilibrium effects

resulting in an overprediction of the pressure difference

at the separation and reattachment locations. Surprisingly,

this feature was observed at a Knudsen number as low

as 0.05. This failure in the NSF equations was unexpected

at such a low value of Kn and highlights the need for
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Fig. 5. Pressure distribution along the cavity walls: (a) Kn = 0�05 and

(b) Kn = 0�1. Comparison of DSMC data (•) and the NSF solution (—).

alternative boundary treatments or modeling approaches

that can provide accurate and computationally economic

solutions over a wider range of Knudsen numbers.
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