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Asymptotic analysis of drug dissolution in two layers having widely
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This paper is concerned with a diffusion-controlled moving-boundary problem in drug dissolution, in
which the moving front passes from one medium to another for which the diffusivity is many orders of
magnitude smaller.The classical Neumannsimilarity solution holdswhile the front is passing through
the first layer, but this breaksdown in the second layer. Asymptotic methods are used to understand
what is happening in the second layer. Although this necessitates numerical computation, one interesting
outcome is that only one calculation is required, no matter what the diffusivity is for the second layer.
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1. Introduction

Moving boundary problems arise in many industrial, environmental and technological applications.
These include the freezing and defrosting of food (Bakal et al. (1970)), swelling grains or polymers
(Anderson (1982)), etching (Vuik & Cuvelier (1985)), dendritic solidification (Schmidt (1996)), metal
processing (Segal et al. (1998)), crystal growth (Conti (2001); Libbrecht (2005)), chemically-reactive
and heat-diffusive liquids surrounded by ice (Fila & Souplet (2001)), laser-induced heating and melting
in solids (Shen et al. (2001)), environmental engineering and thermal energy storage systems (Mehling
& Cabeza (2002); Zalba et al. (2003)), shore-line movement with ocean depth (Lorenzo-Trueba& Voller
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(2010)), supercooling/superheatingphenomena (Gotz & Zaltzman (1995); Tabakova et al. (2010)), solid-
ification of nanostructure-enhanced phase change materials (El-Hasadi & Khodadadi (2013)), porous
thermal heart processes (Trelles & Dufly (2003)), phenomenainvolving nano-sized particles (McCue et
al. (2009); Fan et al. (2015)) and melting and solidificationenhancement (Sharifi et al. (2014)).

Although moving boundary problems date back to Stefan’s original paper (Stefan (1890)), the area
received a reawakening with a meeting held in Oxford in 1974 (Ockendon & Hodgkins (1975)). Two
papers stand out in the proceedings. Tayler (1975) considers a mathematical formulation of the Ste-
fan problem and its generalizations: in particular, he discusses problems that do not have a continu-
ous second derivative and develops a weak formulation whichallows for the so-called mushy region.
Ockendon (1975), on the other hand, discusses an integral formulation, the use of transform techniques
and asymptotic methods.

When a problem is well-characterized by a one-dimensional system of equations, analytic solutions
are often readily obtained. For example, if the system comprises a one-dimensional diffusion equation
with appropriate initial and boundary conditions, as well as a Stefan condition to track the position
of the moving boundary, then it can often be shown that the problem is self-similar, and through a
similarity reduction one may convert the original partial differential equation to an ordinary differential
equation (ODE). Some discussion of the analytic solutions of moving boundary problems arising in
diffusive systems, such as the Neumann solution to the classical Stefan problem, can also be found in
Crank (1984).

When this is not possible, many authors resort to numerical methods. An early review of four
different numerical techniques, including immobilization of the free surface through an appropriate
coordinate transformation and the enthalpy method, was carried out by Furzeland (1980). Indeed, most
of the authors cited above have employed a variety of numerical methods. Text books dealing with these
techniques include Crank (1984), Hill (1987), Gupta (2003)and Tarzia (2011).

A particular class of one-dimensional Stefan problem for which one would expect numerical meth-
ods to be necessary is when the diffusivity is not constant, although there are some notable analytic
exceptions even to this for particular non-linear forms forthe diffusivity (Cho & Sunderland (1974);
Hill & Hart (1986); Rogers (1986); Natale & Tarzia (2003); Briozzo et al. (2007); Voller & Falcini
(2013)). On the other hand, the moving boundary value problem in this paper has a diffusivity which is
spatially dependent in the sense that it takes one constant value in one part of the domain and another
constant value in the other part; in addition, the two constants differ by several orders of magnitude. This
is the situation that arose in a recent experimental and theoretical investigation Vo et al. (2018) concern-
ing drug release from polymer-free coronary stents with microporous surfaces. The theoretical analysis
led to the following one-dimensional, one-phase, diffusion-controlled moving boundary problem:

∂c
∂ t

=
∂
∂x

(

D(x)
∂c
∂x

)

, x> s(t) , t > 0, (1.1)

c= cs, −D(x)
∂c
∂x

=
ds
dt
(cs− c0) atx= s(t) , t > 0, (1.2)

c→ 0 as x→ ∞, t > 0, (1.3)

s(0) = Ld, c(x,0) = 0 for x> Ld. (1.4)

Here,c represents the concentration of the drug,s(t) a free surface between the dissolved and undis-
solved drug,Ld denotes the thickness of the drug layer initially, which occupies the region 0< x< Ld,
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FIG. 1. Schematic showing the problem considered by Vo et al. (2018). The region 0< x< Ld initially contains drug at uniform
concentrationc0. Fort > 0, drug dissolves on a moving front (where the concentrationis identicallycs, the solubility of the drug),
starting atx= Ld. Drug dissolution is complete when the moving boundary tracks back tox= 0. Dissolved drug diffuses out of
the system into a release medium which is considered to be infinite. The diffusivity of the dissolved drug in the region 0< x< a
is much smaller than that in the regionx> a.

a< Ld denotes the mean position of the microporous region (also containing drug),cs the solubility of
the drug andc0 the initial constant concentration forx< Ld. The spatially dependent diffusivity is

D(x) =

{

De(< Dw) if 0 < x6 a−
Dw if x> a+

. (1.5)

We note that the resulting model may bear a passing similarity to moving boundary problems for
swelling-controlled drug release (Cohen & Erneux (1988a,b)), although the mechanism is not the same
and neither is our handling of the analysis.

The problem given by (1.1)-(1.5) gives rise to a two-stage release of drug, which is explained with
the help of Figure 1. In Stage 1, the drug dissolves on a movingfront in the regiona < x < Ld and
diffuses out of the system. In Stage 2, the moving boundary has tracked back tox= a and the drug then
proceeds to dissolve from the rough surface region where it is released at a slower rate. For Stage 1
(s(t)> a), McGinty et al. (2015)andVo et al. (2018)foundthattheclassical Neumannsolution holds,
namely

s(t) = Ld −θ
√

t, c(x, t) =
cserfc

(

x−Ld
2
√

Dwt

)

erfc
(

− θ
2
√

Dw

) , Ld −θ
√

t < x< ∞, 0< t < ta, (1.6)

whereθ is determined by

θ
2
√

Dw
exp

(

θ 2

4Dw

)

erfc

(

− θ
2
√

Dw

)

=
1√
π

cs

c0− cs
. (1.7)
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Note that(1.7) will have a positive solution forθ , which is required by (1.6) provided thatc0 > cs;
moreover, the solution will be unique because the left-handside is an increasing function forθ > 0. As
for (1.6) itself, it is valid untilt = ta, whereupons(ta) = a, so that

ta =
(Ld −a)2

θ 2 . (1.8)

Note that the transcendental equation (1.7) is the same as that obtained by Paul & McSpadden (1976)
in a problem for the diffusional release of a solute from a polymer matrix. Observe also that ifcs > c0,
we obtainθ < 0 and the solution is identical to that of the freezing of a supercooled liquid, originally
considered by Carslaw & Jaeger (1959) and referred to more recently by Voller (2006); thus, although
not commented on by McGinty et al. (2015) or Vo et al. (2018), it appears that (1.6) withcs < c0 is a
solution that does not have an exact counterpart in the literature. Furthermore, att = ta,

c(x, ta) = ca (x) =
cserfc

(

x−Ld
2
√

Dwta

)

erfc
(

− θ
2
√

Dw

) , a6 x< ∞. (1.9)

For Stage 2, a numerical procedure was employed.
However, the fact thatDe≪Dw suggests that formal asymptotics may be a useful tool in thiscontext.

Indeed, such methods have been used for Stefan-like problems before, although not for problems exactly
like this one. Comparatively recent examples are the papersby Struckmeier & Unterreiter (2001), Evans
& King (2000), King & Evans (2005) and McCue et al. (2008), although in each case the diffusivities
on either side of the moving boundary differ by orders of magnitude; here, on the other hand, the front
passes from a highly diffusive medium to one that is not.

In this paper, we will be concerned with the release of drug from the system during Stage 2. In
particular, we adopt an asymptotic approach to derive approximate solutions for this phase of release.
In Section 2, we start by presenting the equations that represent Stage 2 of the release. We then outline
our asymptotic argument. In Section 3, we provide results including comparisons with the numerical
solutions obtained by Vo et al. (2018), whilst the findings are discussed in Section 4.

2. Stage 2 (s(t)< a)

The Stage 2 problem, whent > ta, may then be formulated in dimensional form as:

∂c
∂ t

=
∂
∂x

(

Dw
∂c
∂x

)

, a< x< ∞, t > ta, (2.1)

∂c
∂ t

=
∂
∂x

(

De
∂c
∂x

)

, s(t)< x< a, t > ta, (2.2)

c= cs, −De
∂c
∂x

=
ds
dt
(cs− c0), at x= s(t) , (2.3)

c→ 0, asx→ ∞, (2.4)

s(ta) = a, c(x, ta) = ca (x) , x> a. (2.5)
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Parameter Value
a 1×10−6-4×10−6 m

c0/cs 10-200
De 2.5×10−17-5×10−16 m2s−1

Dw 5×10−11 m2s−1

Ld 10−5 m

Table 1. Model parameters

In addition, we require

[c]+− = 0 atx= a, (2.6)
(

De
∂c
∂x

)

−
=

(

Dw
∂c
∂x

)

+

atx= a. (2.7)

We non-dimensionalize the problem by setting

X =
x
a
, T =

t − ta
a2/De

, S=
s
a
, C=

c
cs
, Ca =

ca

cs
, (2.8)

with typical values for the dimensional parameters, as considered by Vo et al. (2018), being given in
Table 1. This gives

δ
∂C
∂T

=
∂ 2C
∂X2 , 1< X < ∞, T > 0, (2.9)

∂C
∂T

=
∂ 2C
∂X2 , S(T)< X < 1, T > 0, (2.10)

C= 1, − ∂C
∂X

=
dS
dT

(1− c0

cs
), at X = S(T) , (2.11)

C→ 0, asX → ∞, (2.12)

S(0) = 1, C(X,0) =Ca (X) , X > 1, (2.13)

whereδ = De/Dw ≪ 1 and

Ca (X) =
erfc

(

aX−Ld
2
√

Dwta

)

erfc
(

− θ
2
√

Dw

) . (2.14)

In addition, we have

[C]+− = 0 atX = 1, (2.15)

δ
(

∂C
∂X

)

−
=

(

∂C
∂X

)

+

at X = 1. (2.16)
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Considering (2.9)-(2.16) at leading order inδ , we have just

∂ 2C
∂X2 ≈ 0, 1< X < ∞, (2.17)

C→ 0, asX → ∞, (2.18)
(

∂C
∂X

)

+

≈ 0 atX = 1, (2.19)

which would requireC≡ 0, for X > 1. ForX < 1, we would have

∂C
∂T

=
∂ 2C
∂X2 , S(T)< X < 1, T > 0, (2.20)

C= 1, − ∂C
∂X

=
dS
dT

(1− c0

cs
), at X = S(T) . (2.21)

Also, (2.15) would imply
C= 0 atX = 1.

In fact, this cannot hold for all time, sinceC = 1 at X = 1 atT = 0, i.e. in dimensional form,c = cs

whenx= s(ta) = a.

2.1 Asymptotic argument

The above suggests that we must try to retain the term on the left-hand side of (2.9), which can be
achieved ifT ∼ δ . This will mean that the left-hand side of (2.10) will be large, and would need to be
balanced by the right-hand side, indicating that 1−X, i.e. the width of the lower region, must be of an
appropriately small width. If we suppose that 1−X ∼ [X] , where[X]≪ 1 and is still to be determined,
then there are only two possibilities:[X]∼ δ , so that the full form of (2.16) is retained and[X]∼ δ 1/2.
However, the first of these does not lead to a distinguished limit, but merely results in an inconsistency
in the leading-order equations forC and leavesS undetermined; thus, we choose the second option.
Setting

1−X = δ 1/2X̃, 1−S= δ 1/2S̃, T = δ T̃, (2.22)

we also introduce regular perturbation expansions forC andS̃of the form

C=C(0)+ δ 1/2C(1)+O(δ ) , (2.23)

S̃= S̃(0)+ δ 1/2S̃(1)+O(δ ) , (2.24)

and consider the leading-order problem atO(1) ; the expansions given above are uniformly valid, and
there will be no need to consider higher-order problems. Dropping the superscript(0), we have

∂C

∂ T̃
=

∂ 2C
∂X2 , 1< X < ∞, T̃ > 0, (2.25)

subject to
C→ 0, asX → ∞, (2.26)

and, from (2.16),
∂C
∂X

= 0 atX = 1. (2.27)
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Also, (2.10) becomes
∂C

∂ T̃
=

∂ 2C

∂ X̃2
, X̃ > 0, T̃ > 0, (2.28)

subject to

C=C+

(

T̃
)

at X̃ = 0, (2.29)

C= 1, − ∂C

∂ X̃
=

dS̃

dT̃
(1− c0

cs
), at X̃ = S̃

(

T̃
)

, (2.30)

where
C+

(

T̃
)

=C
(

X = 1+, T̃
)

. (2.31)

Note thatC+ (0) = 1, i.e. c(a, ta) = cs.
We observe that the problem forX > 1 (i.e. x> a) decouples from that forX < 1 (x< a); we now

solve these in turn.

2.2 X > 1

First, we solve the problem forX > 1, T̃ > 0, corresponding tox > a, t > ta. From Section 2.1, the
problem at hand is, on settingξ = X−1,

∂C

∂ T̃
=

∂ 2C
∂ξ 2 , (2.32)

subject to

∂C
∂ξ

= 0 atξ = 0, (2.33)

C→ 0 asξ → ∞, (2.34)

C=Ca (ξ ) at T̃ = 0, (2.35)

where

Ca (ξ ) =
erfc

(

a(1+ξ )−Ld
2
√

Dwta

)

erfc
(

− θ
2
√

Dw

) . (2.36)

Using Fourier transforms, we obtain

C
(

ξ , T̃
)

=
1

2
√

πT̃

∫ ∞

0
Ca
(

ξ ′)
{

exp

(

− (ξ − ξ ′)2

4T̃

)

+exp

(

− (ξ + ξ ′)2

4T̃

)}

dξ ′. (2.37)

Before we can tackle the second problem (i.e. the caseX < 1), we shall requireC+

(

T̃
)

=C
(

ξ = 0, T̃
)

for condition (2.29), i.e.

C+

(

T̃
)

=
1√
πT̃

∫ ∞

0
Ca
(

ξ ′)exp

(

−ξ ′2

4T̃

)

dξ ′. (2.38)
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Puttingz= ξ ′/2
√

T̃, we have

C+

(

T̃
)

=
2√
π

∫ ∞

0
Ca

(

2z
√

T̃
)

e−z2
dz

=Ca (0)+
2
√

T̃√
π

dCa

dξ
(0)+O

(

T̃
)

, (2.39)

where we have used a Taylor series expansion forCa aboutz= 0. Now, on using (2.36) and recalling
equation (1.8), we note thatCa (0) = 1 and that

dCa

dξ
(0) =− a√

πDwta

exp
(

− (a−Ld)
2

4Dwta

)

erfc
(

− θ
2
√

Dw

) .

So, we have, for small̃T,

C+

(

T̃
)

= 1−











2a

π
√

Dwta

exp
(

− (a−Ld)
2

4Dwta

)

erfc
(

− θ
2
√

Dw

)











√

T̃ +O
(

T̃
)

. (2.40)

However, to determineC
(

0, T̃
)

for all T̃, we need to revert to (2.38) withz= ξ ′/2
√

T̃, which gives

C+

(

T̃
)

=
2

√
πerfc

(

− θ
2
√

Dw

)

∫ ∞

0
erfc

(

f
(

z, T̃
))

e−z2
dz, (2.41)

where

f
(

z, T̃
)

=
a
(

1+2z
√

T̃
)

−Ld

2
√

Dwta
.

Differentiating with respect tõT, we have

dC+

dT̃
=− 2a

πerfc
(

− θ
2
√

Dw

)

√

DwtaT̃

∫ ∞

0
ze−(z2+ f 2(z,T̃))dz. (2.42)

Rearranging the argument in the exponential in (2.42), we have

z2+

(

2az
√

T̃ +a−Ld

)2

4Dwta
= A

(

T̃
)

{

(

z+B
(

T̃
))2

+C
(

T̃
)

}

,

where

A
(

T̃
)

= 1+
a2T̃
Dwta

, (2.43)

B
(

T̃
)

=

[

(a−Ld)a
√

T̃
Dwta

]

2
(

1+ a2T̃
Dwta

) , (2.44)

C
(

T̃
)

=

(a−Ld)
2

4Dwta
(

1+ a2T̃
Dwta

) −

[

(a−Ld)a
√

T̃
Dwta

]2

4
(

1+ a2T̃
Dwta

)2 ; (2.45)
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it is now possible to write the integral in (2.42) in the form

∫ ∞

0
ze

−
{

A (T̃)
[

(z+B(T̃))
2
+C (T̃)

]}

dz. (2.46)

Next, withζ = z+B
(

T̃
)

and laterξ = A 1/2
(

T̃
)

ζ , we have

∫ ∞

0
ze

−A (T̃)
[

(z+B(T̃))
2
+C (T̃)

]

dz

=
1
2

e−A (T̃)C (T̃)

{

e−A (T̃)B2(T̃)

A
(

T̃
) − π1/2B

(

T̃
)

A 1/2
(

T̃
) erfc

(

A
1/2(T̃

)

B
(

T̃
)

)

}

. (2.47)

Hence, we have the following first-order ODE forC+

(

T̃
)

:

dC+

dT̃
=− ae−A (T̃)C (T̃)

πerfc
(

− θ
2
√

Dw

)√
Dwta

√
T̃

{

e−A (T̃)B2(T̃)

A
(

T̃
) − π1/2B

(

T̃
)

A 1/2
(

T̃
) erfc

(

A
1/2(T̃

)

B
(

T̃
)

)

}

,

(2.48)
subject to

C+ = 1 atT̃ = 0. (2.49)

CheckingA
(

T̃
)

,B
(

T̃
)

,C
(

T̃
)

in the limit asT̃ → 0, we have

A (0) = 1, B (0) = 0, C (0) =
(a−Ld)

2

4Dwta
, (2.50)

so that

dC+

dT̃
∼



− ae−(a−Ld)
2/4Dwta

πerfc
(

− θ
2
√

Dw

)√
Dwta





1√
T̃
. (2.51)

2.3 X < 1

For this region, we require to solve (2.28)-(2.31). Note that, from the solution forX > 1, we have
already found in (2.40) that, for smallT̃,

C+

(

T̃
)

−1∼ T̃1/2. (2.52)

Moreover, atT̃ = 0, the region that we are solving in, i.e. 0< X̃ < S̃
(

T̃
)

, has zero width, which suggests
that it may be appropriate to proceed in terms of similarity or similarity-like variables. For this purpose,
we set

C−1= T̃1/2F
(

η , T̃
)

, η =
X̃

S̃
(

T̃
) , (2.53)

so that equation (2.28) becomes

S̃2
(

T̃
)

F

2T̃
+

(

S̃2(T̃
) ∂F

∂ T̃
− S̃
(

T̃
) dS̃

dT̃
η

∂F
∂η

)

=
∂ 2F
∂η2 , (2.54)
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subject to

1+ T̃1/2F =C+

(

T̃
)

atη = 0, (2.55)

F = 0 atη = 1, (2.56)

−∂F
∂η

=
S̃
(

T̃
)

T̃1/2

dS̃

dT̃
(1− c0

cs
) atη = 1. (2.57)

It is now required that (2.54)-(2.57) behave in a self-consistent manner as̃T → 0; by this, we mean that
we should obtain an ODE, subject to the requisite number of boundary conditions. This can be done by
taking

S̃
(

T̃
)

T̃1/2

dS̃

dT̃
∼ 1, (2.58)

as suggested by (2.57). We obtainS̃
(

T̃
)

∼ T̃3/4, which ensures a sensible leading-order balance in
(2.54) and (2.57). Setting̃S

(

T̃
)

= λ T̃3/4+ .., whereλ is a positive constant to be determined, equation
(2.54) becomes, in the limit as̃T → 0,

d2F0

dη2 = 0, (2.59)

where
F0 (η) := lim

T̃→0
F
(

η , T̃
)

. (2.60)

subject to

F0 = µ at η = 0, (2.61)

F0 = 0 atη = 1, (2.62)

−dF0

dη
=

3
4

λ 2(1− c0

cs
) at η = 1, (2.63)

whereµ is a constant given by

µ = lim
T̃→0

(C)X=1−1

T̃1/2
. (2.64)

Note thatµ can be determined, and we will do so shortly, from the solution for X > 1. Thus, solving
(2.59) subject to (2.61)-(2.63) gives

F0(η) = µ (1−η) , (2.65)

with

µ =
3
4

λ 2(1− c0

cs
), (2.66)

i.e.

λ =±
(

4µ
3(1− c0/cs)

)1/2

. (2.67)

Clearly, we need to take the positive sign to ensure thatS̃ increases, i.e.Sdecreases. Also, sincec0 > cs,
it is clear that we will needµ < 0; we return to this point shortly.

Note also that it is possible to determineµ without solving (2.32)-(2.35). NearX = 1, we have

Ca = 1+(X−1)

(

dCa

dX

)

X=1
+ ... (2.68)
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where, on using (2.14),

α :=

(

dCa

dX

)

X=1
=−

aexp
(

− (Ld−a)2

4Dwta

)

√
πDwtaerfc

(

− θ
2
√

Dw

) . (2.69)

We consider the small and positiveX−1 and smallT̃ behaviour of (2.32)-(2.35) by settingξ = X−1,
as in section 2.2, and

C= 1+ T̃1/2G
(

ζ , T̃
)

, ζ = ξ/T̃1/2. (2.70)

Equation (2.32) becomes

T̃
∂G

∂ T̃
+

G
2
− ζ

2
∂G
∂ζ

=
∂ 2G
∂ζ 2 . (2.71)

Now, in the limit asT̃ → 0, (2.71) becomes

G0

2
− ζ

2
dG0

dζ
=

d2G0

dζ 2 , (2.72)

where
G0 (ζ ) := lim

T̃→0
G
(

ζ , T̃
)

. (2.73)

Equation (2.72) has the general solution

G0 = K1ζ +K2

(

πζ erf

(

ζ
2

)

+2
√

π exp

(

−ζ 2

4

))

, (2.74)

whereK1 andK2 are constants to be determined. Clearly, (2.72) must have two boundary conditions.
One of these comes from (2.33), and is

dG0

dζ
= 0 atζ = 0. (2.75)

The other comes from matchingG0 asζ → ∞ to Ca and is

dG0

dζ
→ α asζ → ∞. (2.76)

Since
dG0

dζ
= K1+K2π erf

(

ζ
2

)

, (2.77)

we quickly see that

K1 = 0, K2 =
α
π
, (2.78)

whence

G0 = α
(

ζ erf

(

ζ
2

)

+
2√
π

exp

(

−ζ 2

4

))

; (2.79)

ultimately, this leads to

µ = G0 (0) =
2α

π1/2
. (2.80)

Finally, recall from the discussion after equation (2.67) that we neededµ < 0. Now, equation (2.80)
implies that we will needα < 0; from equation (2.69), we see that this will clearly be the case.
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FIG. 2. C vs. X for four different values oft for δ = 0.2 , as obtained by solving (A.3) and (A.4), subject to (A.5)-(A.8) and
(A.12). ta andtstop are approximately 2350 and 3760 seconds, respectively.

3. Results

The main numerical task is to solve equation (2.54), subjectto (2.55)-(2.57); this constitutes a
moving boundary problem forF andS̃. However, (2.55) containsC+

(

T̃
)

, which must itself be solved
for numerically via the first-order ODE (2.48), subject to (2.49). To illustrate our ideas, we will vary
the value ofDe, so as to see the effect ofδ , using the parameters given in Table 1; in particular, we take
a= 0.2Ld andc0/cs = 50 throughout.

However, before presenting results for whichδ is very small, we will first consider the behaviour of
the solution whenδ is not so small; we takeδ = 0.2. For such a high value ofδ , we would not expect
the asymptotic analysis developed above to be valid. For this reason, further analysis was developed in
order to be able to solve the full original governing equations, (2.9)-(2.16), numerically. This is given in
Appendix A, as are details of the numerical method used to solve the equations; we note in passing that
we use a similar method to solve the asymptotically reduced equations (2.54)-(2.57) also. Fig. 2 shows
C as a function ofX for four different values of̃T. These correspond tot = ta/2, ta, ta+ tstop/2, ta+ tstop,
wheretstop is the time taken for the front to move fromX = 1 to X = 0, i.e. x = a to x = 0; thus, the
first two curves are simply the similarity solution from (1.6), whereas the second two are numerical
solutions. Evident in Fig. 2 is the discontinuity in the slope ofC, once the moving boundary enters the
second layer, i.e. atX = 1. Observe also that, even though the plot extends as far asX = 10, the value
of C is far short of its far-field value for all four curves; this isaccounted for in Appendix A also.

Next, we note that we are ultimately interested in determining the time at which the front reaches
x= 0; this corresponds to the time at whichS̃= 1/δ 1/2. Whilst this will, of course, depend on the value
of δ , we observe thatcs− c(a, t) , and hence 1−C

(

X̃ = 0, T̃
)

, i.e. 1−C+

(

T̃
)

, will be independent of
δ ; this is evident since there is noδ in either equation (2.48) or (2.49). Thus, it makes sense to look at
1−C

(

0, T̃
)

vs. T̃, ahead of considering the solutions forS̃andC
(

X, T̃
)

. Thus, Fig. 3 shows a log-log
plot for 1−C

(

0, T̃
)

vs. T̃, as well 1+µT̃1/2 vs. T̃; the second of these is the small-time approximation
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)

derived in Section 2.3 and makes use of the form forC in (2.70) and (2.80). We see that
this approximation works quite well until̃T ∼ 104, after which the two curves diverge.

In similar vein, Fig. 4 shows̃S vs. T̃, as well asλ T̃3/4 vs. T̃; the latter of these is also from the
small-time approximation, as indicated between equations(2.58) and (2.59). Whilst this result does not
depend onδ either, we have stopped the computation whenS̃reachesO

(

104
)

, with a view to exploring
the results whenδ > 10−8; this covers the range inδ considered in Vo et al. (2018). Here also, we see
that the two curves follow each other untilT̃ ∼ 104, at which pointS̃∼ 102. This would mean that, for
10−4 6 δ ≪ 1, a preliminary estimate for̃T of whenS̃= 1/δ 1/2, which we denote bỹTstop, would be
given by

λ T̃3/4
stop≈

1

δ 1/2
, (3.1)

giving T̃stop≈
(

λ δ 1/2
)−4/3

. In actual time, this amounts to

tstop= a2δ T̃stop/De
(

= a2T̃stop/Dw
)

. (3.2)

It is also instructive to see the relative errors between thesolutions for 1−C
(

0, T̃
)

andS given in
Figs. 3 and 4, respectively; these can be defined as

reC :=

∣

∣

∣

∣

∣

1−C
(

0, T̃
)

−
(

1+ µT̃1/2
)

1+ µT̃1/2

∣

∣

∣

∣

∣

(3.3)

and

reS :=

∣

∣

∣

∣

∣

S̃−λ T̃3/4

λ T̃3/4

∣

∣

∣

∣

∣

, (3.4)
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stageS̃≈ 2004, which implies thatδ ≈ 10−7. In more detail, withS̃= 1/δ 1/2, we haveδ = 1/20042 = 2.49×10−7.
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δ tstop[days]
Fig. 4 Vo et al. (2018)

5×10−7 ∼46.4 ∼46.5
10−6 ∼23.8 ∼23

5×10−6 ∼4.97 ∼5
10−5 ∼2.6 ∼2.5

Table 2.tstop, as calculated in two different ways for four values ofδ .
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FIG. 6. Comparison ofSas a function ofT̃, as obtained numerically and via asymptotics, for: (a)δ = 10−3; (b) δ = 10−6

respectively. These are plotted as functions ofT̃ in Fig. 5. As might have been expected from Figs. 3
and 4, the relative errors are quite small untilT̃ ∼ 104.

However, the values forδ used in Vo et al. (2018) lie outside of the aforementioned range - they
are smaller - and any attempt to use equation (3.1) can thus beexpected to underestimate the value of
tstop. Instead, in Table 2, we compare the values oftstop as given by the solid line in Fig. 4, which were
obtained from the solution of (2.54)-(2.57), and as estimated from Fig. 3 in Vo et al. (2018), for different
values ofδ . As can be seen, the qualitative and quantitative agreementis very good.

A further indication of the correctness of the asymptotic result is a comparison with the numerical
solution of the full original equations asδ decreases. This is shown in Fig. 6, where the profiles forS
are compared forδ = 10−3 andδ = 10−6. As can be seen, the profiles in Fig. 6(b) for the lower value of
δ agree very well, although this cannot be said to be the case for the profiles in Fig. 6(a) for the higher
value.

An interesting observation now arises: ifDw, Ld/a andc0/cs are fixed, only one computation, i.e.
the one that was already carried out already to determine theprofile for S̃ and which generated the
results for Fig. 4, is required to find the solution forC

(

X, T̃
)

, which comes from the solution forF
via equation (2.53), for any value ofδ ! This is as opposed to having to carry out a new computation on
each occasion thatDe, and henceδ , is changed, as was done in Vo et al. (2018). To see this, we show
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FIG. 7. C vs. X for four different values ofT̃ for δ = 10−5 , as obtained by solving (2.54), subject to (2.55)-(2.57).T̃stop

corresponds totstop=2.6 days.
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FIG. 8. C vs. X for four different values ofT̃ for δ = 5× 10−7 , as obtained by solving (2.54), subject to (2.55)-(2.57).T̃stop

corresponds totstop=46.4 days.
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in Figs. 7 and 8C as a function ofX for S̃
(

T̃
)

6 X 6 1 for four different values of̃T for δ = 10−5 and
5×10−7, respectively; note that, in these figures, the concentration profile atT̃ = 0, corresponding to
t = ta, consists of a point that is located atC= 1 andX = 1 but which then become a curve - a line, as
it turns out - that moves down and to the left with time. In bothfigures,X is related to the independent
variables of the domain in which the computations were carried out,η andT̃, by

X = 1− δ 1/2ηS̃
(

T̃
)

,

as can be seen by tracking back through the substitutions in equations (2.8), (2.22) and (2.53).

4. Discussion

This paper has considered the asymptotic analysis of a recent model by Vo et al. (2018) for drug release
from polymer-free coronary stents with microporous surfaces; this was originally treated as a one-
dimensional, transient, one-phase, diffusion-controlled moving boundary problem occuring over two
layers having widely differing diffusivities, with the moving front passing with time from the layer with
higher diffusivity to the layer with lower. Although there is a similarity solution whilst the front is in
the first layer, this is not the case when the front is in the second. With the ratio of the diffusivities,
δ , as an asymptotically small parameter, the analysis indicates how the solutions in the two layers can
be decoupled, leading to a numerical formulation that is less demanding to solve computationally; the
results are found to agree well with the numerical solution to the full problem asδ → 0, as would be
hoped. Nevertheless, there are at least two notable findingswhich were either not commented on, or not
obvious, in the original work by Vo et al. (2018):

• as that work was carried out in dimensional variables, therewas no indication as to how the time
taken for the front to reach the stent surface depended on themodel parameters - this becomes
much clearer with the current approach;

• it now turns out that, regardless of the value of the lower diffusivity in the second layer, it is
possible to determine the above-mentioned time to reasonable accuracy with just one computa-
tion, rather than having to do multiple computations for different values, as explained in the last
paragraph of section 3.

In a wider context, the significance of the work is to suggest how a complex problem having a
small diffusivity ratio may be simplified asymptotically, without any loss of the original physics, to give
a formulation that is mathematically more transparent and cheaper to compute. In the drug-delivery
context, this idea may be useful for prototyping, since it isnot knowna priori what a suitable value of
δ should be, other than that it is most likely to be small. Moreover, although the analysis here has been
carried out in just one spatial dimension, the principle canbe expected to be of use in higher dimensions
also.
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Appendix A: numerical solution of the full equations

We require to solve (2.9)-(2.16). Although a numerical solution for the problem was given by Vo et al. (2018)
using a finite-difference method, here we apply an alternative approach that employs recent develop-
ments in the solution of Stefan problems for which the domainof interest initially has zero thickness
(Mitchell & Vynnycky (2009, 2014, 2016)). For this, we use boundary immobilization forS(T)< X <
1 by setting

η =
X−S(T)
1−S(T)

. (A.1)

The governing equations are then

δ
∂C
∂T

=
∂ 2C
∂X2 , 1< X < ∞, T > 0, (A.2)

(1−S)2
∂C
∂T

+ Ṡ(1−S)(η −1)
∂C
∂η

=
∂ 2C
∂η2 , 0< η < 1, T > 0, (A.3)

subject to the boundary conditions

C= 1, − ∂C
∂η

= (1−S)
dS
dT

(1− c0

cs
), at η = 0, (A.4)

C→ 0, asX → ∞, (A.5)

[C]+− = 0 atX = 1, (A.6)

δ
1−S

(

∂C
∂η

)

η=1
=

(

∂C
∂X

)

X=1
. (A.7)

and the initial conditions
S(0) = 1, C(X,0) =Ca (X) , X > 1. (A.8)

In the limit asT → 0 asS→ 1, (A.3) gives

d2C
dη2 = 0, 0< η < 1, (A.9)

subject to

C= 1,
dC
dη

= 0, at η = 1, (A.10)

C=Ca (1) ,
dC
dη

= 0, at η = 0. (A.11)

Although this system appears to be overspecified, since there are four boundary conditions for a second-
order ordinary differential equation, the fact thatCa (1) = 1 means that

C≡ 1 (A.12)

satisfies (A.9)-(A.11), and can therefore constitute the initial condition for 0< η < 1.
This reformulated problem, consisting of (A.2) and (A.3) subject to the boundary conditions (A.4)

and (A.7) and initial conditions (A.8) and (A.12), was solved using the finite-element software, Comsol
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Multiphysics, which has recently been employed for a numberof other Stefan-like problems; see, for
example, Vynnycky (2016), Vynnycky & Saleem (2017) and Vynnycky et al. (2018). For the numeri-
cal solution, the 1D transient mode of Comsol Multiphysics was used, in tandem with 20000 uniform
Lagrangian quadratic elements in space, corresponding to around 40000 degrees of freedom. The con-
vergence criterion at each time step was taken as

(

1
Ndof

Ndof

∑
i=1

( |Ei |
Ai +R|Ui |

)2
) 1

2

< 1, (A.13)

where(Ui) is the solution vector corresponding to the solution at eachtime step,Ai is the absolute
tolerance for theith degree of freedom,R is the relative tolerance andNdof is the number of degrees of
freedom; for the computations,R= 10−6, Ai = 10−7 for i = 1, ..,Ndof.

We can also note that although the number of elements used mayappear to be excessive, it proves
to be necessary in order that the numerical scheme accurately accounts for the asymptotic decay ofC
asX → ∞; in turn, this is linked to the value ofX that is used as the outer edge of the computational
domain. A guide for what this value should be comes from the form for Ca(X), i.e. equation (2.14):
with the parameter values in Table 1, we find that we needX ∼ 103 to ensure thatCa(X) ∼ 10−6. For
this reason, we set the outer edge of the computational domain atX = 103; thus, the size of each element
in the spatial variable was 0.05.

Lastly, we point out that these considerations are not required for the numerical solution of the
asymptotically reduced equations, since there is no need tosolve numerically forX > 1; as a conse-
quence, far fewer mesh elements are required and, moreover,these only need to be deployed in the
region whereX < 1. For reference, we note that, for those computations, 480 elements were used, cor-
responding toNdof = 960; the same values ofRandAi were used as indicated in the previous paragraph.

REFERENCES

Anderson, C. A. (1982) A new picture of the raw-wool fiber.J. Text. Inst., 73, 289–292.
Bakal, A., Timbers, G. & Hayakawa, K. (1970) Solution of the characteristic equation involved in the transient heat

conduction for foods approximated by an infinite slab.Can. Inst. Food Technol. J., 3, 76–77.
Briozzo, A. C., Natale, M. F. & Tarzia, D. A. (2007) Existenceof an exact solution for a one-phase Stefan problem

with nonlinear thermal coefficients from Tirskii’s method.Nonlin. Anal. - Theory Meth. Applics., 67, 1989–
1998.

Carslaw, H. S. & Jaeger, J. C. (1959)Conduction of Heat in Solids. Oxford University Press, USA, 2nd edition.
Cho, S. H. & Sunderland, J. E. (1974) Phase-change problems with temperature-dependent thermal-conductivity.

J. Heat Transfer, 96, 214–217.
Cohen, D. S. & Erneux, T. (1988a) Free-boundary problems in controlled release pharmaceuticals. 1. Diffusion in

glassy-polymers.SIAM J. Appl. Math., 48, 1451–1465.
Cohen, D. S. & Erneux, T. (1988b) Free-boundary problems in controlled release pharmaceuticals. 2. Swelling-

controlled release.SIAM J. Appl. Math., 48, 1466–1474.
Conti, M. (2001) Density change effects on crystal growth from the melt.Phys. Rev. E, 64, Article no. 051601.
Crank, J. (1984)Free and moving boundary problems. Clarendon Press, Oxford.
El-Hasadi, Y. M. F. & Khodadadi, J. M. (2013) One-dimensional Stefan problem formulation for solidification of

nanostructure-enhanced phase change materials (NePCM).Int. J. Heat Mass Transfer, 67, 202–213.
Fan, L. W., Zhu, Z. Q. & Liu, M. J. (2015) A similarity solutionto unidirectional solidification of nano-enhanced

phase change materials (NePCM) considering the mushy region effect.Int. J. Heat Mass Transfer, 86, 478–
481.



20 of 21

Fila, M. & Souplet, P. (2001) Existence of global solutions with slow decay and unbounded free boundary for a
superlinear Stefan problem.Interfaces Free Boundaries, 3, 337–344.

Furzeland, R. (1980) A comparative study of numerical methods for moving boundary value problems.IMA J. Appl.
Maths, 26, 411–429.

Gotz, I. G. & Zaltzman, B. (1995) Two-phase Stefan problem with supercooling.SIAM J. Math. Anal., 26, 694–714.
Gupta, S. C. (2003)The Classical Stefan Problem: basic concepts, modeling andanalysis,. Elsevier, Amsterdam.
Hill, J. M. & Hart, V. G. (1986) The Stefan problem in nonlinear heat conduction.Z. Angew. Math. Phys, 37,

206–229.
Hill, J. M. (1987)One-dimensional Stefan Problem: an introduction. Longman Scientific and Technical, New York.
King, J. R. & Evans, J. D. (2005) Regularization by kinetic undercooling of blow-up in the ill-posed Stefan problem.

SIAM J. Appl. Maths, 65, 1677–1707.
Libbrecht, K. G. (2005) The physics of snow crystals.Rep. Prog. Phys., 68, 855–895.
Lorenzo-Trueba, J. & Voller, V. R. (2010) Analytical and numerical solution of a generalized Stefan problem

exhibiting two moving boundaries with application to oceandelta formation.J. Math. Anal. Appl., 366, 538–
549.

McCue, S. W., Wu, B. & Hill, J. M. (2008) Classical two-phase Stefan problem for spheres.Proc. Roy. Soc. A, 464,
2055–2076.

McCue, S. W., Wu, B. & Hill, J. M. (2009) Micro/nanoparticle melting with spherical symmetry and surface tension.
IMA J. Appl. Maths, 74, 439–457.

McGinty, S., Vo, T. T. N., Meere, M., McKee, S. & McCormick, C.(2015) Some design considerations for polymer-
free drug-eluting stents: A mathematical approach.Acta Biomaterialia, 18, 213–225.

Mehling, H. & Cabeza, L. F. (2002)Heat and Cold Storage with PCM. Springer, Berlin.
Mitchell, S. L. & Vynnycky, M. (2009) Finite-difference methods with increased accuracy and correct initialization

for one-dimensional Stefan problems.Appl. Math. Comp., 215, 1609–1621.
Mitchell, S. L. & Vynnycky, M. (2014) On the numerical solution of two-phase Stefan problems with heat-flux

boundary conditions.J. Comp. Appl. Maths, 264, 49–64.
Mitchell, S. L. & Vynnycky, M. (2016) On the accurate numerical solution of a two-phase Stefan problem with

phase formation and depletion.J. Comp. Appl. Maths, 300, 259–274.
Natale, M. F. & Tarzia, D. (2003) Explicit solutions to the one-phase Stefan problem with temperature-dependent

thermal conductivity and a convective term.Int. J. Eng. Sci., 41, 1685–1698.
Ockendon, J. R. (1975) Techniques of analysis. InHeat Balance Methods in Melting Problems: moving boundary

problems in heat flow and diffusion (Editors: Ockendon, J. R.& Hodgkins, W. R.), University of Oxford, UK,
25-27 March 1974, pages 138–149.

Ockendon, J. R. & Hodgkins, W. R. (1975)Heat Balance Methods in Melting Problems: moving boundary problems
in heat flow and diffusion. Clarendon Press, Oxford.

Paul, D. R. & McSpadden, S. K. (1976) Diffusional release of asolute from a polymer matrix.J. Membrane Sci.,
1, 33–48.

Rogers, C. (1986) On a class of moving boundary problems in non-linear heat conduction: application of a Bäcklund
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