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Abstract 10 

Residual Oil Zones (ROZ) form when oil has leaked or migrated from a reservoir trap 11 

through geological time, leaving a zone of immobile oil. Here we assess the feasibility of 12 

ROZ production with CO2 flooding, in a North Sea oil field for the first time. We identify a 13 

hydrodynamically produced ROZ, with an oil saturation of 26%, in the Pierce Oil Field of the 14 

Central North Sea and adapt established recovery factors for Carbon Dioxide Enhanced Oil 15 

Recovery (CO2 EOR) from onshore fields, to estimate oil resource and CO2 storage potential. 16 

Our mid case results show that CO2 utilisation increases commercial reserves by 5-20% 17 

while storing 15Mt CO2. Based on our calculations CO2 EOR can produce low carbon 18 

intensity crude oil from a mature basin and could store more CO2 than is released from the 19 

production, transport, refining and final combustion of oil.  20 

Introduction  21 

Since the discovery of oil by Edwin Drake in 18591 the conventional oil industry has 22 

developed great expertise in locating positions in the subsurface, into which oil has 23 

accumulated by buoyancy, after migration away from its source rock. Within an oilfield, the 24 

vertically layered fluid transition is seldom a simple Oil Water Contact (OWC), but is 25 

gradational vertically downwards from a zone of mobile oil, the main pay zone (MPZ), into 26 

water containing pores. This is defined as a transition zone, the thickness of which depends 27 

on capillary forces, below which is the free water level (FWL) (Figure 1A).  28 

What has not been fully understood in the North Sea and most other oil basins globally, is 29 

that Residual Oil Zones (ROZ) exist where a number of natural geological conditions have 30 

caused the remobilisation of oil out of a reservoir. This natural remobilisation causes the 31 

OWC to rise within the oil reservoir leaving behind residually trapped oil (Figure 1B). 32 

Although the remaining oil saturation may be similar to an oil field that has undergone 33 

primary production and water-flooding, the formation of a ROZ results from natural 34 

processes, not from engineered oil production. ROZ oil has not been commercially declared 35 

as a reserve, because it historically has not considered recoverable. With many large oil 36 

fields in established basins reaching near depletion, and a move to reduce the CO2 37 
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emissions of producing oil, the oil reserves and CO2 storage potential in ROZ is of economic 38 

and strategic interest.  39 

The concept of these zones holding recoverable reserves has to date only been applied to 40 

the United States with work primarily being focussed on the Permian Basin2, with no 41 

previous studies on North Sea oil fields. The origins and resource potential of ROZ below oil 42 

fields in North America has been discussed in detail by Koperna et al. (2006)3, Advanced 43 

Resources4 and Melzer et al. (2006).5 Melzer et al. (2006)5 identified three main processes 44 

in which oil columns can be naturally drained causing the creation of ROZ: the onset of 45 

hydrodynamic flow; breached and reformed reservoir seals; regional or local basin tilt. 46 

Here, we investigate how hydrodynamic flow (discussed below) in the Central Graben of 47 

the North Sea basin, may lead to the creation of ROZ that can be developed with CO2 48 

injection for enhanced oil recovery (CO2 EOR).   49 

By reviewing literature and well logs, the Pierce Oil Field was identified to have a ROZ. By 50 

further analysing well logs and building a 3D geological model of the Pierce Oil Field, we 51 

show for the first time that ROZ do occur in North Sea oil fields, and have potential to 52 

increase recoverable reserves by up to 20%. With evidence from North America, we 53 

propose that ROZ oil can be produced by injection of CO2 as a solvent. Further injection of 54 

CO2 into the oil field can more than offset the additional carbon created by producing oil 55 

from the ROZ.  56 

 57 
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 58 

Figure 1 – A) Schematic representation (left) of a generalised oil field with (centre) an oil column and transition 59 
zone below. Inset graphs (right) show that oil saturation (1-Sw) varies from ~90% (10% irreducible water 60 
saturation) above the OWC to 0% at the bottom of the transition zone (100% free water level- FWL). B) 61 
Schematic representation of oilfield with ROZ, where the oil column has previously been thicker. Oil has been 62 
removed by natural geological process, such as hydrodynamic tilting, and has left a ROZ. Although ROZ will 63 
produce only water when developed under primary or secondary production, they produce oil when CO2 is 64 
injected.   65 

Carbon Dioxide Enhanced Oil Recovery and Residual Oil Zones in North America  66 

In North America, CO2 EOR is an established technology used to produce incremental oil 67 

from oil fields that have been depleted or water flooded. The injection of pure CO2 reduces 68 

oil viscosity (increasing oil mobility) and increases reservoir pressure and oil volume7–10 69 

causing residually trapped oil to move towards production wells. Developed commercially 70 

in the 1970s, CO2 EOR is currently utilised in over 130 oil fields in United States11 where it is 71 

primarily deployed in oil fields that have been depleted through engineered production. 72 

In the Permian basin of Texas, 8 fields are currently using CO2 EOR to produce oil from the 73 

ROZ, with over 6500 barrels of oil being produced per day12,13. The fields that are currently 74 

producing from the ROZ use CO2 injection to produce from both the ROZ and the MPZ 75 

above. However CO2 EOR from the ROZ are not only targeted at zones which have depleted 76 

MPZs, as one of the 6 currently planned CO2 EOR ROZ developments are targeting a 77 

‘greenfield ROZ’ where no depleted field exists above the ROZ12. These ‘greenfield’ zones, 78 

the formation and history of which is explained in detail in Trentham et al. (2012)12, are 79 

thought to have been formed when a combination of water charge and tectonic uplift, 80 

which causes elevated piezometric pressure6, has caused large regional formations, such as 81 
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the San Andreas Formation, to be ‘naturally water-flooded’. This water charge is believed to 82 

have swept the oil in paleo-traps, leaving regional scale zones of residual oil behind12.  83 

Although only a small number of fields are currently producing from the ROZ, the resource 84 

potential for the US is estimated to be large. As summarised by Godec et al. (2013)13 work 85 

by ARI and Melzer Consulting has identified up to 42 billion barrels of oil in place below 86 

existing fields in the Permian, Big Horn and Williston basins4,14,15. Further work by Melzer 87 

Consulting has highlighted that up to 100 billion barrels of oil in place may exist in 88 

‘greenfield’ ROZ fairways in the Permian basin alone 12. Initial reservoir modelling work 89 

estimates that 13 billion barrels of oil is economically recoverable from ROZ below 90 

established oil fields in the Permian basin and 20 billion barrels may be economically 91 

recoverable from ‘greenfield’ ROZ in the Permian basin with CO2 injection. Kuuskraa et al. 92 

(2013)16 estimate that the CO2 demand from developing ROZ below US oil fields and 93 

‘greenfield’ ROZ may be up to 13 billion metric tonnes over the life of the projects. 94 

Considering the US has annual CO2 emissions of over 5 billion Mt the potential CO2 demand 95 

from CO2 EOR is not insignificant.    96 

Characterising Residual Oil Zone potential at a field scale  97 

Once a target ROZ has been identified a number of studies have proposed different 98 

methods to determine both the existence and potential recoverability of oil from the ROZ.  99 

Honarpour et al. (2010)17 completed a rock-fluid characterisation for miscible CO2 injection 100 

in the ROZ at the Seminole field in the Permian basin. They present a method for firstly 101 

estimating the remaining oil saturation through a range of core and core scale water-flood 102 

tests before also characterising formation anisotropy and scale dependent permeability. 103 

Then residual oil saturation after miscible CO2 flooding is predicted from core scale CO2 104 

flood tests at reservoir pressures and temperatures. The rock and fluid properties, when 105 

integrated into a geocellular model, can then be used to run a compositional CO2 flood to 106 

assess field scale recoverability from the ROZ.  107 

Pathak et al. (2012)18 also present a method for evaluating the ROZ potential at the Means 108 

field in the Permian basin. Focussing on reservoir uncertainty and methods to predict the 109 

remaining oil saturation in a field, Pathak et al. (2012)18 note that the major reservoir 110 

uncertainties  derive from defining the remaining oil saturation, the recovery efficiency and 111 

timing of oil recovery of CO2 EOR in the ROZ and the presence of leach zones or thief 112 

intervals. They also note that other reservoir uncertainties such as facies distribution, the 113 

presence of vertical flow barriers and baffles and well injectivity limitations, although 114 

relevant, are less significant uncertainties.  Here a similar method to that described in 115 

Honarpour et al. (2010)17 is applied to the Pierce Oil Field to estimate the oil resource 116 

potential and CO2 storage resource in the ROZ.  To date, this resource estimation has not 117 

been completed on a North Sea oil field.  118 

 119 

 120 
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Hydrodynamic principles 121 

Hydrodynamic flow of ‘active’ aquifer water upwards and outwards from deep basin 122 

geopressured zones in the Central Graben of the North Sea causes OWCs to tilt, leaving 123 

zones of residual oil. In North America, ROZ created through hydrodynamic processes 124 

typically contain 10-40% immobile oil in the pore space.17,19 This is a similar oil saturation to 125 

many of the fields in the North Sea basin which have undergone primary and secondary 126 

production (water-flooding). If similar oil saturations are found in North Sea ROZ, then 127 

these are targets for CO2 EOR.  128 

Under static aquifer conditions the hydrocarbons within an oil accumulation have a flat 129 

contact with the saline aquifer brine below. If the structure has been filled to spill, the 130 

structural spill point will control how much hydrocarbons the trap can hold. If the structure 131 

continues to be charged with migrating oil, then hydrocarbons will leak from the structural 132 

spill point. However in oil fields with an underlying active aquifer, hydrodynamic flow and 133 

the resultant tilting of the OWC may cause the spill point to move to one that is 134 

hydrodynamically controlled.20–24 When this occurs creating an asymmetric hydrocarbon 135 

trap, the new spill point may be deeper than the structural spill point in the direction of 136 

pressure decrease, trapping additional hydrocarbons beyond the known trap. Towards the 137 

direction of aquifer inflow, the OWC will move above the structural spill point. Where this 138 

OWC has retreated from the structural spill point to the new hydrodynamically controlled 139 

OWC, a zone of residual oil is left (Figure 2).  140 

 141 

 142 

Figure 2- Schematic representation of hydrodynamic flow and the creation of ROZ. The paleo oil water contact 143 
(POWC), before the onset of hydrodynamics, is highlighted in red. The pressure gradient across an oil field 144 
causes the FWL (free water level, here noted as oil water contact) to tilt in the direction of lowest pressure, 145 
leaving a wedge of residual oil (pink), with a new hydrodynamic spill point being created.   146 

 147 

 148 
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Residual Oil Zone potential at the Pierce Oil Field- a case study 149 

The Pierce Oil Field is located in Blocks 23/22a and 23/27 of the UK Central North Sea, 150 

adjacent to the UK/Norway median line in 85m of water. The field is characterised by the 151 

accumulation of oil and free-gas caps within the Palaeocene Forties Sandstone Member, on 152 

the flanks of two Permian Zechstein salt diapirs that are separated by a 1.5km wide 153 

structural saddle.25–27 The field is characterised by large variations in the measured OWCs 154 

which were identified by both well log and pressure data in the appraisal wells that were 155 

drilled in the 1970s. Across the field a general deepening trend in the OWC towards the 156 

west is observed with over 300m of vertical relief between the shallowest and deepest 157 

OWCs observed in the field (Figure 3). This equates to a dip of 90m/km.20 Although 158 

different theories exist to explain the variation in OWCs at the Pierce Field,26,28 a number of 159 

studies have proposed that it is hydrodynamically controlled.20,21,29 We propose that 160 

hydrodynamic tilting of the OWC has aided in the creation of a ROZ, in the definition of 161 

Melzer et al. (2006).5  162 

 163 

Figure 3- Top reservoir structure map of the twin salt diapir Palaeocene Pierce Field, adapted from Porter 164 
(2011).27 The present day oil water contact (blue) has a vertical relief of 300m and is below the structural spill 165 
point in the NW sector of the field but sits above the structural spill point in the SE sector of the field. The ROZ 166 
(pink) lies between the structural spill point and the current OWC in the SE sector of the field. Before the 167 
location of the OWC was known and the hydrodynamic theory proposed, 4 wells (23/27- 1,4,5,6) were drilled in 168 
the SE sector above the structural spill point. N.b well 23/27-4 has been interpreted by some to lie down dip of 169 
the OWC and so has been included in this study.27  170 
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The identification of a producible ROZ at South Pierce has not been made previously, 171 

although a number of studies have highlighted that wells that were drilled in the SE sector 172 

of Pierce within the structural closure were ‘dry holes’ i.e. did not flow oil during drill stem 173 

tests.20,21,29 These studies infer that wells in the SE sector of the South Pierce Field contain 174 

residual oil due to a retreating hydrodynamically controlled OWC but do not identify it as a 175 

producible zone.  176 

Methods 177 

Constructing a static geological reservoir model of the ROZ at the South Pierce Field  178 

To estimate the volume of oil in place and potential CO2 storage volume of the ROZ at the 179 

Pierce Field a basic 3D geological model was constructed using MOVE™. A summary of the 180 

model building method can be seen in Figure 4. The top Forties Horizon was constructed 181 

using a structural contour map derived from 3D seismic.27 Well deviation data and 182 

composite logs were taken from the UK Oil and Gas Data- Common Data Access Database 183 

(CDA) for 14 appraisal wells drilled throught the North and South Pierce Field. Top Forties 184 

Member sandstone well tops were taken from composite well logs and used to tie surfaces 185 

to the correct depth (TVDSS). It is thought that the depth uncertainty in the seismic derived 186 

surfaces is around 30-60m, due to the difficult seismic imaging at the salt- reservoir 187 

boundary. Due to the lack of publicly available seismic data, or structural contour maps for 188 

the Bottom Forties Member, the bottom Forties Member surface was projected from the 189 

top reservoir surface using an orthogonal constant bed thickness of 122m. Although this 190 

thickness was estimated from well data and from thickness data within Birch & Haynes 191 

(2003)25 it only represents an average for the formation. Well tops derived from composite 192 

well logs were also used to tie the bottom surface to the correct true vertical depth 193 

(TVDSS). A surface depicting the pre-production tilted OWC was constructed from contour 194 

data presented in Porter (2011).27  195 

As the ROZ is depicted by the zone between a paleo oil water contact (POWC) and a pre 196 

production OWC, the POWC also had to be defined for Pierce. Although there is debate 197 

within the literature, it was assumed for this study that the POWC lies at the depth of the 198 

structural spill point for the trap at -3008m TVDss.25 To create a bottom surface for the 199 

deepest extent of a ROZ, the horizontal surface representing the structural spill point was 200 

merged with the bottom Forties surface, for when the bottom Forties is above -3008m 201 

(above the structural spill point). The top surface for the ROZ was created by merging the 202 

present day pre-production OWC (where it is split by the top and bottom forties surface) 203 

with the Top Forties surface. Creating these two surfaces that represent the top and 204 

bottom extents of the residual zone allowed a geocellular volume to be created that could 205 

be populated with core and well log data to estimate the oil in place and CO2 storage 206 

capacity of the ROZ (Figure 4). As can be seen in Figure 5, in wells 23-27-1 and 23-27-5 the 207 

ROZ extends from the top Forties Sandstone Member to bottom Forties Sandstone 208 

Member. In well 23-27-4 only around 12m of ROZ is penetrated. The ROZ at South Pierce 209 

was found to have a bulk rock volume of 982 ± 184×106 m3. The uncertianity in the estimate 210 

is dervied predominantly from the seismic depth uncertaintity of 30-60m in the 122m thick 211 
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Forties Sandstone Member which equates to an error of 38% (45m error in 122m 212 

thickness). However because surfaces are tied to well data this seismic error is not present 213 

throughout the surface. By combining the well error, taken as 0%, and the seismic error of 214 

38% an error of 19% is used for the total volume. 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

Figure 4 – A) South Pierce schematic summary B) 4 surfaces selected to build residual oil zone volume   C) Top 

reservoir surface contours. Top surface was constructed from published top reservoir structure maps and 

corrected using well data D) Top Forties surface (green) was cut and merged with the current oil water contact 

surface (dark blue) E) The bottom Forties surface (red) was constructed by projecting the top reservoir surface 

with a constant bed thickness of 122m. Well data was also used to correct the surface depths. F) Geocellular 

model representing the bulk rock volume of the ROZ at South Pierce- colours represent depth with red shallow 

and blue deep.  
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 233 

Figure 5 - Well log summary with gamma ray of the four wells thought to penetrate the ROZ at the South Pierce 234 
Field.  235 

Log and core data from four wells (23/27- 1,4,5 & 6) (See Figure. 3 for location), which 236 

penetrate the ROZ at South Pierce were used to populate the bulk rock ROZ volume with 237 

porosities and NTG. Residual oil saturation values were available from core analysis. 238 

However it is thought that due to post core extraction leakage that these values would 239 

under estimate the in-situ remaining oil saturation.17,30 Techniques such as sponge coring, 240 

where the expelled oil is captured after core cutting, are not thought to have been carried 241 

out in the core analysis of the wells at South Pierce. As highlighted by Honarpour et al. 242 

(2010)17 pressure retained coring is the preferred technique for determining remaining oil 243 

saturations, but is not currently practised due to the costs and risks involved. 244 

In situ oil saturation was therefore estimated using Archie’s water saturation (Sw) 245 

equation31 (See Supplementary  Information for more details). This well log method, 246 

alongside core analysis, log inject log (LIL) and chemical tracer tests, was also used by 247 

Pathak et al. (2012)18 to determine oil saturation for EOR projects. Chang et al. (1988)30 who 248 

evaluated and compared different methods to determine residual oil saturation estimated 249 

that oil saturation predictions using resistivity logs may be slightly higher than in other 250 

methods. It also must be noted that the oil saturations in a ROZ will be locally variable and 251 

the estimation of oil saturation will never be without uncertainty.  252 

Monte Carlo simulation of data at South Pierce 253 

To estimate the total oil in place for the ROZ at South Pierce a Monte Carlo approach was 254 

used using R-Studio™. For bulk rock volume, NTG and porosity random sampling between 255 

the minimum and maximum range of values was used for the 20,000 iterations run. For 256 

porosities a random value was sampled between the range of mean porosity from each 257 

well. This was completed using a ‘runif’ statement to randomly sample a value between the 258 

input ranges. Water saturation values were sampled from a merged dataset of all 259 
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minimum, mid and maximum Sw from all four wells, which equated to 2244 Sw values. No 260 

well was given any sampling preference over another. Recovery factors were also estimated 261 

to calculate the recoverable reserves from the ROZ at South Pierce. Given the lack of 262 

experience of CO2 injection into ROZ in the North Sea, analogue recovery factor values of 5-263 

25% of oil in place, were taken from the literature (see Discussion for more details).12,16,32 264 

Random sampling between these minimum and maximum recovery factors was also 265 

incorporated into the Monte Carlo simulation. A summary of the ranges used are displayed 266 

in Table 1 below. This led to a final equation in R-Studio being run with 20,000 iterations: 267 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠268 

= 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑏𝑢𝑙𝑘 𝑟𝑜𝑐𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 269 

× 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑁𝑇𝐺  270 

× 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 271 

Table 1 – Summary table of ranges used within Monte Carlo Analysis 272 

ROZ Parameter  Ranges used in 
Monte Carlo 

Bulk Reservoir Volume m3 
(geo-cellular volume) 

797,510,075 – 
1,165,591,647 

Water Saturation (well logs) 0.58 - 0.94 

Porosity (core tests) 0.17 - 0.21 

NTG (well logs)  0.44 - 0.74 

Recovery factor 0.05 - 0.25 

 273 

Results and Discussion  274 

As can be seen in Figure 6, oil was present at low saturations at wells that are interpreted 275 

to penetrate the ROZ. Mean oil saturation across the 4 wells is 14% (stdev 9.8%), when 276 

calculated using core analysis data. Using well log resistivity data to estimate oil saturation 277 

leads to a higher mean oil saturation. The mid value water saturations for the sand intervals 278 

within the Forties Sandstone Member, based on the Archie water saturation method, were 279 

calculated to lie between 71% and 85%, with minimum values lying between 58% and 72% 280 

and maximum values lying between 80% and 94% (Table 2 in Supplementary Information).  281 

Using the same Archie water saturation method for all Sw data points in the four wells, a 282 

mean value of 74% - 26% oil saturation- (st dev 16%) was found. These higher and likely 283 

more representative oil saturations calculated using Archies water saturation method were 284 

used to calculate the oil in place for the South Pierce ROZ.  285 
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 286 

Figure 6- Compilation of core residual oil saturations from laboratory core tests at the four wells thought to cut 287 
through the ROZ at the South Pierce Field. The saturations given represent % pore space. Across the 4 wells the 288 
average core oil saturation is 15% but reaches values of up to 55%. Saturations calculated by well log analysis 289 
are higher at 26% average. Reservoir modelling and real field developments show that 5-25% of this oil can be 290 
recovered and can add additional commercial reserves not previosuly included in a fields reserves estimates 291 
(see Discussion for more details).  292 

Using a Monte Carlo approach for the ROZ at South Pierce, oil in place values of 106, 179 293 

and 291 MMbbl for P90, P50 and P10 respectively were estimated for the ROZ. Recoverable 294 

oil reserves for the South Pierce ROZ are estimated at 7, 17 and 34 MMbbl for P90, P50 and 295 

P10 respectively (Table 2). Given the main oil column in the Pierce Field had initial 296 

recoverable reserve values calculated of 42, 84 and 120 MMbbl for P90, P50 and P10 297 

respectively,28 it can be estimated that the CO2 EOR potential of the ROZ at the South Pierce 298 

Field adds around 20% to the recoverable reserves at the Pierce Field.  299 

 300 

 301 

 302 

 303 

 304 

 305 
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Table 2 – Summary of Monte Carlo results for CO2 EOR from the ROZ at South Pierce. Recoverable reserves 306 
estimated using a range of recovery factors of 5-25% and a formation volume factor of 1.5. CO2 demand is a 307 
minimum commercial requirement, calculated using storage factor of 0.33 tCO2/bbl of oil produced. CO2 storage 308 
is a maximum potential calculated using a storage factor of 0.9 tCO2/bbl of oil produced. 309 

 Min Mid Max 

Forecast  P90 P50 P10 

Oil in Place m3  16,822,843 28,473,651 46,259,511 

Oil in Place (MMbbl) 106 179 291 

Recoverable Reserves (MMbbl) 7 17 34 

CO2 Demand (Mt) 2 6 11 

CO2 Storage Potential (Mt)  6 15 31 

 310 

CO2 storage at Residual Oil Zones  311 

It is thought that CO2 EOR from ROZ will have similar operating parameters to CO2 EOR 312 

operations that produce from conventional oil fields.12  During the CO2 EOR process residual 313 

trapping of CO2, CO2 dissolution and inefficient CO2 sweep results in large fractions of 314 

injected CO2 being stored permanently in the reservoir porspace and fluids.33,34 However a 315 

proportion of the CO2 that is injected will return to the surface and be recycled. If recycled 316 

CO2 is not diverted for injection in a different field it can be assumed that all CO2 injected to 317 

increase recovery at a field will be stored at the end of the project (minus any CO2 lost as 318 

fugitive emissions).35  319 

Based on CO2 storage factors presented by Ferguson et al., Godec et al. and SCCS,36–38 a 320 

figure of 0.33 t/bbl was chosen to estimate the CO2 demand at the ROZ at South Pierce. 321 

When applied to the value of recoverable reserves detailed in Table 2, the CO2 demand at 322 

South Pierce ROZ is 2, 6 and 11 Mt of CO2 for P90, P50 and P10 respectively. These 323 

estimates do not represent a maximum capacity for the zone, but only estimate the mass of 324 

CO2 that is required to recover oil from the ROZ. If the storage factor of 0.9t CO2/bbl, which 325 

represents CO2 storage optimised CO2 EOR where additional CO2 is injected into the aquifer 326 

below35,39 is used, higher CO2 storage estimates of 6, 15 and 31 Mt for P90, P50 and P10 327 

respectively are found (Table 2). There are then a range of possibilities to store increasing 328 

ammounts of CO2 by utilising the active aquifer in addition to the reservoir. As first defined 329 

by the International Energy Agency,39 storage of CO2 in excess of the minimum, we title CO2 330 

EOR+ will require either a political and regulatory mandate, or a financial payment/fine 331 

avoidance to reward CO2 stored.  332 

 333 

 334 
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North Sea Residual Oil Zone potential  335 

We show in this study that the South Pierce Field holds potential for CO2 EOR development 336 

in the ROZ. Most geological plays for conventional hydrocarbon exploration are specified 337 

around a combination of age of geological strata with structure or stratigraphic layering to 338 

physically trap buoyant migration within a basin. By contrast, identification of ROZ plays 339 

requires a different approach.  Based on work by Dennis et al.,20,21 we have identified 340 

multiple hydrodynamic ROZ targets, with tilted OWC in the Central Graben. These are 341 

geographically grouped in the region affected by deep aquifer outflows draining the high 342 

geopressure parts of the deep North Sea. In contrast to conventional hydrocarbons, this 343 

play is controlled by brine flow in the deep subsurface, and so spans between a range of 344 

reservoir ages and structure types.  Hydrodynamically controlled tilted OWCs have been 345 

proposed in fields ranging in age from Jurassic40,41 to Cretaceous20,40,42–44 and Palaeocene20,45 346 

in age. It is therefore likely that hydrodynamic ROZ potential exists in a number of other 347 

North Sea Fields.  348 

CO2EOR recovery factors at Residual Oil Zones 349 

This study highlighted the existence of hydrodynamically controlled ROZ in the North Sea by 350 

interpreting well data46, however the recoverability of oil from these zones is one of the key 351 

areas of uncertainty. In this work, it was unfeasible to conduct core flood tests on core from 352 

the South Pierce Oil Field to estimate irreducible oil saturation. Therefore we propose that 353 

using analogue field wide recovery factors is sufficient to estimate the range of recovery 354 

rates that occur when CO2 flooding ROZ. While the 8 fields currently running CO2 EOR from 355 

the ROZ in the US are successful32, the duration of these projects is not long enough to have 356 

confidently established a benchmark recovery factor. Hill et al. (2013)32 suggest a 357 

conservative recovery factor of 20% of oil in pace but state that recovery factors could 358 

reach 30%, with a maximum achievable recovery factor based on CO2 EOR recovery rates 359 

on the main pay zone of 42%32. Trentham et al. (2012)12 suggest that recovery rates of 10-360 

20% can be achieved from the ROZ. This is supported by the white paper by Kuuskraa 361 

(2010), who suggests recovery rates of 17-18% of oil in place at the start of CO2 injection.    362 

 363 

For estimating recovery factors from North Sea ROZ, where development and well drilling 364 

would take place offshore, with greater costs, it is likely that lower recovery factors will be 365 

achieved. Although well spacing is expected to be higher in the North Sea a number of 366 

studies have suggested that reservoir conditions will lead to similar surface volumes of CO2 367 

being needed for successful EOR operations. Goodyear et al. (2003)47 state that although 368 

the majority of UKCS fields lie at a greater depth than US fields, CO2 densities (500-1000 369 

kg/m3) would be similar due to the counteracting effect of  higher temperatures. It is also 370 

proposed that higher permeabilites and porosities in many UKCS oil fields will counteract 371 

the well spacing issues. However Goodyear et al. (2011)48 and Tzimas et al. (2005)49 372 

highlight the effect that these high permeablilities have on gravity segregation which will 373 

also be amplified by large well spacing. They do however state that this detrimental effect 374 

may be combatted by drilling horizontal wells, but that attention should be paid to the 375 
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inter-well pressure decrease that may drop reservoir pressure below the minimum 376 

miscibility pressure when horizontal wells are utilised.  377 

Given these uncertainties, the broad range of recovery factors used within this study (5-378 

25%) were chosen to represent the uncertainty in developing ROZ in an offshore setting in a 379 

basin that has seen no CO2 EOR development. It is recommended that a more detailed 380 

reservoir model and reservoir simulation would be needed to increase the confidence of 381 

the reserves potential.  382 

It must also be noted that while this study focusses solely on the ROZ at the Pierce field and 383 

does not asses the CO2 EOR potential from the main oil column, in many cases it may be 384 

best economically  to develop ROZ alongside a broader CO2 EOR development. As 385 

referenced in the introduction of this paper, this is the most common practice in CO2 EOR 386 

projects that are producing from the ROZ in North America12. There, wells have been 387 

extened to penetrate through the main oil column and into the ROZ and produce oil from 388 

both zones. In the North Sea this would also likely be a first step for a CO2 EOR ROZ 389 

development, where CO2 can be used to increase recovery rates from a well characterised 390 

main oil column, with ROZ adding to recoverable reserves and CO2 storage resource as an 391 

additional target.  392 

A low carbon oil production solution 393 

Although the reserves potential and CO2 storage potential highlighted in this study are 394 

significant, the development of ROZ with CO2 EOR faces a number of non-scientific 395 

challenges.48 These include: profitability in a oil price lower than $60/bbl, or field 396 

decomissioning rather than engineering a change of use and extension of life. 397 

The guaranteed availability of CO2 is persistent paradox, given the IPCC’s (2014)50 strong 398 

recommendations on Carbon Capture and Storage (CCS), and lack of any large scale 399 

projects in Europe.51 During the formulation of a whole-system energy and climate policy, it 400 

is important to recall that other EOR options, unlike CO2 EOR, do not allow for a transition 401 

towards CO2 storage. Stewart and Haszeldine (2015),35 showed that CO2 EOR could produce 402 

oil with a carbon intensity of 0.135 tCO2/bbl of oil produced and as low as 0.06 tCO2/bbl if 403 

flaring and venting of produced methane gas was reduced to a minimum of 1%. Although 404 

only marginally lower than production from some conventional oil fields (0.08 UK 405 

conventional production),52 this carbon intensity is significanlty lower than other sources 406 

such as Nigerian and Venezualan crude (Figure 7).52 For the South Pierce Field case study 407 

this would mean that to produce 17 MMbbl of oil (P50 recoverable reserves), 2.3 Mt of CO2 408 

equivalent would be emitted or 0.88 Mt CO2 equivalent if flaring is reduced to 1%. These 409 

emissions are smaller than the 15Mt of CO2 stored (P50) in the CO2 EOR+ process. If 410 

emissions from the transport, refining and final combustion of crude oil are also included 411 

then an additional 7.9 Mt CO2 equivalent (CO2e) will enter the atmosphere. Therefore, as 412 

seen in Figure 7, disregarding any emissions associated with the CO2 before it is transported 413 

offshore, this CO2 EOR+ process could store more CO2 than produced, with a net 6.6 Mt of 414 

CO2 stored. As seen in Figure 7, other oil production methods noted are net emitters of CO2.   415 
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 416 

Figure 7 – Carbon intensity and net emissions / CO2 storage from different oil sources. Carbon intensities 417 
represent upstream production only and are taken from Stewart and Haszeldine, (2015)35 (CO2EOR and 418 
CO2EOR+) and from Gordon et al. (2015)52 (conventional UK, Venezuelan crude and Nigerian crude). Carbon 419 
intensities for CO2 EOR and CO2 EOR+ do not incorporate CO2 stored. Net emissions / storage values in box 3 are 420 
shown in bold. Net emissions in box 3 represent emissions from producing (as in box 2), refining (0.03 421 
tCO2e/bbl), transporting (0.004 tCO2e/bbl) and combusting (0.4 tCO2e/bbl) 17 MMbbl of oil.35 CO2 EOR+ is the 422 
only process that stores more CO2 than is emitted from the production, refining, transport and combustion of 423 
oil.  424 

Conclusions 425 

ROZ are not currently regarded as producible in the North Sea basin, so this oil is not 426 

declared as a resource. We identify a commercial opportunity to create new value by 427 

efficient use of existing hydrocarbon basins in an environmentally sustainable approach. 428 

CO2 flooding can be both used to maximise production in mature oil fields and store large 429 

volumes of CO2. We recognise the first North Sea ROZ, as a potential resource, in the Pierce 430 

Oil Field, North Sea, Central Graben. Residual oil saturations at the South Pierce ROZ were 431 

on average 26%, of which a significant proportion could be produced by CO2 EOR, and add 432 

up to 20% to the initial oil field reserves. While this study attempts to quantify the range of 433 

volumes of oil that could be produced and CO2 that could be stored from ROZ, significant 434 

further research, such as detailed reservoir simulations, would be needed before any 435 

project is undertaken.  436 

We propose that maximum utilisation of CO2 (named CO2 EOR+) will produce low carbon 437 

intensity oil and will store more carbon than is released from the production, transport, 438 

refining and combustion of the produced crude. With the development of CO2 439 

infrastructure, this practice can be a first step to CO2 storage development in the North Sea 440 

basin.  441 

 442 

 443 

 444 
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