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ABSTRACT 

The effect of solar cell processing (including etching in KCN along with deposition of 

CdS and ZnO) on photoluminescence (PL) spectra and bandgap Eg (measured at 4.2 K 

by photoluminescence excitation) of Cu2ZnSnSe4 films, produced by selenising metallic 

precursors at 450°C, 500°C and 550°C, was studied. Temperature and excitation 

intensity analysis of the P1 dominant band in the PL spectra of solar cells suggests that 

after processing this band still can be assigned to the free-to-bound recombination of 

free electrons with holes bound at deep acceptor levels influenced by valence band-tails. 

However processing increased the intensity of P1 and blue shifted it. The strongest 

effect was observed for the film selenised at 500°C. For the film selenised at 450°C the 

blue shift and increase in the intensity were smaller and only a slight intensity rise was 

found for the film selenised at 550°C. The intensity increase we assign to a reduction in 

the concentration of non-radiative recombination centers on the surface because of the 

etching and changes in doping due to inter-diffusion of Cd, S, Se and Zn after the 

deposition of CdS. Such an inter-diffusion depends on the elemental composition of the 

films defining the chemistry of defects and influencing Eg which increased in the film 

selenised at 500°C but decreased in the other films. Processing increased the P1 shift 

rate (j-shift) with excitation power change in all the films demonstrating a higher 

compensation degree in the solar cells which is consistent with the formation of an 

interface layer containing new donors CdCu.  

Keywords: Copper zinc tin selenide; Solar cells; Photoluminescence; Selenisation; 

Optical spectroscopy 
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1. Introduction 

 

The quaternary semiconductor Cu2ZnSnSe4 (CZTSe) with the kesterite structure is 

used as the absorber layer of sustainable thin film solar cells [1]. This material has a 

direct bandgap suitable for solar energy conversion and an absorption coefficient greater 

than 10
4
cm

−1
. 

CZTSe is successfully employed in solar cells with a record conversion efficiency of 

11.6% [2] for laboratory size devices. Further improvements depend on increasing the 

knowledge of the electronic properties, namely, the nature of defects and their relation 

with growth conditions.  One of the most important conditions is the selenisation 

temperature (ST). The effect of selenisation temperature on the photoluminescence (PL) 

spectra of CZTSe thin films has recently been reported [3]. The authors also tried to 

correlate these properties with the performance of solar cells, fabricated from these 

films. However to understand better the effect of selenisation temperature one should 

take in account the influence of solar cell processing, etching of the as deposited films 

with KCN as well as the deposition of CdS and ZnO.     

PL is a useful characterisation technique to analyse the electronic properties of 

semiconductors [4]. Mechanisms of radiative recombination critically depend on the 

doping and compensation levels. In the kesterites high concentrations of charged defects 

generate spatial potential fluctuations resulting in band-tails [5,6]. The hole effective 

mass of CZTSe is significantly greater than that of electrons [7] so at high 

concentrations of n- and p-type defects this material becomes highly doped in terms of 

donors whereas in terms of acceptors it behaves as a conventional semiconductor. To 
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achieve the condition of high doping in the kesterites the acceptor concentration should 

be 17 times higher than that of donors [8]. According to the model, developed in ref. [9] 

and applied to interpret PL spectra of Cu(InGa)Se2 [10] and CZTSe [3,5,11] at low 

temperatures we can expect: (1) band-to-tail transitions involving the recombination of 

holes, localised at acceptor-like states of the valence band tail, with free electrons and 

(2) free-to-bound (FB) transitions involving the recombination of free electrons with 

holes localised at acceptors, which are deeper than the mean energy depth of potential 

fluctuations γ. A band-to-band (BB) transition, the recombination of free holes and free 

electrons is likely to become visible at higher temperatures. In this paper we study the 

effect of ST on PL and photoluminescence excitation (PLE) spectra of CZTSe-based 

solar cells and compare them with those of as deposited CZTSe films on Mo/Glass 

substrates. 

 

2. Experimental details 

 

Thin films of CZTSe were fabricated at Northumbria University. A set of 450 nm 

thick multilayer Cu–Zn–Sn metallic precursors, made of several nanometres thick 

alternating Cu, Zn and Sn layers, were sequentially deposited on the Mo/glass substrates 

(held on a rotating table) at room temperature by a three-target magnetron Nordiko 2000 

sputtering high-purity (5N) Cu, Zn and Sn targets of 150 mm diameter at the Argon 

pressure of 3х10
-3

 Torr (0.4 Pa).  A power of 70 W, 120 W and 140 W was applied to 

the Zn, Cu and Sn targets, respectively. These precursors were then selenised in 

graphite boxes containing Se pellets in a Rapid Thermal Processor (Annealsys AS-One) 
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by a two-step thermal annealing for 5 and 15 min, respectively, at a base pressure of 85 

kPa of nitrogen. The graphite boxes were then heated in a Rapid Thermal Processor 

(Annealsys AS-One) at 300 °C (the first step) and then the second at 450 
o
C, 500 

o
C or 

550 
o
C for films 1 (solar cell 1), 2 (solar cell 2) and 3 (solar cell 3), respectively.  More 

information on the process of the film fabrication can be found elsewhere [3,11,12]. The 

CdS buffer layer was grown using a standard chemical bath deposition (CBD) process 

at 70°C after etching the films with a 10 wt% KCN solution for 30 seconds. Solar cells 

with an area of 3x3mm
2 

were then fabricated by DC-magnetron deposition of 

ZnO/ZnO:Al transparent front contacts and mechanical scribing. The principal device 

parameters measured under simulated AM1.5 solar illumination (100 mW/cm
2
, 25°C) 

for cells fabricated from films 1 and 2 are shown in Table 1. Electrical measurements 

could not be performed on solar cells with the film 3 absorber, where the Mo back 

contact was completely selenised.   

The elemental compositions of the films, determined by wavelength dispersive X-ray 

microanalysis as the average of 10-point linear scans across the films, are shown in 

Table 1. These values have been reported earlier in ref. [3]. The structural properties 

and the presence of secondary phases, studied using room temperature Raman scattering 

and X-ray diffraction, as well as scanning electron microscope micrographs of the films 

used for the solar cells fabrication have also been reported earlier [3].  

Table 1 The [Cu]/[Zn+Sn] and [Zn]/[Sn] ratios of the films and parameters of the solar 

cells fabricated from them (data reproduced from [3]). 

Selenisation 450°C 500°C 550°C 
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temperature 

[Cu]/[Zn + Sn] 0.76 ± 

0.08 

0.78 ± 

0.10 

0.83 ± 

0.04 

[Zn]/[Sn] 0.92 ± 

0.17 

1.18 ± 

0.02 

1.17 ± 

0.06 

VOC (mV) 336 421  

JSC (mA/cm
2
) 26.5 30.2  

FF 35.2 58.0  

η (%) 3.2 7.4  

 

The PL measurements were carried out using a 1 m focal length single grating 

monochromator and the 514 nm line of a 300 mW Ar
+
 laser. A closed-cycle helium 

cryostat was employed to measure the PL spectra at temperatures from 6 K to 300 K. 

The dispersed PL signal was detected by an InGaAs photomultiplier tube (PMT), 

sensitive from 0.9 µm to 1.65 µm. More experimental details can be found in Ref. 

[3,11]. 

The PLE measurements were carried out using a 0.6 m focal length single grating 

monochromator with, an InGaAs photodiode sensitive from 0.9 µm to 1.9 µm and a 

liquid helium bath cryostat. A combination of a 400 W halogen tungsten lamp with 0.3 

m focal length single grating monochromator was used for excitation. The PLE spectra 

were recorded by detecting the signal at the energy near the maximum intensity of the 
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dominant PL bands: 0.95 eV for solar cell 1, 0.96 eV for solar cell 2 and 0.90 eV for 

solar cell 3. More experimental details can be found in Ref. [3,11] . 

 

3. Results and discussion 

 

PL spectra of the three solar cells, measured at 6 K under experimental conditions 

equivalent to those used for such measurements of the as deposited films in ref. [3], are 

shown in Fig. 1. These spectra are dominated by an asymmetric band P1 with peak 

energy at 0.95 eV, 0.96 eV and 0.90 eV, respectively. The PL intensity of the dominant 

band, measured at 6 K, at first increases by a factor of two as the selenisation 

temperature rises from 450°C to 500°C but then falls down by a factor of four for a 

selenisation temperature of 550°C. Apart from the dominant band the PL spectra 

contain a broad high energy band P3 at 1.3 eV. The spectra show only the low energy 

part of this band whose high energy side is beyond the sensitivity limit of the detector 

used. 
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Fig. 1. PL spectra of solar cells (1), (2) and (3) measured at 6 K using similar optical 

alignments and laser excitation on a linear (a,c) and logarithmic (b) intensity scale. 

Normalised P1 band (с). 

 

The excitation intensity dependence of the PL spectra for the three samples is shown 

in Fig. 2. The integrated intensity I(P) under the dominant band depends on the 

excitation laser power P as I~P
k
. Thereby we determine k power coefficients by 

measuring the slope of log-log plots of I(P). Values of k 1.01±0.01, 0.95±0.02 and 

0.97±0.01 were estimated for solar cells 1, 2 and 3, respectively, as shown in Table 2. 

Radiative recombination of charge carriers localised at defects whose energy levels lie 

within the bandgap is indicated by k values smaller than unity whereas k values greater 

than unity suggest that the recombination does not involve localisation at defects [13]. 

In the kesterites k values greater than unity can be expected for the BB mechanism 

[3,11,14]. The determined values of k suggest that at low temperatures the dominant PL 

bands might include unresolved BB peaks. 
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Fig. 2. Excitation intensity dependencies of the PL spectra of the solar cells with 

selenisation temperatures of 450°C (a), 500°C (b) and 550°C (c) measured at 6 K. The 

dependence of peak position on excitation laser power P (d). The dependence of the 

integrated PL intensity on excitation laser power P (e). 

 

The dominant bands in all the three samples show significant blue shifts with 

increasing laser power, whereas their shapes do not change. The j-shifts (the rate of the 

shift per decade of increase of the laser power) increases from 12.0±0.7 meV to 

14.0±0.5 meV per decade for solar cells 1 and 2 and then to 16.0±0.4 meV per decade 

for solar cells 3. Such significant j-shifts of the dominant band, along with its 

asymmetric shape at low temperatures, are characteristics of band-tail related 

recombination mechanisms [9,10].  

Table 2 Spectral energy and FWHM of the dominant PL band at 6 K, bandgaps Eg, 

average depths of potential fluctuations γ and activation energies Ea of the temperature 

quenching of the dominant bands for solar cells 1, 2 and 3. 

Selen.Temp. 450°C 500°C 550°C 

sample  film 

1 

cell 

1 

film 2 cell 

2 

film 

3 

cell 

3 

Emax, eV 0.93 0.95 0.94 0.96 0.90 0.90 

FWHM, 

meV 

84 85 84 87 100 83 

j-shift, 11 12 12 14 15 16 
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meV/dec. 

k 1.0 1.0 1.0 1.0 1.0 1.0 

Eg, eV 1.05 1.06 1.03 1.02 1.05 1.02 

γ, meV 24 24 24 24 27 21 

Ea,meV 55 65 55 70 70 75 

 

The temperature dependencies for the solar cells were measured at the same optical 

conditions. The evolution of the normalised PL spectra of the three solar cells with 

rising temperature is shown in Fig. 3 on a linear scale. The P1 PL band reveals clear red 

shifts with increasing temperature in all the three samples. Such shifts can be taken as a 

confirmation of the band-tail related nature of this emission [9,10]. Increasing 

temperature thermalises the holes at shallower states of the acceptor-like states of the 

valence band-tail into the valence band whereas holes at deeper states remain localised. 

This process red shifts the P1 band maximum whereas the recombination of holes, 

thermalised to the valence band with free electrons, forms the BB band.  
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Fig. 3. Evolution of the normalised temperature dependence of the PL spectra of cell 1, 

2 and 3. The spectra are shifted along the y-axis for clarity. 

 

The temperature dependence of the PL spectra is shown in Fig. 4 on a logarithmic 

scale. It can be seen that the dominant P1 band gradually quenches by 170 K, 200 K and 

180 K for the solar cell 1, 2 and 3, respectively, making possible to see the P2 band at 

high temperature. Its spectral position is very close to Eg. Therefore it may be a BB 

recombination. At low temperatures the shape of the P1 band is asymmetric whereas 

with increasing temperature this band becomes more symmetric. The temperature 

dependence of the spectral energy of the PL intensity maxima Emax(T) for the P1 bands 

is presented in Fig. 4. It can be seen that with rising temperature all the bands shift to 

lower energies. PLE spectra were used to determine the bandgap of the films at 4.2 K. 

The absorbance (hv), where hv is photon energy, is determined from the low energy 

side of the PLE spectra. This side has been fitted with sigmoidal functions proposed in 

[15] a(h) = a0/[1+exp(Eg - h)/ΔE], where h is the photon energy, α0 vertical scale 

parameter and ΔE a broadening energy [16]. The determined values of the bandgap of 

CZTSe in the cells are 1.06±0.01 eV, 1.02±0.01 eV and 1.02±0.01 eV for the cells (1), 

(2) and (3), respectively, as presented in Table 2. 
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Fig. 4. Temperature dependencies of the PL spectra of the solar cells with the 

selenisation temperature of 450°C (a), 500°C (b) and 550°C (c). 

 

All the experimental PL spectra were fitted with an empirical asymmetric double 

sigmoid function (DSF) proposed in [10] for band-tail related recombination: 

1 2

1 2

( ) 1 1 exp 1 1 1 exp
hv E hv E

I hv A
W W

          
                  

         

 (1) 

 

where A, E1, E2, W1 and W2 are the experimental parameters. E1 and W1 represent the 

shape of the low-energy side of the PL bands while E2 and W2 belong to the high-energy 

side. Example of the fitting of the PL, measured at 6 K, for the three cells are shown in 

Fig. 5(a,b,c) whereas the temperature dependence of W1 and W2 is shown in Fig.5(d). 

The W1 parameter specifies the average depth of potential fluctuations (γ). It shows 

little change with temperature rise up to 50 K.  

The average depth of potential fluctuations (γ), determined from the low energy side 

of the dominant bands, was estimated to be of 24±2 meV for selenisation temperatures 

450°C and 500°C whereas for 550°C γ falls down to 21±2 meV. The use of fitted DSFs 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

improves the accuracy of the dominant band temperature dependence analysis providing 

an opportunity to subtract one PL band from the other and allow evaluation of the 

evolution of poorly resolved and unresolved PL bands with increasing temperature. 

Examples of the fitting of DSF at different temperatures are shown in Fig. 6. The P1 

band quenches by temperatures of 200 K whereas the BB band can be observed 

resolved at temperatures above 150 K. The P3 peak becomes dominant at temperatures 

in excess of 150 K.  

 

 

Fig. 5. The PL spectra (shown by symbols) of solar cell 1 (a), 2 (b) and 3 (c), taken at 6 

K, fitted with asymmetric double sigmoidal functions (shown by red solid lines), 

Temperature dependence of fitting parameters W1 and W2 (d). 

 

The P3 band appears in our PL spectra after the deposition of CdS and ZnO 

suggesting that it could be related either to CdS or to ZnO. Bands at 1.3 eV, observed in 

PL spectra of Zn excess CZTSe films on glass [3] and on Mo/glass [14,17] substrates, 

have been reported earlier and assigned to defects in ZnSe [17] assuming sub-bandgap 
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excitation due to high concentration of defects. Such emission might also be present in 

our PL spectra as a high energy tail. However, its intensity in the PL spectra of the as 

deposited CZTSe films is significantly lower than that of the P3 band appearing after 

processing as it can be seen in Fig.8.  

 

Fig. 6. PL spectra, measured at different temperatures, fitted with DSF. Column 1 - 

solar cell 1, column 2 - solar cell 2, column 3 - solar cell 3. 

Arrhenius analysis of the temperature quenching of the dominant bands in the PL 

spectra was carried out using their integrated intensities. Arrhenius plots of the resulting 

intensities for the three solar cells are shown in Fig. 7. The best fits have been achieved 

for a single recombination channel and assuming a temperature dependence of the hole 

capture cross section proposed in [18] I(T) = I0/[1+A1T
3/2

+A2T
3/2

exp(-Ea/kBT)], where I0 

is the P1 band integrated intensity at the lowest temperature of 6 K, and A1 and A2 are 

process rate parameters. 

Arrhenius analysis of the temperature quenching shows a gradual increase of the 

activation energy from 65±5 meV for cell 1 (450°C) to 70±5 meV for cell 2 (500°C) 

and 75±5 meV for cell 3 (550°C). These activation energies are also shown in Table 2. 
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All the three activation energies are greater than γ suggesting that the P1 dominant band 

in all the three solar cells is the free-to-bound (FB) transition involving the 

recombination of free electrons with holes localised at acceptors.  

Fig.8 shows a comparison of the PL spectra, measured at 6 K in similar optical 

conditions for as deposited CZTSe films on Mo/glass substrates , reported in ref. [2], 

with the spectra measured for solar cells 1, 2 and 3 in this study. It can be seen that the 

solar cell processing for all the three cells results in an increase of the PL intensity and a 

blue shift of the band. The most prominent effect can be seen for film 2 selenised at 

500°C. The PL intensity has increased by about 73% along with a blue shift of 15 meV. 

A smaller increase in the emission intensity by 22% and a blue shift of P1 by 10 mV 

can be seen for film 1.  

 

Fig. 7. Arrhenius plots of the integrated intensities of the FB bands in the PL spectra of 

solar cells 1(a), 2 (b) and 3(c).  

The small increase of the emission intensity of 10% observed for the PL spectra of 

film 3 might also be a result of the processing. Parameters of the PL spectra for the 

films and cells are shown in Table 2. The observed changes in the PL spectra are an 

integrated effect of the processing: KCN etching, deposition of CdS, resulting in the 
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formation of p-n junction and low temperature (70°C) heating as well as deposition of 

ZnO layers which also might include effects of non-intentional heating of the films. In 

the frame of this optical study it is rather difficult to establish the nature of each 

particular effect however below we will try to speculate on the origin of the observed 

changes in the optical properties. 

The increase of the emission intensity can be assigned to a reduction of the 

concentration of non-radiative recombination centers on the surface due to the etching. 

However such an increase and the blue shifts of the dominant band can partly be 

attributed to changes in doping conditions in the near surface layer due to inter-diffusion 

of Cd, S, Se and Zn taking place after the deposition of CdS [19]. The chemistry of such 

an inter-diffusion should critically depend on the elemental composition, defining the 

defect content in the near surface layer. This results in the observed differences in Eg 

increasing from 1.05 eV to 1.06 eV after the processing of film 1 whereas Eg of film 2 

and 3 becomes smaller after the processing (falling from 1.03 eV to 1.02 eV and from 

1.05 eV to 1.02 eV, respectively).  

The processing did not change the k parameters, which suggests that the 

recombination mechanism of the dominant band is still FB. However the j-shift of the 

cells, reflecting the compensation level of CZTSe, becomes greater after the processing, 

and could be due to the formation of new donors in the interface layer. This is consistent 

with the formation of an interface layer with inter-diffused elements Cd, S, Se and Zn. 

A theoretical analysis of the cadmium on copper site CdCu antisite defects in CZTSe 

demonstrate that such defects have small formation energy and are likely to be donors 

[20]. The processing of film 1 and film 2 does not change their mean depth of potential 
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fluctuations of 24 meV whereas such a processing reduces γ in film 3 from 27 meV to 

21 meV. This may mean that the defects, associated with the band-tails, are not related 

to the non-radiative traps reducing the intensity of PL emission.  

 

Fig. 8. A comparison of the PL spectra measured at 6 K in as deposited CZTSe films 1, 

2 and 3, selenised at 450°C (a), 500°C (b), 550°C (c), respectively, and solar cells 1, 2 

and 3 fabricated from these films.   

 

The activation energies of the temperature quenching of the P1 band in the PL spectra 

of the as deposited CZTSe films reported in ref. [3] were determined after the 

decomposition of the PL spectra by fitting Gaussians. In this study we used more 

accurate DSF functions. Such an accurate fitting resulted in slightly different Ea shown 

in Table 2. Therefore we compare Ea, determined for the films after the processing, with 

the new more accurate values. The processing increases Ea for all the three films which 

might be associated with an increase in the energy depth of the dominant acceptor after 

the solar cell fabrication process. 

The presence of a p-n junction in the ZnO/CdS/CZTSe/Mo cells results in the 

formation of a space charge layer (SCL) whose thickness we roughly estimate as 0.3 µm 
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[21]. Assuming an absorption coefficient of 5x10
4
 cm

-1
 for CZTSe [22] we also can 

estimate the thickness of the layer, excited by the laser, to be of 0.2 µm. So the PL in 

our cells can be influenced by SCL. However at the open circuit condition charge 

carriers, photo-injected by the laser excitation, drastically reduce the electric fields in 

SCL reducing its magnitude and thickness [23]. Therefore the influence of the p-n 

junction on the PL spectra might not be significant. This is supported by the similarity 

of the k-parameter of the dominant band P1 before and after the processing. 

4. Conclusion 

 

The effect of solar cell processing, including etching in KCN along with deposition 

of CdS and ZnO, of CZTSe films, fabricated by selenising metallic precursors at 450°C 

(film 1), 500°C (film 2) and 550°C (film 3), was studied using photoluminescence (PL) 

and photoluminescence excitation (PLE). Analysis of the temperature and excitation 

intensity dependence of the P1 dominant PL band in the PL spectra of the solar cells 

suggests the free-to-bound (FB) recombination of free electrons with holes localised at 

deep acceptor levels influenced by valence band-tails. This mechanism is similar to that 

for the dominant band in the PL spectra of the as deposited CZTSe films. Solar cell 

processing increased the intensity of P1 and blue shifted it. The strongest increase in the 

intensity and blue shift was observed for film 2, selenised at 500°C. A smaller intensity 

increase and blue shift was found for film 1, selenised at 450°C, whereas only a slight 

intensity rise was found for film 3. The intensity increase we assign to a reduction of the 

concentration of non-radiative recombination centers on the surface after the etching 

and inter-diffusion of Cd, S, Se and Zn, taking place after the deposition of CdS. 
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Processing increased Eg, measured at 4.2 K, in film 1, whereas in film 2 and 3 Eg 

became smaller. The rate of the P1 shift (j-shift) with excitation power rise increased for 

all films suggesting a rise of the compensation degree. These are consistent with the 

formation of an interface layer with the inter-diffused elements forming new donors 

(CdCu). The chemistry of inter-diffusion depends on the elemental composition, defining 

the defect content and influencing Eg. The average depth of potential fluctuations γ of 

24 meV in film 1 and 2 remained unchanged after processing, whereas in film 3 γ 

decreased from 27 meV to 21 meV.  
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Highlights 

 Cu2ZnSnSe4 (CZTSe) films on Mo/glass were produced by selenisation of metallic precursors  

 PL temperature and excitation intensity dependencies are analysed. 

 The bandgaps are determined using PLE. 

 PL bands are identified as free-to-bound and band-to-band transitions. 
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