
Indexing without Spam

Guido Zuccon
The Australian e-Health Research Centre

CSIRO
QLD, Australia

Guido. Zuccon@ csiro. au

Anthony Nguyen
The Australian e-Health Research Centre

CSIRO
QLD, Australia

Anthony. Nguyen@ csiro. au

Teerapong Leelanupab
Faculty of Information Technology

KMITL
Thailand

t. leelanupab@ it. kmitl. ac. th

Leif Azzopardi
School of Computing Science

University of Glasgow
Scotland, UK

Leif. Azzopardi@ glasgow. ac. uk

Abstract
The presence of spam in a document ranking is
a major issue for Web search engines. Common
approaches that cope with spam remove from the
document rankings those pages that are likely to
contain spam. These approaches are implemented as
post-retrieval processes, that filter out spam pages only
after documents have been retrieved with respect to a
user’s query. In this paper we propose removing spam
pages at indexing time, therefore obtaining a pruned
index that is virtually “spam-free”. We investigate the
benefits of this approach from three points of view:
indexing time, index size, and retrieval performance.
Not surprisingly, we found that the strategy decreases
both the time required by the indexing process and
the space required for storing the index. Surprisingly
instead, we found that by considering a spam-pruned
version of a collection’s index, no difference in retrieval
performance is found when compared to that obtained
by traditional post-retrieval spam filtering approaches.

Keywords Information Retrieval; Index Pruning;
Spam; Web search; Efficiency.

1 Introduction
The presence of spam in a document ranking is a
major issue for Web search engines. For example, in
TREC 2009 Web Track, which is based on a large
crawl of the Web (i.e. the ClueWeb collection, about
1 billion web pages), it has been noted that spam
harmed performance of retrieval systems [10, 11]. To
cope with this problem, participants to the TREC Web
Track have implemented strategies of post-retrieval
processing that filter out pages deemed as spam [9, 12].
Similarly, Cormack et al. have produced four spam lists
for the ClueWeb collection. These consist of a label

Proceedings of the 16th Australasian Document Comput-
ing Symposium, Canberra, Australia, 2 December 2011.
Copyright for this article remains with the authors.

associated to each document indicating the likelihood
of the document being spam [8]. They also showed that
by removing spam employing a post-retrieval process
substantially improves retrieval performance of TREC
2009 systems.

In this paper we tackle the problem of spam in Web
collections (specifically the ClueWeb collection) from
a different perspective. While previous approaches
filtered out spam from the retrieval results using a
post-retrieval process, we modify traditional indexing
procedures, by introducing a spam filtering step at
indexing time. By doing so, web pages that are deemed
to be spam with respect to some threshold level are
not indexed, and therefore, neither are they retrieved.
By not considering spam documents at indexing time,
modified index statistics are obtained, if compared to
indexes obtained using traditional indexing procedures.
Our strategy acts as an index pruning technique, driven
by the spam scores of documents. We expect our
technique to benefit by the common characteristics
of indexing pruning strategies: reduced index size
and reduced indexing time. However, index pruning
techniques have been shown to degrade retrieval
performance of systems. But, does pruning with
respect to spam documents harm retrieval performance
as well?

To investigate benefits and drawbacks of “indexing
without spam”, we conducted a number of retrieval ex-
periments across several traditional retrieval models on
the TREC ClueWeb 2009-2010 Web Track dataset. We
found that the use of indexes used through our indexing
without spam procedure does not harm retrieval perfor-
mance. Instead, often this procedure offers better effec-
tiveness than traditional indexing with or without post-
retrieval removal of spam documents, while reducing
indexing and retrieval time.

The paper continues as follows. In section 2 we
outline the method of indexing without spam. Sub-
sequently we present related works in the area of in-

dex pruning and spam identification and removal in the
context of the ClueWeb collection and the TREC Web
Track (section 3). Our research questions are stated in
section 4, while section 5 presents and discusses our
experimental settings and results. Finally, the paper
concludes in section 6.

2 Indexing without Spam
Assume that a spam list for a corpus is given, where
a score is associated to each document indicating its
likelihood of being spam. For ease of exposition, let
assume that a low spam score indicates that a document
is very likely to be spam, with 0 being associated with
the documents that are most probable spam. Similarly,
a high score would suggest that a document is unlikely
to be spam, with 99 indicating documents that are least
probable to be spam.

Given these settings, we propose to modify the tra-
ditional indexing processes, such that both corpus and
spam list are provided as input to the indexer. There-
after, the indexer is instructed to index only those doc-
uments in the corpus for which their spam list scores
are higher than a threshold th. Algorithm 1 outlines the
pseudocode of such indexing procedure, where SL(d)
returns the spam score associated with document d.

This approach resembles the notion of index prun-
ing, where the inverted index is compressed by avoiding
storing some of the statistical information associated to
terms or documents.
Algorithm 1 Indexing without spam
Input: a corpus of documents D; a spam list SL

containing pairs of documents and spam scores; a
threshold value th

Output: an index I
for all d ∈ D do

if SL(d) > th then
index d in I

else
ignore d

end if
end for
return I

3 Related work
3.1 Index Pruning
As the approach presented in section 2 is similar to
pruning an index (lossy compression), we briefly revise
and compare some index pruning strategies proposed
in the literature. In particular, we focus on static in-
dex pruning strategies, as opposed to dynamic strategies
which are applied at query time (for example [13]).

The strategy of posting pruning by sparsification
of the index table, as proposed by Carmel et al. [2],
consists of calculating the importance of individual
postings in the index, and then removing from the
index those postings that are less informative. This

results in the removal of the associated terms from
documents, thus varying the statistics associated to
document lengths and term frequencies, and possibly
lead to the complete removal of a term from the index.
Therefore, this pruning strategy acts at the term level.

While the sparsification of the index table (at term
level) does not necessarily imply the complete removal
of a term from the index, the term pruning strategy
of Blanco and Barreiro [1] prescribes that uninforma-
tive terms should be completely removed from the in-
dex. Therefore, such terms are treated similarly to stop-
words. This approach radically modifies the statistics of
the pruned index, affecting the document length statis-
tics. Ultimately, the strategy might affect the presence
of some documents, if these contained only terms that
have been pruned.

While the previous approaches act at a term level,
the strategy proposed by Zheng and Cox prunes the
index at a document level [20]. A score is computed
for each document in the collection, based on the en-
tropy of the terms in the documents. Documents are
thereafter selected or rejected for indexing depending
upon their score being higher or lower than a set thresh-
old. This solution affects the presence of documents,
the average document length, and the inverse document
frequency.

Common to index pruning strategies is that a trade-
off is found between index size and retrieval perfor-
mance: higher levels of index pruning (i.e. smaller
indexes) translate in worse retrieval performance, with
no-pruning obtaining usually the best retrieval perfor-
mance.

The document pruning strategy of Zheng and Cox
is the closest pruning strategy to that proposed in this
paper. In contrast to Zheng and Cox, here we do not
consider the entropy of terms within documents for de-
ciding which documents should be excluded from the
indexing process. Instead, we reject documents for in-
dexing according to their scores with respect to spam
features.

3.2 Spam Identification and Removal
The presence of spam among top ranked search results
is a problem that harms the retrieval effectiveness of
Web search engines. Participants to the TREC 2009
Web retrieval Track have noted the impact of spam on
system effectiveness [10, 11], while others attempted to
prune spam documents from the ranking through a post-
retrieval process [9, 12]. In particular, Hauff and Hiem-
stra used a spam detection algorithm that relies on page
content, page title features and URL form [9]. Once
spam documents were identified, they were removed by
the document ranking through a post-retrieval process-
ing stage. Similarly, Lin et al. used Yahoo!’s propri-
etary adult, spam, and document quality classifiers to
identify and remove spam once documents have been
retrieved by their system [12].

While several methods have been proposed in the
literature to identify spam documents (e.g. [3, 14]),
we focus on the work of Cormack et al. [8]. This
is because they have already successfully applied
their spam detection and filtering methods to web
retrieval (and in particular to the same dataset we
employ in this study) and studied the effect of spam
on retrieval performance. In particular, Cormack et
al. adapted content-based email spam filters based on
three different training sets to the task of identifying
spam web pages in ClueWeb. The training sets were:

• UK2006: a (small) set of spam and non-spam la-
bels for web pages, containing 767 spam pages
and 7,474 non spam pages.

• Britney: a set of training examples heuristically
built from popular search queries as reported by
popular web search engines’ statistics. Following
this method, the top 10 ranked pages retrieved by
the Indri retrieval system in answer to the popu-
lar queries were deemed as being spam. While,
10,000 documents belonging to the collection for
which their URIs were found to be also present
in the Open Directory Project1 were classified as
non-spam.

• Group X: this training set consists of 756 docu-
ments for which human assessments regarding the
presence of spam were collected by Cormack et al.

Furthermore, the single scores obtained by the three
filters can be combined together through a naı̈ve Bayes
combination: this approach (called “Fusion”) has been
shown to be the most effective in the context of spam
identification and document retrieval when using the
ClueWeb dataset. In the experiments reported in sec-
tion 5, we employ the spam list generated with the Fu-
sion method, which is publicly available2. For each
document in ClueWeb, the spam list contains a per-
centile score, which indicates the percentage of the doc-
uments in the corpus that are “spammier”. For example,
if a document received a percentile score of 95 it means
that it belongs to the 5% of the documents that are least
probable to be spam. While, if a low percentile score
is associated to a document, then this is likely to be
a spam page: a document with score 0 belongs to the
“spammiest” 1% of the documents.

The research we have reviewed in this section pro-
vides us the motivations for studying the effect of spam
on indexing, both in terms of indexing and retrieval per-
formance obtained by employing a spam-pruned index.

4 Research Questions
Previous approaches that account for spam in document
retrieval have tackled the problem at the retrieval phase:
documents are retrieved in response to a query, those

1http//rdf.dmoz.org
2http://durum0.uwaterloo.ca/clueweb09spam/

that are identified as possible spam are filtered out, and
the remaining documents are returned to the user that
initially issued the query. In this work we investigate
an alternative solution, where documents that are iden-
tified as being spam are removed during the indexing
phase. Specifically, when indexing a collection, we
suggest that documents that may be considered to con-
tain spam are filtered out and therefore not indexed at
all. This approach leads to the construction of an in-
dex that does not contain spam documents (as identified
by the spam identification algorithm that is employed).
Furthermore, the resulting index statistics, such as term
counts, idf-s, average document lengths, etc, are effec-
tively affected by the absence of evidences that would
normally have been drawn from documents considered
as spam.

In this paper, we investigate the differences between
the two approaches to document retrieval with spam re-
moval. Specifically, we explore the following research
questions:

RQ1 How does spam removal at indexing time affect
the indexing process?

RQ2 How does spam removal at indexing time affect
the indexes that are created? And, how different
are these indexes from those created using the
standard indexing procedure?

RQ3 How does spam removal at indexing time affect
document retrieval? Do index statistics obtained
by an index that has been pruned from spam at in-
dexing stage lead to worse retrieval performance,
if compared to that obtained using retrieval-time
spam removal? Does spam removal at indexing
time affect retrieval time as well?

5 Experiments
5.1 Experimental Methodology
To empirically investigate our research questions,
we employed the ClueWeb 09 collection (we used
Category B only in this initial investigation), consisting
of more than 50 million web pages. We indexed
documents using Indri 5.0 [17]3, after stop-words
removal and stemming conflation with the Krovetz
stemmer. In the retrieval experiments, we used the
TREC 2009 and 2010 Web Track topics4, and four
standard retrieval models as implemented by Indri:
Okapi BM25 [16], Unigram Language Model with
Dirichlet smoothing (LMDIR), Unigram Language
Model with Jelineker-Mercer smoothing (LMJM) [18],
and Unigram Language Model with two stage
smoothing (LM2S) [19]. For the retrieval methods
based on language model, we used the parameter

3http://lemurproject.org/indri.php
4Specifically, we used all topics released in TREC 2009 Web

Track and 48 topics released in TREC 2010 Web Track: topics
95 and 100 from TREC 2010 were excluded because no relevance
assessments were provided for them.

values that obtained the best retrieval effectiveness in
the experiments of Zhai and Lafferty on the TREC 8
Web collection with short queries [18]:

• LMDIR: µ = 3, 000

• LMJM: λ = 0.01

• LM2S: λ = 0, µ = 3, 000

For BM25 we used the standard settings suggested
in [15], i.e.:

• BM25: b = 0.5, k1 = 2, k2 = 0, k3 = 8

To identify spam, we employed the “Fusion” spam
list created by Cormack et al. [8], where a percentile
score is associated with each ClueWeb document
indicating its level of spam, as described in section 3.2.
Note that the percentile scores refer to the whole
ClueWeb dataset, while here we consider category
B only. As a result, in our experiments, the number
of pages that have a percentile score of x or lower is
not equivalent to the x% of pages in the category B
dataset5.

These common settings have been used to imple-
ment the following 3 systems:

System S1: a traditional information retrieval system,
where all the documents contained in the collec-
tion are indexed and when a query is issued re-
trieval is performed according to one of the stan-
dard models listed above.

System S2: a modification of System S1, where a post-
retrieval process is activated to remove those docu-
ments that are identified in the spam list as contain-
ing spam with a percentile score smaller or equal
to a threshold th. This system implements the
post-retrieval spam removal approach.

System S3: a modification of System S1, where docu-
ments that are identified in the spam list as contain-
ing spam with a percentile score smaller or equal
to a threshold th are not considered during the
indexing process. This system implements our in-
dexing without spam approach.

Systems S1 and S2 are based on the standard Indri
5.0 toolkit, where for System S2 we implemented a
post-retrieval filtering process that removes from the
result rankings those documents that were flagged
as spam. To implement System S3, we modified
the indexing process of Indri 5.0 toolkit, including a
filtering stage to exclude spam documents before the
system performs indexing. The spam list SL is read
in memory using the C++ operator >>, and document
identifiers that refer to those documents which do not
have to be indexed are stored into a standard C++

5The actual percentages of pages that are considered as spam
for th = 20, 45, 70, 95 are approximately 8%, 22%, 42%, 80%,
respectively.

std::map<string,bool> container. The storing
operation (operator []) is logarithmic in the size of
map. At indexing time, once a document identifier is
read by the indexing process, a count operation is
performed on the map container: if the result of this
operation returns a value greater than zero (i.e. the
map contains the searched document) the document is
not indexed, and the next document is processed. The
count method requires logarithmic time in the size of
the map.

In our experiments we empirically investigate
four settings of the threshold parameter6 th, i.e.
th = {20, 45, 70, 95}. Moreover, we studied the
performance of S1, which corresponds to S2 and S3

when th = 0.
To assess the difference between the common in-

dexing procedure and the approach based on indexing
without spam, we record the time required for index-
ing by the standard Indri 5.0 toolkit and by our own
modification of that software for all levels of the spam
threshold th. Indexing and retrieval were performed
on a high performance server, fitted with 16 Intel Xeon
X7350 (2.93GHz) CPUs and 128 GB of RAM. For each
setting of th, indexing and retrieval were performed
separately, and no other user-process was in execution
on the server when indexing the collection.

In our empirical study, indexing was performed only
once for each level of th: thus the time we recorded is
that of a single execution of the indexing process. A
more accurate approach would be to consider a number
of repetitions of the indexing process for each level of
th, and report the mean time required to build each
index. However, we do not follow this approach at this
stage. To allow the reproducibility of the experiments,
we report that Indri’s indexing parameters memory was
set to 50G and storeDocs to false, across all indexing
processes. The memory parameter provides a soft upper
bound on the memory consumption of the indexer pro-
cess (the total usage would be up to three times the pa-
rameter value). The storeDocs parameter set to false
indicates that the original documents were not archived
within the folder containing the Indri index.

On the contrary, we repeated the retrieval process
10 times for each setting. When reporting retrieval time
statistics, we consider the mean value obtained from 10
iterations of the retrieval process.

The formats of the relevance assessments (i.e. qrels)
for TREC 2009 and TREC 2010 ad-hoc tasks are dif-
ferent, as TREC 2009 qrels are suited for computing
statMAP, while TREC 2010 qrels are tailored to stan-
dard MAP [6, 7]. This does not allow us to use a com-
mon set of ad-hoc measures across both topic sets. To
overcome this issue and assess the retrieval effective-
ness of the systems, we consider the TREC Web di-
versity task, although our systems do not perform any
diversification of the document rankings. The diversity

6Note that th = 70 has been suggest to be the most effective
threshold value [8].

!""#$

!%!&$

!%'"$

!(%($

!)&'$

!'##$

#$ &#$ "%$)#$ *%$

!
"
#$
%"

&'
()
#*
+$

),$

Figure 1: Indexing time for ClueWeb obtained using
Systems S1 and S2 (which both correspond to value
th = 0) and System S3 for different values of the
threshold th.

qrels consist of the indication of document’s relevance
to a set of query-intents of a query, rather than to the
query itself. The use of this retrieval task enables us
to consider a common set of measures on the TREC
2009 and 2010 topic sets; in particular, we report the
retrieval effectiveness of systems combining the effec-
tiveness measured on both topic sets. The measures
employed to assess the retrieval performance of sys-
tems are ERR-IA@10 [4] and α-nDCG@10 (with α =
0.5) [5]. To provide an indication of how systems would
perform in the task of standard ad-hoc retrieval, we pro-
duced standard qrels suited for computing (standard)
MAP by considering a document relevant to a query
if it is relevant to one or more subtopics of that query.
MAP is then reported along with the selected diversity
measures.

5.2 Results and Discussion
5.2.1 RQ1: Indexing Process

In figure 1 we report the time required for indexing the
ClueWeb collection by Systems S1, S2 and S3. For the
latter system, we report the indexing time with respect
to different settings of the threshold parameter th.

In answer to RQ1, removing spam during the
indexing stage provides gains in terms of index
efficiency, i.e. by lowering the indexing time, as
demonstrated by the time required for indexing when
using System S3. In fact, System S3 had been up to
20% times faster than System S1 and System S2 when
indexing the ClueWeb collection. This result is not
surprising, because System S3’s indexing process skips
the documents that have been flagged as spam, and
therefore System S3 ends up processing less documents
than Systems S1 and S2. However, note when using
System S3, the indexing time does not linearly decrease
by increasing the value of the threshold th. Instead,
high values of th for System S3 may require more
time for indexing the collection than that required by
the same system for lower th. This is the case when
th = 95: under this setting, S3 requires 62 minutes
more for indexing the collection than the same system
with th = 45. This may be caused by the procedure

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

#!!"

!" #!" $(")!" *("

!"
#$
%&'

()
%

*+%

Figure 2: Size of the index of ClueWeb for Systems S1

and S2 (which both correspond to the value th = 0) and
for System S3 for different values of the threshold th.

we used for loading the file containing the list of
documents which do not have to be considered for
indexing. In fact, when th = 95 the list of documents
to be excluded from indexing is large (998 MB against
271 MB for the list associated with th = 45) and the
loading procedure may require more time than that
saved for not indexing those documents.

5.2.2 RQ2: Indexes

In figure 2 we report on the size of the ClueWeb indexes
as produced by Systems S1, S2 and S3. For the latter
system, we report the index sizes with respect to dif-
ferent settings of the threshold parameter th. Similarly,
in table 1 we report the following index statistics: total
number of indexed documents, total number of indexed
terms, number of unique terms indexed.

In answer to RQ2, we found that the removal of
spam during the indexing phase reduces the size of the
index. Indexes created for the ClueWeb collection by
System S3 are up to 82.1% smaller than those created
by Systems S1 and S2, when th = 95. As for question
RQ1, this result is not surprising because in System S3

up to 95% of the ClueWeb documents do not get in-
dexed when th = 95: their statistics do not get recorded
within the created index, and therefore the dimension
of the index is smaller when compared to the standard
index obtain by Systems S1 and S2. Furthermore, note
that the decrease in index size in not linear with the
increase of the value of threshold th: higher values of
th provide higher index resizing ratios than lower ones.
This is consistent with the statistics observed in table 1.

5.2.3 RQ3: Retrieval

The observations in sections 5.2.1 and 5.2.2 lead to the
claims that filtering spam at indexing time provides ad-
vantages in terms of lowered indexing time (for some
settings of th) and decreasing indexing size (consis-
tently over all settings of th). But:

• does this translate into a reduced retrieval time as
well?

• and, do these benefits harm retrieval effectiveness?
or conversely, also is retrieval effectiveness

Statistics

Systems Tot. # Indexed Tot. # Indexed Tot. # Indexed
Documents Terms Unique Terms

S1, S2 50,220,423 40,417,956,329 87,331,162
S3, th = 20 46,432,700 36,655,900,328 61,903,774
S3, th = 45 39,303,448 30,833,198,931 48,382,773
S3, th = 70 29,038,220 22,814,917,151 33,315,189
S3, th = 95 10,008,217 7,278,840,138 11,532,356

Table 1: Index statistics (total number of indexed documents, total number of indexed terms, number of unique
terms indexed) for the indexes of ClueWeb created by Systems S1, S2 and S3.

S2 S3

S1 th = 20 th = 45 th = 70 th = 95 th = 20 th = 45 th = 70 th = 95
ERR-IA@10 .0878 .1570 .1771 .1922 .1591 .1569 .1772 .1926 .1564
α-nDCG@10 .1495 .2427 .2571 .2666 .2195 .2425 .2571 .2669 2168

MAP .1693 .1891 .1792 .1376 .0491 .1901 .1821 .1411 .0505

Table 2: Retrieval effectiveness of System S1, S2 and S3 for different values of th obtained when using LMDIR.

enhanced by considering a system that removes
spam at indexing time?

These issues were explored when answering RQ3.
In figures 3 and 4 we plot the retrieval time of the

four considered retrieval methods when using S1 (spe-
cific case of S3 with th = 0), S2 and S3, for varying
values of the threshold th. For LMDIR, LM2S and
BM25, there are marginal differences in retrieval time
between systems S1 and S3, with respect to all values
of th. On the contrary, differences are found for LMJM,
where indexes created with higher th support faster re-
trieval, with th = 95 achieving a 93% speed-up with
respect to system S1 (8 seconds against 46 seconds).
Retrieval times required by system S2 are far greater
than those required by S1 and S3. This is because in
S2 the removal of documents containing spam is per-
formed at retrieval time. This process requires to per-
form a first pass of retrieval according to S1. Then, the
list of documents to be removed is loaded in memory,
and documents are compared against the list. Docu-
ments considered as spam are then removed to only re-
trieve documents that are characterised by spam-scores
greater than th. As the figures show, at parity of th,
this process is considerably slower than using S3: for
example, for th = 0, retrieving using S2 and LMJM
is almost 364 times slower than the correspondent S3

setting.
In table 2 we report the retrieval performance

in terms of ERR-IA@10, α-nDCG@10 and MAP
obtained by the three systems with different values of
th and when using LMDIR. Similarly, tables 3, 4 and 5
report the retrieval performance obtained when using
LMJM, LM2S and BM25, respectively.

The reported results show that retrieval effective-
ness as measured by ERR-IA@10 and α-nDCG@10 is
maximum when considering Systems S2 and S3 with

!"

#"

$%"

&'"

()"

*("

)&"

'!"

!" &!" *)" %!" #)"

!
"
#$
%&'

$(
#)
*'

+(
,$

-.$

+,-,"./(0"

+,123"./(0"

4,&)"./(0"

+,&/"./(0"

Figure 3: Retrieval time for 100 TREC 2009 and
2010 Web Track topics obtained using Systems S1

(corresponding to the value th = 0) and S3 for different
values of the threshold th and for different standard IR
retrieval models.

th = 70, regardless of the retrieval model implemented
(i.e. LMDIR, LMJM, LM2S, BM25), while usually
System S1 obtains the lowest performance. In partic-
ular, we found that removing too many documents be-
cause of stringent spam threshold (i.e. th = 95), ei-
ther during indexing or at post-retrieval phase, provides
worse retrieval effectiveness than removing documents
with th < 70. However, when a value of the threshold
greater than 70 is used, Systems S2 and S3 yet gener-
ally obtained better retrieval performance than System
S1. When MAP is considered, best performance are
obtained by low values of th (e.g. th = 20). However,
for LMJM and BM25, no improvements in MAP are
found for any setting of th.

When compared across the same levels of spam
threshold th, Systems S2 and S3 exhibit similar
retrieval performance. Specifically, S3 is slightly more
effective than S2 when th = 70 is used, while S2

is more effective than S3 when th = 95. However,

S2 S3

S1 th = 20 th = 45 th = 70 th = 95 th = 20 th = 45 th = 70 th = 95
ERR-IA@10 .0804 .0846 .0913 .1105 .0815 .0846 .0913 .1105 .0807
α-nDCG@10 .1262 .1368 .1411 .1543 .1178 .1368 .1411 .1543 .1166

MAP .0905 .0866 .0775 .0589 .0237 .0870 .0791 .0614 .0255

Table 3: Retrieval effectiveness of System S1, S2 and S3 for different values of th obtained when using LMJM.

!"#

!""#

!"""#

"# $"# %&# '"# (&#

!
"
#$
%&
#'
()

*&
$+$
,(
-.
$

/0$

)*+*#,-$.#

)*/01#,-$.#

2*$&#,-$.#

)*$-#,-$.#

Figure 4: Retrieval time for 100 TREC 2009 and
2010 Web Track topics obtained using Systems S1

(corresponding to the value th = 0) and S2 for different
values of the threshold th and for different standard
IR retrieval models. Time in seconds is reported in
logarithmic scale. Note that the retrieval times for S2

are dominated by the process of loading in memory the
file containing the list of spam documents.

differences are small and not statistically significant,
when analysed using a two-tailed paired t-test.

In answer to RQ3, we found that indexing without
spam does not harm retrieval effectiveness. Instead,
the retrieval effectiveness of System S3, which imple-
ments the indexing without spam procedure, is higher
than that of System S1 for specific values of th. We
also found that System S3 delivers similar retrieval per-
formance than System S2 when considering the same
spam threshold th. However, when the retrieval times
are considered, we found that S1 is significantly faster
than S2. System S3 generates indexes that are smaller
than those of S1: in general, this does not influence
retrieval time for LMDIR, LM2S, and BM25. However,
the retrieval time required when using LMJM decreas-
ing with the increase of th. This difference in retrieval
times may may be due to the specific implementation of
the considered retrieval models in Indri. We also found
that the time required for creating indexes when using
System S3 was generally lower than that required for
Systems S1 and S2.

6 Conclusions
In this paper we have proposed a modification of tra-
ditional indexing procedures, called indexing without
spam, where only documents considered as not con-
taining spam are indexed. We have shown that this
approach modifies the index statistics when compared

to traditional indexing procedures, and we have linked
our approach with methods of index pruning, and in
particular with [20].

To assess the effectiveness of our proposal, we set
up a thorough empirical comparison using the TREC
ClueWeb collection and the TREC 2009 and 2010 Web
topics. Results suggest that indexing without spam is
more effective than standard indexing procedures com-
bined with post-retrieval spam removal, when consid-
ering retrieval measures such as ERR-IA, α-nDCG and
MAP.

An important observation is that indexing pruning
strategies are believed to harm retrieval performance,
e.g. [20], while obtaining gains in throughput. How-
ever, empirical results demonstrate that indexing with-
out spam prunes indexes without harming retrieval ef-
fectiveness: often our approach delivers better perfor-
mance than the other considered strategies.

Future work aims to extend this study by consider-
ing:

• more executions of the indexing procedures, so
as to obtain more reliable indications of the time
required for indexing in each experimental setting;

• ClueWeb part A, which consists of more than one
billion web pages. In particular, it is interesting
to explore whether the index statistics obtained
through the indexing without spam procedure
are sensibly more effective then those collected
by standard indexing procedures when used for
retrieving documents.

• a more systematic exploration of how document
removal affects retrieval effectiveness.

References
[1] Roi Blanco and Álvaro Barreiro. Static pruning of

terms in inverted files. In ECIR ’07, pages 64–75.
2007.

[2] David Carmel, Doron Cohen, Ronald Fagin, Eitan
Farchi, Michael Herscovici, Yoelle S. Maarek and
Aya Soffer. Static index pruning for information
retrieval systems. In SIGIR ’01, pages 43–50,
2001.

[3] Carlos Castillo, Debora Donato, Aristides Gionis,
Vanessa Murdock and Fabrizio Silvestri. Know
your neighbors: web spam detection using the

S2 S3

S1 th = 20 th = 45 th = 70 th = 95 th = 20 th = 45 th = 70 th = 95
ERR-IA@10 .0878 .1570 .1771 .1922 .1591 .1569 .1772 .1926 .1564
α-nDCG@10 .1495 .2427 .2571 .2666 .2195 .2425 .2571 .2669 .2168

MAP .1693 .1891 .1792 .1376 .0491 .1901 .1821 .1411 .0505

Table 4: Retrieval effectiveness of System S1, S2 and S3 for different values of th obtained when using LM2S.

S2 S3

S1 th = 20 th = 45 th = 70 th = 95 th = 20 th = 45 th = 70 th = 95
ERR-IA@10 .1452 .1824 .2016 2026 1531 1831 .2015 2035 .1496
α-nDCG@10 .2207 .2636 .2720 .2740 .2098 .2653 .2715 .2756 .2056

MAP .1528 .1492 .1338 .0984 .0390 .1498 .1360 .1012 .0392

Table 5: Retrieval effectiveness of System S1, S2 and S3 for different values of th obtained when using BM25.

web topology. In SIGIR ’07, pages 423–430,
2007.

[4] Olivier Chapelle, Donald Metlzer, Ya Zhang and
Pierre Grinspan. Expected reciprocal rank for
graded relevance. In CIKM ’09, pages 621–630,
2009.

[5] Charles L. A. Clarke, Maheedhar Kolla, Gor-
don V. Cormack, Olga Vechtomova, Azin Ashkan,
Stefan Buttcher and Ian MacKinnon. Novelty and
diversity in information retrieval evaluation. In
SIGIR ’08, pages 659–666, Singapore, 2008.

[6] C.L. Clarke, N. Craswell and I. Soboroff.
Overview of the trec 2009 web track. In Proc.
of TREC 2009, 2009.

[7] C.L.A. Clarke, N. Craswell, I. Soboroff and G.V.
Cormack. Overview of the trec 2010 web track.
In Proc. of TREC 2010, 2010.

[8] Gordon Cormack, Mark Smucker and Charles
Clarke. Efficient and effective spam filtering and
re-ranking for large web datasets. JIR, pages 1–
25, 2011.

[9] Claudia Hauff and Djoerd Hiemstra. University of
twente @ trec 2009: Indexing half a billion web
pages. In Proc. of TREC 2009, 2009.

[10] J. He, K. Balog, K. Hofmann, E. Meij, M. de Ri-
jke, M. Tsagkias and W. Weerkamp. Heuristic
ranking and diversification of web documents. In
Proc. of TREC 2009, 2009.

[11] Rianne Kaptein, Marijn Koolen and Jaap Kamps.
Result diversity and entity ranking experiments:
Anchors, links, text and wikipedia. In Proc. of
TREC 2009, 2009.

[12] J. Lin, D. Metzler, T. Elsayed and L. Wang.
Of Ivory and Smurfs: Loxodontan MapReduce
Experiments for Web Search. In Proc. of TREC
2009, 2009.

[13] Alistair Moffat and Justin Zobel. Self-indexing
inverted files for fast text retrieval. ACM Trans.
Inf. Syst., Volume 14, pages 349–379, October
1996.

[14] Alexandros Ntoulas, Marc Najork, Mark Manasse
and Dennis Fetterly. Detecting spam web pages
through content analysis. In WWW ’06, pages 83–
92, 2006.

[15] S. Robertson and H. Zaragoza. The probabilistic
relevance framework: Bm25 and beyond. Found.
and Tr. in IR, Volume 3, Number 4, pages 333–
389, 2009.

[16] K. Sparck-Jones, S. Walker and S. E. Robertson.
A probabilistic model of information retrieval:
development and comparative experiments: Part
1. IP&M, Volume 36, Number 6, pages 779 –
808, 2000.

[17] T. Strohman, D. Metzler, H. Turtle and W. B.
Croft. Indri: A language model-based search
engine for complex queries. ICIA ’04, 2004.

[18] Chengxiang Zhai and John Lafferty. A study of
smoothing methods for language models applied
to ad hoc information retrieval. In SIGIR ’01,
pages 334–342, 2001.

[19] ChengXiang Zhai and John Lafferty. Two-stage
language models for information retrieval. In
SIGIR ’02, pages 49–56, 2002.

[20] Lei Zheng and Ingemar Cox. Entropy-based static
index pruning. In ECIR ’09, pages 713–718. 2009.

