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Abstract. Offshore wind farms are progressing further offshore and into deeper waters, 

presenting the need for new substructures, including floating offshore wind turbines. These 

floating turbines will require dynamic cables to run through the water column, exposing them to 

the dynamic loadings of the marine environment. This paper presents a tool which models the 

stresses across a dynamic cable cross section’s insulation layers when attached to a floating wind 

platform. Differing wave, wind and current flow conditions are applied and their impact on the 

stress distributions of the dynamic cable’s insulation layers are presented. Finally from these 

stress histories, accumulated fatigue damage of the insulation is calculated and presented. The 

outcome of this can be used to estimate fatigue damage of a cable components cross section at any 

point along the cable length, and aid in cable installation configuration decisions. 

1.  Introduction 
Offshore wind farms are progressing to having larger turbines installed as a cost effective means to 

reduce the cost of energy. These larger wind farms are moving further from shore and into deeper water 

depths. This move is presenting the need for new substructures including floating platforms for offshore 

turbines. Floating platform wind turbines are envisioned to be installed in water depths ranging from 

50m to 200m, with the Carbon Trust estimating up to 90MW of floating wind farms are to be installed 

in UK waters by the end of 2018 [1].  

Floating platforms will introduce new challenges for the umbilical, or array, cables that hang from 

the base of the platform to the seabed. This cable installation arrangement will expose the cables to the 

dynamic forces of the environment they would be installed in, including the actions of the waves, current 

flows and movement of the platform itself in response to wind/turbine interactions. Cables exposed to 

dynamic environmental loadings will experience dynamic mechanical stresses across their cross sections 

and along their length. This is a new operating consideration as traditional fixed bottom platforms have 

allowed cables to operate statically.  

The causes of cable failures during normal operation, and excluding third party interference, can be 

approximately grouped into mechanical damage, water ingress and overheating which all lead to 

electrical failure or breakdown of the insulation layers [2]. A renewable energy insurance provider [3] 

highlights that most cable failure claims are related to incorrect installation, incorrect operation or  

electrical faults. As dynamic cables will be exposed to dynamic environments and the corresponding 
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force loadings, they are at higher risk of cable failure with more expected to fail during normal service 

lifetime.  

The impact of dynamic loadings on the fatigue characteristics of dynamic cables has been 

investigated by [4], [5], [6] while mechanical fatigue due to environmental loadings is shown to be a 

concern as a propagating mechanism for water treeing in the cables insulation layers [7], [8]. The impact 

of differing cable bending and axial stiffness on cable fatigue damage was investigated by [9]. The axial 

and bending stiffness of a cable affects the cables motions in response to the dynamic environment, 

where having a larger stiffness reduces the cable motion. The inter-wire friction between helically 

wound armouring layers is found to be a determining factor in cable bending stiffness [10] while [11] 

investigated the impact of armouring radius reduction effects on cable axial stiffness when under 

tension. Similar findings are reported in [12] when comparing calculated cable axial stiffness which 

account for radius reduction or not.  

This paper presents an assessment of the marine environment at a chosen site and presents a model 

which determines how the mechanical stresses across the cable cross section distribute when installed 

in this environment. A fatigue assessment of the cable insulation layers is completed and conclusions 

are drawn from the accumulated damage in differing dynamic environment loadings. 

The approach presented begins with an assessment of the environment to determine the wave, wind 

and current loadings on the cable as detailed in section 2. An introduction to the software used and the 

created model is given in section 3. Section 4 provides details on how the damage is determined from 

the created model. Results from the model and calculated damage are presented in section 5, while 

section 6 gives a discussion of these results. Section 7 draws conclusions from the work, and finally 

section 8 highlights ongoing work. 

2.  Environmental Loading Assessment 

Wave and current flow data from sites off the north east coast of England, as shown in Figure 1, was 

obtained and analysed. Wave data was obtained from a wave buoy placed at a site in 90m water depth, 

while current data was obtained from a 56m water depth site by an acoustic wave and current profiler, 

AWAC. Wind speed data correlated to wave height was obtained from two locations based in the central 

North Sea from the NEXT study, an extension of the North European Storm Study, NESS [13]. Briefly, 

NESS was initiated to produce a hind cast database of winds, waves and currents for the North European 

continental shelf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Locations of the AWAC, 1, the wave buoy, 2, and the 

NEXT model locations, 3 and 4. 



3

1234567890 ‘’“”

Global Wind Summit 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1102 (2018) 012016  doi :10.1088/1742-6596/1102/1/012016

 

 

 

 

 

 

The locations of the wave buoy, AWAC and NEXT study sites were determined to be within the 

same coarse grid of the central North Sea. Therefore it was assumed the environment exhibited at each 

site would be similar, meaning the wave environmental data captured at the wave buoy site would be 

the same wave data that would be captured at the AWAC site or the NEXT sites, and vice versa. The 

water depths at the sites were differing, so the captured current flow speed data was fitted to the power 

law velocity profile using equation 1 [14] , assuming a shear profile due to seabed roughness. This was 

then extrapolated, allowing for current velocity calculations at other water depths: 

 
𝑈𝑧

𝑈𝑚𝑎𝑥
=  (

𝑍

𝐻
)1/𝑛 

(1) 

  

Where Uz is the water velocity in ms-1 at point Z, Umax is the maximum water velocity in ms-1. Z is 

the vertical position from the seabed in m, H is the full tidal depth in m and n is the power law coefficient. 

To use wind data near the wave data site it was necessary to assume that the wind generated the 

waves and thus the wave height was directly related to the wind speed. The NEXT data sites present 

wave height binned with a corresponding wind speed 10m above sea level. This data was used to create 

a best fit curve that could be used to back calculate a corresponding wind speed for the wave heights 

recorded by the wave buoy. For this reason it was also assumed that the wind and waves were coming 

from the same general directions.  

This model includes a tension legged floating wind platform incorporating the NREL 5MW turbine. 

This turbine has a hub height of 90m, therefore by using the equations laid out in the guidelines for the 

certification of offshore wind turbines [15] the wind speed at the hub height was calculated using: 

 

𝑉𝑧 = 𝑉ℎ𝑢𝑏(
ℎ

ℎℎ𝑢𝑏
)∝ 

(2) 

 

Where Vz is the wind speed at height h in ms-1, h is the height about still water line in m, hhub is the 

hub height above still water line in m, and α is the power law exponent, [15] assumes that α is equal to 

0.14 for all wind speeds.  

 

3.  Dynamic Cable Model 

To understand the stresses that the loading environment would impose upon a dynamic cables cross 

section, the whole floating platform system needs to be analysed initially as a global model. The output 

from the global model can then be used to simulate the stress distributions and time history for a local 

mechanical model of the cable cross section.  

Details of this model can be found in [16] however for clarity a condensed version of the essentials 

will be provided here.  

3.1.  Global Dynamic Model 

This model was created using the proprietary marine dynamics software OrcaFlex by Orcina. OrcaFlex 

was used to estimate the loadings on the dynamic cables installation length in response to the actions of 

the waves, currents, wind and the movements of the floating platform itself. For this work the cable was 

split into 0.5m lengths and the software employs a lumped mass approach to solve the cables dynamic 

behaviour. 

Required inputs for the dynamic model include the environmental loadings and properties of the 

cable, including its geometry, length, axial and bending stiffness’s.  

The MIT/NREL reference 5MW tension leg platform [17] is included in this work and its movements 

modelled. This is a platform of 18m waterline depth and almost 50m draft. It has four 27m long 

pontoons, each having two mooring lines attached to its end. Fastlink is a FAST-OrcaFlex interface 

package that couples the software OrcaFlex with FAST. The hydrodynamics of the cable are modelled 
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using OrcaFlex. The NREL 5MW reference turbine, tower, floating platform and structural dynamics, 

aerodynamics control and electrical drive dynamics are modelled using FAST. This allows for the 

coupling of the effects of the wind on the turbine with the effects of the waves and currents on the 

platform.  

3.1.1.  Dynamic Cable. The cable modelled for this work is based on 280m length of a JDR dynamic 

cable [18] used in previous oil and gas applications. Figure 1 gives some of the cables mechanical 

parameters. The cable axial stiffness was calculated using works laid out in [11], and the bending 

stiffness using [10]. 

 
Table 1. Mechanical Parameter of the Dynamic Cable. 

 

 

 

 

 

 

 

 

 

 

 

3.2.  Mechanical Model 

The mechanical model is used to determine the stress time histories and distributions across the cables 

cross section. This local model uses the outputs of the global dynamic model to allow the user to 

determine the stresses acting on individual cable components, highlighting areas of greatest mechanical 

stress. Plane and shear stresses are calculated for each of the cables six degrees of freedom as well as 

combined into a von Misses stress.  

3.2.1.  Finite Element Analysis. A finite element analysis, FEA, of the cable cross section was 

constructed using ANSYS Mechanical software. This proved an effective method to determine the 

interactions between different components of the dynamic cables cross section. Similar works on 

dynamic umbilical cables [19], [20] both used an alternative FEA software called UFlex2D. This is a 

custom built software for umbilical cross sections however ANSYS was used here for its coupling 

abilities with OrcaFlex. 

3.3.  Model Assumptions 

To balance accuracy and computational expense some assumptions were made during this analysis. The 

cable stiffness was assumed to come from the cable armouring layers. The armouring layers were 

simplified to thin walled cylinders for the mechanical model, similar to [9]. This assumption follows the 

thought that the armouring layers are always in stick mode rather than slip mode so that individual 

armouring wires do not slide over one another during operation. The cable component materials were 

assumed to be linear elastic and that they were glued together in the FEA, meaning they could not 

penetrate another components surface.  

 

4.  Fatigue Damage Calculations 

An output from the mechanical model are the stress histories of the components of the dynamic cables 

cross section. A stress based approach to fatigue was used as the stresses exerted upon the cross section 

are lower than the design yield stresses of the cable component materials.  

  

Mechanical Properties 

Outer Diameter 154mm 

Outer Sheath Material Extruded Polyethylene 

Cable Armouring Galvanised Steel Wire 

Minimum Bend Radius 

Safe Working Load 

Diameter to Weight Ratio 

 

2000mm 

250kN 

4.27m2/Te 



5

1234567890 ‘’“”

Global Wind Summit 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1102 (2018) 012016  doi :10.1088/1742-6596/1102/1/012016

 

 

 

 

 

 

Accumulated fatigue damage of the dynamic cable insulation layers are calculated using the Palmgren-

Miner linear damage rule, equation 3, and the corresponding S-N curve for that material. 

 

 

𝐷 = ∑
𝑛𝑖

𝑁𝑖

𝑘

𝑖=1

 

(3) 

 

Where for k different stress levels and the average number of cycles to failure at the ith stress, Si, is Ni 

and ni is the number of cycles are accumulated stress Si. No fatigue limits were set for this initial work 

as compression and tension are both assumed to contribute to fatigue. The S-N curve used for the XLPE 

insulation layers was obtained from [8]. 

 

5.  Results 

5.1.  Environmental loading Assessment 

Using the data from [13] the relationship between the significant wave height and the wind speed is 

plotted in Figure 2. This plot allows for the determining of the wind speed for the wave heights recorded 

by the buoy. Figure 3 shows a binned scatter plot of the significant heights and zero crossing period of 

the waves recorded by the buoy.  

 

 
Figure 2. Relationship of wave height to wind speed. 

 

Using the recorded wave heights from Figure 3, and equation (2), the wind speeds the turbine is exposed 

to are presented in table 2. 

  

Figure 3. Binned scatter plot of significant wave height and 

zero crossing period. 
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Table 2. Corresponding wave heights and wind speed. 

  

Significant Wave 

Height(m) 

Wind Speed 
10m asl (ms–1) 

0.25 2.2 

0.75 5.1 

1.25 7.4 

1.75 

2.25 

2.75 

3.25 

3.75 

4.25 

4.75 

9.5 

11.5 

13.4 

15.1 

16.8 

18.5 

20.1 

 

From these results, the largest wind speed the turbine would face 10m asl is 20.1ms-1, roughly 

corresponding to gale force winds and a Beaufort Force of 8 on the Beaufort scale.  

The wave directions were also recorded by the wave buoy and are presented in a wave direction rose 

shown in Figure 4. As the NESS model sites did not provide much information to back calculate the 

wind directions, the winds and waves are assumed to come from the same direction for this work. 

 

     From figure 4 it can be seen that the wave direction is predominantly from the North, so for the model 

the waves and therefore wind are assumed to be coming from one direction only. 

     The data recorded by the AWAC was used to determine the current magnitude and direction and is 

presented in Figure 5. From this it can be seen that the current direction is approximately bi-directional, 

traversing up and down the North East of England coastline. The average current speed for each 

recorded water depth was calculated and extrapolated to a 200m water depth with the curve plotted in 

Figure 6. This curve was compared to the theoretical current profile calculated using equation (1).  

Figure 4. Wave rose of wave directions and height Figure 5. Current rose of current direction and speed 
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Figure 7 illustrates how each wave loading scenario was subdivided by current speed and directions. 

This plot was generated based on the assumption that the current flow is bi-directional and accelerates 

and decelerates from 0.3ms-1 in one direction to 0.3ms-1 in the other, similar to results found in [21].  

From the calculated results the following environmental loading conditions were used for the model. 

 
Table 3. Environmental Loadings 

  

Environmental Loadings 

Wave height (m) 0.25 – 4.75 

Wave period (s) 0.25 – 9.75 

Wave direction (0) 15 

Wind Speed (ms-1) 

Wind Direction (0) 

Current Speed ms-1 

Current Direction (0) 

 

2.2 – 20.1 

15 

0-0.3 

165 and 335 

 

5.2.  Dynamic Cable Model Output 

Similar to works presented in [16] and [4], the hang off point of the cable is an area of concern for 

fatigue. Further investigation of the stress distributions and accumulated damage at this point 

specifically shall be given in these works, however it should be noted that any point along the length of 

the cable can be chosen. 

 

Figure 6. Current velocity profile with water depth Figure 7. Subdivisions of wave loadings by current speed and direction 

Figure 8. Stress distributions at hang off point. Figure 9. Stress time history at most damaged location. 
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Figure 8 shows the von Misses stress distributions of the cross linked polyethylene, XLPE, insulation 

layers at the cable hang off point. While any component of the cable cross section can be investigated, 

the XLPE layer shall be looked at specifically for further analysis. The stresses of the insulation layers 

are investigated due to concerns of water tree growth. It should be noted that for any cable component 

the plane or shear stresses can be deduced. Figure 8 is plotted using the outputs of the global dynamic 

model including, effective tension, x-bend moment, y-bend moment etc. and coupling them with the 

local mechanical model.  

From the distribution, the stress time history of each location can be extracted. Figure 9 shows the 

stress time history of the XLPE location that experienced the most damage. It should be noted that the 

first 30 seconds of each simulation was discarded to allow for environment ramp up avoid the large 

stress amplitudes due to the platform moving from an initial stationary position.    

5.3.  Fatigue Damage  

For each location the time history can be extracted, and the accumulated fatigue damage can be 

calculated using equation (3). This allows for the distribution of fatigue damage across the cable 

insulation layers to be plotted, shown in figure 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows the previously calculated wave spectrum, but with the most frequently occurring 

waves circled. Figure 12 shows the damage calculated for each of these wave conditions. It should be 

noted that these total damages incorporate the damages calculated for each of the current velocities and 

directions as depicted in Figure 7, but does not account for the occurrence of each wave type. 

  

Figure 10. Log scale distribution of fatigue damage. 

Figure 11. Wave spectrum distribution with greatest 

probability conditions highlighted. 

Figure 12. Calculated fatigue damage for the highlighted 

wave spectrum conditions. 
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6.  Discussion 

The presented work can be used to give an estimation of the fatigue damage of any component of a 

dynamic cable’s cross section. This work focused on the von Misses stress distribution, σvm, of the 

dynamic cable’s insulation layers and assumed that in these preliminary works that both compression 

and tension contributed to damage within the cable insulation layers. Work was completed to deduce 

the impact of varying wave heights, periods and current velocities on the mechanical fatigue damage of 

the insulation layers of a dynamic cable. It was found that greater wave heights resulted in a greater 

level of fatigue damage. This could be contributed to greater wave heights causing a greater heave of 

the floating platform, therefore increasing the tension on the dynamic cable.             

     It was found that a longer wave period increases the fatigue damage calculated. This is contrary to 

the thought that a greater wave frequency would inhibit the platform from returning to its undisturbed 

position, keeping the cable in a state of stress. While wave celerity does increase with wave period, the 

orbital, or horizontal velocities, of the water particles decrease with wave period. These velocities can 

determine the force of the impact of the waves on the floating platform using Morrison’s equation, where 

the force in the x-direction on a body in unsteady flow with velocity U(t) is:  

 

𝐹𝑥(𝑡) = 𝜌𝐶𝑚𝑉U̇ + 
1

2
𝜌𝐶𝑑𝐴 |𝑈|𝑈 

 

 

(4) 

Where V is the body volume in m3, 𝜌 is the mass density of the fluid in kgm-3, U̇ is the flow acceleration 

in ms-2, A is the body reference area in m2, Cd and Cm are the drag and momentum coefficients 

respectively. 

Using equation 4, it can be quickly deduced that a reduction in velocity would result in a reduced 

force exerted on the platform from the waves, thus reducing the displacement of the platform. From 

figure 12 the wave periods ranging from 3.75s to 5.25s were investigated to determine the displacements 

of the floating platform, shown in table 4.  

 
Table 4. Displacement of floating platform at varying wave period and wave height 1.25m 

Wave Period Tz (s) Average X 

displacement (m) 

Average Y 

displacement (m) 

Average Z 

displacement (m) 

Damage 

3.75 3.34 -0.081 -0.037 0.0013 

4.25 3.34 -0.080 -0.037 0.0013 

4.75 3.35 -0.080 -0.037 0.0019 

5.25 3.34 -0.08 -0.037 0.0024 

 

From table 4 it is seen that at varying wave periods the average platform displacement minimally 

changed, if at all, however the damage of the dynamic cable insulation layers increased. This increase 

in damage can perhaps be explained by a greater frequency of platform movement. If a closer look is 

taken at the stress time histories of the most damaged insulation locations, it can be seen that a wave 

period of 5.25s compared to a period of 3.75s, produces a stress history with more stress amplitudes, 

evident in the jagged plot for the 5.25s wave period shown in figure 13. This greater stress frequency 

can perhaps be due to the period of the waves matching the eigen period of the system, however this has 

not been investigated in any detail.  
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Figure 13. Stress time histories of the cable insulation at differing wave periods 

It is important to note that the magnitude of the fatigue damage of the insulation layers is small. This is 

to be expected as the armouring layers surrounding the insulation layers are protecting them from 

damage. However when the extreme cases were simulated for a Hs of 4.75m and a Tz of 7.75s, the 

fatigue damage calculated was much larger than 1, indicating a cable failure, even of the insulation 

layers. Unfortunately this result was omitted from figure twelve due to its fatigue value being much 

larger than the others. As figure 12 shows the fatigue damages scaled to one another, this distorts the 

plot and results in the details of the smaller fatigue differences being lost. Furthermore as this work is 

the initial steps in analysing water treeing within the insulation layers, extreme wave conditions would 

cause a cable failure outside of that of water treeing.  

When considering the impact of varying current speeds and directions it was found that when the 

current is travelling up the coast in Figure 1 (direction 1650) the damage is greater than when it is 

travelling in the opposite direction, 3350. It can be seen that when the current speeds are at their greatest 

in the tidal cycle, this also corresponds to a greater level of cable insulation fatigue damage. This output 

from the model could be used in the future to aid in cable installation layout and orientation decisions 

to reduce cable fatigue.  

     While this work presented von Misses stress distributions, the model allows the user to look at 

individual plane or shear stresses a component experiences. When these individual stresses are looked 

at for a particular environmental loading, it can be see that the largest contributing stress is σzz as seen 

in table 5. 

  
Table 5. Magnitude of insulation fatigue damage at most damaged insulation location due to corresponding stress type. 

  

Stress Type                          Fatigue Damage 

σxx 4.53e-41 

σyy 5.28e-50 

σzz 5.15e-06 

σxy 

σyz 

σxz 

2.74e-46 

4.65e-25 

3.41e-30 

σvm 9.00e-06 
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In this case, this highlights that it is cable bending that contributes to insulation fatigue at the hang 

off point, rather than cable tension.  

Unless in extreme storm conditions, the fatigue damage of the cable insulation calculated was very 

small. This could be a weakness in the model being under conservative. However it is important to note 

that the cable modelled was a dynamic cable used in historic oil and gas applications, and would have a 

much larger cable axial and bending stiffness than one that would be used for floating offshore wind 

applications. A further weakness of the model is that for the fatigue damage on the insulation layers, 

only one S-N curve could be found in previous works. To give a greater credibility to the results a larger 

number of S-N curves would have been desirable.  

7.  Conclusions 

This work presents a method to determine mechanical fatigue damage across a dynamic cable’s cross 

section, specifically the insulation layers, when exposed to a dynamic marine environment. It can be 

used as a tool to compare the insulation fatigue damage at differing lengths along the cables length. 

Individual components of the cable cross section can be investigated, giving way to a more 

comprehensive fatigue assessment of dynamic cables. 

     It was found that increasing wave height increases cable insulation fatigue damage in deep water 

applications. Increasing current velocities also increases cable insulation fatigue damage. Current 

direction plays a role in cable insulation fatigue damage, aiding in installation arrangement decisions. 

Finally, the works suggests that it is the stresses due to cable bending, as opposed to tension that 

contribute most to a dynamic cable’s insulation fatigue damage. 

 

8.  Future Work 

The next stages of this work is to use the most damaged cable insulation locations as initiation points of 

insulation water treeing. Using the stress cycles calculated within these works is hoped to allow for the 

modelling of cracks within the insulation as propagating mechanisms of water treeing.  

     The electrical stresses across the insulation layers are then to be modelled. It is envisioned this work 

serves at the first step in the development of a coupled mechanical and electrical fatigue model of 

the cable insulation which considers both mechanical stresses and electrical stresses due to the cable 

being energized.  
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