Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Hot embossing of polypropylene micro-tubes into functional tubular components with controlled inner-pore sizes

Zhao, Jie and Qin, Yi (2018) Hot embossing of polypropylene micro-tubes into functional tubular components with controlled inner-pore sizes. MATEC Web of Conferences, 190. ISSN 2261-236X

Text (Zhao-Qin-MATEC-2018-Hot-embossing-of-polypropylene-micro-tubes-into-functional-tubular)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview


    To meet ever-increasing demands on the micro-components for medical and non-medical applications, a new micro-shaping technology - “hot embossing of micro-tubes”, had been developed for the forming of polymeric tubular micro-components. The paper presents the results from the forming of Polypropylene(PP) micro-tubes with outer diameters of 1.3mm and inner diameters 0.6mm, to achieve various reduced inner-features. The study was effected by combining experiment, numerical simulation and SEM analysis. FE simulation was implemented by using the material data obtained from the material characterisation tests. The forming experiment was conducted with a high-precision hot-embossing machine, developed in-house, with automated handling and good reliability and repeatability. The Polypropylene (PP) micro-tubes were successfully formed into the desired features at the temperatures of 60°C and 100°C respectively. The influences of the parameters/factors, such as tool design, temperature, forming pressure and holding time, on the quality of the shaped parts, are discussed in details. Based on this study, it is concluded that PP is an ideal candidate material among the polymeric materials for hot embossing of tubular micro-components, due to its good ductility, low transition temperature and low viscosity.