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Abstract: Wavelet-based techniques have been widely used to extract partial discharge (PD) signals from 

noisy signals. Generally, the procedure consists of 3 steps: wavelet selection, decomposition scale 

determination, and noise estimation. Wavelet selection is the first and most important step for its 

successful application in PD denoising. However, despite many variants of techniques deployed, the 

success rate is not generally good especially when the signal to noise ratio is unity or less. This paper 

discusses a novel technique that addresses this issue. The technique is inspired by the concept of Shannon 

entropy and the associated information cost functions (ICF) in information theory. It is adaptive to the 

detected PD signals. The paper demonstrates that the proposed technique is effective when applied to PD 

signals obtained through laboratory experiments and on-site measurements. When this technique is 

applied to cable diagnostics, it should have the potential to extend the range of PD detection from cables. 

 

Index Terms: Denoising, detection, partial discharge, wavelet selection, wavelet entropy 

 

1. Introduction 

Partial discharge (PD) measurement is an effective technique for the monitoring of electrical insulation. 

However, PD signals are normally contaminated by noise from the environment, which increases the 

difficulty of their detection. To effectively extract PD signal from noisy signals, various denoising 

techniques, such as adaptive filter [1], [2], and the wavelet-based technique [3]–[7], have been adopted 

to remove noise. The wavelet-based technique has been widely used in recent years since wavelet 

transform can simultaneously provide signal information both in time and frequency domains. This 

advantage is particularly useful for the processing of non-stationary signals, e.g., PD signals.  

It is a desirable property that a denoising technique can maximize the elimination of the noise while 

minimizing the loss of the information-bearing signal of interest. In the case of wavelet-based denoising 

technique, a noisy signal is decomposed into multi-scale wavelet coefficients by a selected basis function. 

Those wavelet coefficients associated with noise are processed by an estimated threshold, and thus, the 

significant features of the signal of interest are retained. Reconstruction is then performed to build the 

denoised signal. Based on the processes of decomposition and reconstruction, wavelet-based denoising 



is determined by three aspects: the choice of wavelet, decomposition scale, and noise or threshold 

estimation. The choice of a suitable wavelet basis function is the first, and most, significant step for the 

application of wavelet-based denoising as the wavelet can be translated and scaled to represent the signal 

of interest as effectively as possible. In practice, different denoised signals are obtained by using different 

wavelet basis functions [8]. This technique is also applied to the field of wavelet-based PD denoising. As 

such, the investigation of an appropriate wavelet basis function for wavelet-based PD denoising has been 

performed in [9], [10]. 

A wavelet selection scheme was introduced in [9] based on the correlation coefficient between a 

known PD signal and wavelet waveform. This scheme is termed correlation-based wavelet selection 

scheme (CBWSS). The optimal wavelet is desired to generate the highest wavelet coefficients in wavelet 

analysis of PD signals, and thus, the essence of PD signal of interest can be effectively preserved. Based 

on this, the wavelet that can maximize the correlation coefficient is selected as the most appropriate 

wavelet for PD denoising. This approach for best wavelet selection, however, has an inherent limitation, 

it requires prior knowledge of PD waveforms. The waveform of PD signals depends on: the type and 

location of PD sources, propagating medium and path, and the detecting circuit. The variability of PD 

waveforms impedes the application of CBWSS for online PD monitoring systems. Also, it is not a scale-

dependent wavelet selection scheme. The denoised PD signal may not be as good as expected. The most 

significant drawback, however, is that the PD signal is normally corrupted by the noise in the 

environment, which can lead to the selected wavelet being a match of the noisy PD signal rather than the 

pure PD signal, especially when the signal to noise ratio (SNR) is very low. In an attempt to overcome 

the limitation mentioned above in CBWSS, a scale-dependent energy-based wavelet selection scheme 

(EBWSS) was presented in [10]. The wavelet that can maximize the energy ratio of approximation 

coefficients at each decomposition scale is selected as the best wavelet. It has been demonstrated to 

outperform CBWSS [10]. In EBWSS, two typical PD waveforms, damped exponential PD pulse (DEP) 

and damped oscillating PD pulse (DOP), were used to demonstrate the energy criterion for the optimal 

wavelet selection. With further exploration in details of EBWSS, it has been found that the criterion is 

not strictly true for DOP signals, particularly when the decomposition scale increases. The motivation of 

this paper is therefore to provide an automated and data-driven selection scheme for the best wavelet 

selection in the context of PD denoising.  

In this paper, the new wavelet selection scheme is inspired by the concept of Shannon Entropy [11], 

and the associated information cost functions (ICF) in information theory [12]–[14]. An ICF can select 

the best wavelet to expand a signal in wavelet domain. Wavelet entropy, derived from Shannon Entropy, 

can measure the randomness of the wavelet coefficients at each decomposition scale. The smaller the 

wavelet entropy, the lower the randomness of the wavelet coefficients. As such, the new selection scheme 

is proposed with the combination of ICF and wavelet entropy, and termed wavelet entropy-based wavelet 

selection scheme (WEBWSS). Simulated PD signals, i.e., DEP and DOP, PD signals obtained through 

laboratory experiment using test samples with artificial defects and on-site PD measurements are used to 

demonstrate the performance of this novel wavelet selection scheme. Results show that it is a promising 

wavelet selection scheme to improve the effectiveness of PD denoising. 

 



2. Wavelet-Based Technique 

2.1 Wavelet Theory 

Wavelet transform (WT) is an alternative approach to traditional methods, e.g. Fourier Transform, in 

signal processing. The major advantage of WT is that it can map a signal in the time-frequency plane. 

Due to this advantage, WT is a promising technique in the analysis of variations in signals or images 

with the requirements of both time and frequency information. WT can be interpreted as an expansion or 

decomposition of signals or images in terms of a wavelet that can be scaled in an auto-similar way [15]. 

The orthogonal property of the wavelet used for the expansion or decomposition is the essence in WT. 

Generally, WT is achieved through the application of continuous wavelet transform (CWT) or discrete 

wavelet transform (DWT). DWT is preferable due to its representation of signals or images through its 

DWT coefficients without redundancy and, thus, is using less computational time. In this paper, the 

wavelet-based technique referred to is the DWT.  

In [15], the wavelet expansion of a signal x can be expressed as  

𝑥 =∑∑𝐶𝑗,𝑖 ∙ 𝜓𝑗,𝑖  ,

𝑗𝑖

                     (1)     

where both i and j are integer, i is the time-delay index and j is the scale index.  {𝜓𝑗,𝑖} is the expansion 

set of wavelet basis functions, and {𝐶𝑗,𝑖} is the set of expansion coefficients, or wavelet coefficients, 

which is called the discrete wavelet transform of x. The expansion in (1) is the inverse discrete wavelet 

transform (IDWT). The scheme of DWT for signal decomposition is depicted in Figure 1. A signal is 

convolved with the low- and high-pass filters and followed by a downsampling operation by 2. In signal 

processing terminology, the outputs of the low- and high-pass filters are termed approximation and detail 

coefficient respectively. The approximation coefficient is used as the input signal for next-scale 

decomposition. This decomposition is iterated until the predefined scale, 𝐽, reaches. It is important to 

note that the maximum decomposition scale 𝐽𝑚𝑎𝑥 is defined as log2(N), where N is the length of the 

input signal. The reconstruction of the input signal, i.e., inverse DWT (IDWT), is a reverse operation as 

shown in Figure 1. Instead of downsampling in DWT, upsampling is involved in IDWT. Figure 2 shows 

the processes of IDWT for signal reconstruction. To obtain perfect signal reconstruction, the low- and 

high-pass filters are designed as quadrature mirror filters (QMFs). 

 

PLACE FIGURE 1 HERE 

PLACE FIGURE 2 HERE 

 

Equally, the implementation of DWT in signal decomposition also can be interpreted in the frequency 

domain. As shown in Figure 1, the DWT process is equivalent to filtering the signal by the filter pairs, the low-

pass filter h and the high-pass filter g. Ideally, these filter pairs halve the frequency band with the increase of 

scale. Let fs be the sampling frequency of the input signal, the frequency band, G1(w), of the output of the high-

pass filter is fs/4 ~ fs/2, while the frequency band, H1(w), of the output of the low-pass filter is 0 ~ fs/4. For next 

scale, H1(w) is further split into G2(w) and H2(w), which are fs/8 ~ fs/4 and 0 ~ fs/8, respectively. The frequency 

band is iteratively halved in the subsequent decomposition in the same manner until the predefined scale 

reaches. For a J-scale DWT, the distribution of the corresponding frequency bands is shown in Figure 3. It can 



be seen that the frequency band of low-pass filter is 0 ~ fs/2J+1 and the frequency band of high-pass filters is 

fs/2J+1 ~ fs/2 for a full-scale decomposition. 

PLACE FIGURE 3 HERE 

 

2.2 Wavelet-based Denoising  

The wavelet denoising theory is dependent on the fundamental idea that the energy of a signal is often 

concentrated in only a few coefficients while the energy of noise is widely spread among all the coefficients 

in the wavelet domain [9], [16], [17]. General procedures for the wavelet-based denoising of a signal are 

presented as follows: 

1) Apply DWT to decompose the noisy signal s with a selected wavelet to a predefined scale J, and obtain 

approximation coefficients 𝑎𝐽 at the final scale J and detail coefficients 𝑑𝑗 at decomposition scale j, 

where j = 1, 2, ..., J. 

2) Estimate the threshold through a noise estimation technique and apply this threshold to detail coefficients, 

𝑑𝑗, at decomposition scale j using hard or soft thresholding scheme.  

3) Apply IDWT to the approximation coefficients 𝑎𝐽  and the processed detail coefficients 𝑑𝑗
′  to 

reconstruct the denoised signal 𝑠′. 

Based on the noise estimation technique proposed in [9], [18], the scale-dependent threshold used in this 

paper is estimated by 

     𝑡ℎ𝑟𝑗 =
𝑀𝐴𝐷|𝑑𝑗|

0.6745
√2log (𝑛𝑗) , (2) 

where 𝑀𝐴𝐷|∙| is the median absolute deviation of the detail coefficients  𝑑𝑗 at decomposition scale j, and 

𝑛𝑗 is the length of 𝑑𝑗. For the thresholding scheme, soft thresholding in [18] is used in this paper, the function 

is given by  

𝑑𝑗,𝑖
′ = {

𝑠𝑔𝑛(𝑑𝑗,𝑖)(|𝑑𝑗,𝑖| − 𝑡ℎ𝑟𝑗)  𝑖𝑓 |𝑑𝑗,𝑖| > 𝑡ℎ𝑟𝑗

                             0               𝑖𝑓 |𝑑𝑗,𝑖| ≤ 𝑡ℎ𝑟𝑗
 , 

(3) 

where 𝑖 = 1,2, … , 𝑛𝑗 . 

 

2.3 Wavelet Entropy 

The concept of wavelet entropy was derived from Shannon entropy and presented in [19]. Suppose {𝐶𝑗,𝑖} 

are the wavelet coefficients obtained through a J-scale wavelet transform, in which j represents the 

decomposition scale and 𝑗 = 1, 2, … , 𝐽, i denotes the ith element in 𝐶𝑗,𝑖 and 𝑖 = 1, 2, … , 𝑛𝑗 , 𝑛𝑗  is the length 

of wavelet coefficients at scale j. The energy of wavelet coefficients at the decomposition scale j can be 

calculated by 

𝐸𝑗 = ∑|𝐶𝑗,𝑖|
2

𝑖

 .                          (4) 

The distribution of energy probability for wavelet coefficients at scale j can be derived by   

 𝑝𝑖 =
|𝐶𝑗,𝑖|

2
 

∑ |𝐶𝑗,𝑖|
2

𝑘  
=  
|𝐶𝑗,𝑖|

2

𝐸𝑗
 

 

                         (5) 

with  ∑ 𝑝𝑖 = 1𝑖 . Wavelet entropy 𝑊𝐸(𝑗) is defined as follows [19]: 



𝑊𝐸(𝑗) =  −∑𝑝𝑖 ln(𝑝𝑖)

𝑖

 . (6) 

Similar to Shannon entropy, wavelet entropy is applied to measure the degree of disorder of wavelet 

coefficients or signify the randomness of wavelet coefficients. It is important to note that wavelet entropy is 

not an information cost function (ICF), since it requires the energy of wavelet coefficients to be 

normalized as shown in (5), and is thus not additive [13], [14]. Substituting (5) into (6) yields: 

𝑊𝐸(𝑗) = ∑𝑝𝑖 ln (
1

𝑝𝑖
)

𝑖

 
 

 

=  ∑
|𝐶𝑗,𝑖|

2
 

𝐸𝑗  
ln

𝐸𝑗

|𝐶𝑗,𝑖|
2

𝑖

 

 

 

= 
1

𝐸𝑗  
(∑|𝐶𝑗,𝑖|

2
ln 𝐸𝑗 +∑|𝐶𝑗,𝑖|

2

𝑖

ln
1

|𝐶𝑗,𝑖|
2

𝑖

) 

 

 

= ln𝐸𝑗 +
1

𝐸𝑗  
(∑|𝐶𝑗,𝑖|

2

𝑖

ln
1

|𝐶𝑗,𝑖|
2

⏞          
𝑙

) 

 

 
= ln𝐸𝑗 +

𝑙
𝐸𝑗
⁄  . 

(7) 

In (7), 𝑙 is an ICF based on the definition in [13]. As such, wavelet entropy is a monotonic-increasing function 

of 𝑙, which means minimizing 𝑙 over wavelet coefficients minimizes wavelet entropy. 

 

3. Partial Discharge Signals 

Two theoretical PD pulses, i.e., damped exponential PD pulse (DEP) and damped oscillating PD pulse 

(DOP), are simulated using their mathematical frames derived based on two different PD detecting circuits 

[4], [10]. In this paper, DEP and DOP are given by the formula in [10]: 

𝑠1(𝑡) = 𝐴(𝑒
−𝛼1𝑡 − 𝑒−𝛼2𝑡), (8) 

𝑠2(𝑡) = 𝐴(𝑒
−𝛼1𝑡𝑐𝑜𝑠(𝑤𝑑𝑡 − 𝜑) − 𝑒

−𝛼2𝑡𝑐𝑜𝑠𝜑), (9) 

where 𝑠1(𝑡) and 𝑠2(𝑡) are the DEP and DOP respectively. The values of 𝐴, 𝛼1 , 𝛼2 , 𝑓𝑑 , 𝑤𝑑  and  𝜑 

used in these two equations are listed in Table 1. 

PLACE TABLE 1 HERE 

The simulated sampling frequency 𝑓𝑠 is set to 60𝑀𝐻𝑧. Figure 4 shows these two simulated PD signals both 

in time and frequency domains. Generally,  DOP signal shown in Figure 4 (c) and (d) is closer to a real high-

frequency PD signal detected from electrical power equipment in practice [10].  

To develop the new scheme for practical use, real PD signals were generated through an artificial defect of 

a 7𝑚𝑚 × 7𝑚𝑚 breach in the outer conductor created in a 1.5m 11 kV ethylene propylene rubber-insulated 

(EPR) cable sample [20]. PD signals were collected using a high frequency current transformer (HFCT).  The 

specifications of the HFCT are listed in Table 2. Details regarding the experiment setup are depicted in Figure 

5 [20]. 

PLACE FIGURE 4 HERE 

PLACE TABLE 2 HERE 



PLACE FIGURE 5 HERE 

Experiments were performed at various voltage levels. The PD pulses measured at 9kV are used as the real 

PD signals to demonstrate the new wavelet selection scheme in this paper. One PD pulse, named 𝑠3, with 

2048 sample points was selected and depicted in Figure 6. 

PLACE FIGURE 6 HERE 

 

4. Wavelet Selection Schemes (WSS) 

4.1 Correlation-based Wavelet Selection Scheme 

In signal processing, correlation is a measure of association between two signals, and most commonly used 

is the linear correlation coefficient. For two signals, 𝑥𝑖 and 𝑦𝑖 , 𝑖 = 1,2, … , 𝑁, the normalized correlation 

coefficient γ is given by [9] 

𝛾 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)
2

𝑖 ∙ √∑ (𝑦𝑖 − 𝑦̅)
2

𝑖

  , (10) 

where 𝑥̅ is the mean of xi and 𝑦̅ is the mean of 𝑦𝑖 . The value of γ is in the range of -1 to 1. It takes on a 

value  close to 1 indicating 𝑥𝑖  and 𝑦𝑖   are positively correlated, and a value close to -1 denoting they are 

negatively correlated. A value of γ near zero means 𝑥𝑖 and 𝑦𝑖  are uncorrelated.  

For CBWSS [9], correlation is used as a measure of the similarity between a pure PD signal and a wavelet, 

and this similarity is referred to as their shapes. The more similar their shapes, the higher the correlation 

coefficient is. The wavelet that has the highest correlation coefficient with the shape of a PD signal is selected 

to maximize the wavelet coefficients through wavelet analysis. 

The general process for the choice of appropriate wavelet using CBWSS is described as follows: 

a. Analyze the detected PD signal to generate a ‘typical’ PD pulse. 

b. Set up a wavelet library, consisting of the wavelets that have similar characteristics to the PD pulse. 

c. Normalize the PD pulse and each wavelet retrieved from the wavelet library. 

d. Calculate the correlation coefficient, 𝛾, between the PD pulse and each wavelet. 

e. Select the wavelet that has the maximum correlation coefficient with the PD pulse, it will be applied 

for the following wavelet-based denoising. 

As indicated in Section 1 the CBWSS approach is limited by noise and is scale-independent. Also, a 

heuristic method was introduced in [10] to obtain better correlation results. Resampling both the PD signal 

and wavelet function in time domain is applied to align their peaks as well as their first zero-crossing points 

after the peaks. This method is also adopted in this paper for comparisons of denoising results between 

EBWSS and WEBWSS methods. 

 

4.2 Energy-based Wavelet Selection Scheme 

EBWSS was proposed by Li [10], in which the wavelet that can maximize the energy ratio of the 

approximation coefficients is selected as the best wavelet for PD denoising. For a one-dimensional wavelet 

decomposition, the energy ratio of approximation aj at scale j is defines as follows [10]: 



𝐸𝑎 =
∑  𝑎𝑗,𝑖

2
𝑖

∑  𝑎𝑗,𝑖
2

𝑖 + ∑ ∑ 𝑑𝑗,𝑖
2

𝑖𝑗

 ,  (11) 

where 𝑖 = 1,2, … , 𝑛𝑖, 𝑛𝑖 is the length of approximation coefficients or detail coefficients at scale j, and dj is 

the detail coefficients at scale j. 

The idea of wavelet energy was introduced in EBWSS. For an orthogonal wavelet, energy preservation is 

one of the desirable properties of DWT [21]. The equation for energy preservation is given by  

‖𝑋‖2 = ‖𝑎‖2 + ‖𝑑‖2 ,                             (12) 

where 𝑎 and 𝑑 are the approximation and detail coefficients of the DWT of a signal 𝑋. This property is also 

applied to PD signals using DWT decomposition. A PD signal 𝑠 can be decomposed into 𝐽 scales with 𝐽 +

1signals, i.e.,  𝑠1, 𝑠2, … , 𝑠𝐽 , 𝑠𝐽+1. Among these signals, 𝑠1, 𝑠2, … , 𝑠𝐽 are detail coefficients from scale 1 to 

scale 𝐽, while 𝑠𝐽+1 is the approximation coefficients at scale 𝐽. The energy of a decomposed signal 𝑠𝑘 is 

given by  

𝐸𝑘 = ∑ 𝑠𝑘
2(𝑖)𝑖  ,   (13) 

where 𝑘 = 1,2, … , 𝐽 + 1, 𝑖 = 1,2, … , 𝑛𝑖 , and 𝑛𝑖  is the length of 𝑠𝑖 . Then, 𝑠  can be represented by a 

normalized energy vector (𝑒1, 𝑒2, … , 𝑒𝐽, 𝑒𝐽+1), where 𝑒𝑘 is defined as 

𝑒𝑘 =
𝐸𝑘
‖𝑠‖2

=
𝐸𝑘

∑ 𝐸𝑘
𝑘=𝐽+1
𝑘=1

  .                             (14) 

It can be seen that the concept of energy ratio in EBWSS can be interpreted as a normalized energy vector. 

Figure 7 shows the DEP, DOP, and white Gaussian noise (WGN) used in [10] to explain the criterion of 

EBWSS for wavelet selection. Figure 7 (a) and (b) show the DEP signal and its normalized energy vector 

respectively. Equally, Figure 7 (c) and (d) show the DOP signal and its normalized energy vector. Figure 7 (e) 

and (f) show WGN and its normalized energy vector. Based on Figure 7 (b), (d) and (e), the approximations 

of the DEP and DOP signals cover the most energy of total coefficients while the details of WGN preserve the 

most energy of total coefficients [10]. 

PLACE FIGURE 7 HERE 

 

The general process for the choice of an appropriate wavelet using EBWSS is presented as follows: 

a. Given a wavelet library {𝜓𝑖 : 𝑖 = 1,2, … , 𝑁} , select a wavelet from {𝜓𝑖} , and perform a one-scale 

DWT decomposition of a noisy PD signal. Obtain its approximation coefficients 𝑎1
(𝑖)

  and detail 

coefficients 𝑑1
(𝑖)

. 

b. Calculate the energy ratio of approximation coefficients 𝐸
𝑎1
(𝑖) based on (11). If 𝐸

𝑎1
(𝑝)is the maximum 

of 𝐸
𝑎1
(𝑖), 1 ≤ 𝑝 ≤ 𝑁, select 𝜓𝑝 as the optimal wavelet for the first scale. 

c. Apply 𝜓𝑝 to obtain the approximation coefficients 𝑎1
(𝑝)

 and 𝑑1
(𝑝)

. 

d. 𝑎1
(𝑝)

 is used as the input signal for next-scale DWT decomposition, and select the optimal wavelet based 

on the strategy used in steps a, b, and c.  

e. Iterate the steps above until the predefined decomposition scale J reaches. The optimal wavelet for 

each decomposition scale will be selected. 

Results in [10] show that EBWSS outperforms CBWSS for the best wavelet selection. However, EBWSS 



is not as robust as expected. It selects the wavelet that can maximize the energy ratio of approximation 

coefficients. It is not strictly true for DOP signals, particularly when the decomposition scale increases. It can 

be seen from the normalized vector of DOP in Figure 7 (d), the energy of PD signal with a 6-scale 

decomposition is preserved on the detail coefficients rather than approximation coefficients. When more scales 

are required, for example, 7 scales, the EBWSS is still trying to select the appropriate wavelet by maximizing 

the energy ratio of approximation coefficients. 

 The limitation of EBWSS can be interpreted in the frequency domain. Based on Parseval’s theorem, the 

time and frequency domains are equivalent representations of the signal, and thus, they must have the same 

energy [22]. As mentioned in Section 2.1, the filter pairs of DWT iteratively halve the frequency bands of a 

signal with the increase of decomposition scales. The spectrum of DEP, DOP, and white Gaussian noise are 

illustrated in Figure 8 (a), (b), and (c) respectively. With a 6-scale decomposition, the filter pairs iteratively 

separate these signals into disjoint frequency bands, 𝐺1(𝑤), 𝐺2(𝑤), … , 𝐺6(𝑤)  and 𝐻6(𝑤).  From the 

spectral curve of DOP, it is clear that the magnitudes of frequency in 𝐺5(𝑤) and 𝐺6(𝑤) are larger than those 

at other frequency bands. It is in agreement with the normalized vector of DOP shown in Figure 8 (b). With 

further decomposition, the energy of the signal will be preserved in detail coefficients rather than 

approximation coefficients. 

PLACE FIGURE 8 HERE 

 

4.3 Wavelet Entropy-based Wavelet Selection Scheme 

As mentioned in Section 2.3, wavelet entropy is not an ICF, but 𝑙 in (7) is monotonically increased with 

the wavelet entropy. As such, the best wavelet also can be selected when the value of wavelet entropy is 

minimum. In [13], it was shown that wavelet entropy value is inversely proportional to the energy concentrated 

in the number of wavelet coefficients. It is also known that white noise, the noise source for PD corruption in 

this paper, has high degree of randomness or disorder, and thus, the entropy value can describe the random 

characters of noise [23]. Based on this, a smaller value of wavelet entropy indicates that the wavelet used for 

WT decomposition can preserve more energy of the original signal in fewer number of coefficients and contain 

less white noise in the wavelet coefficients and, consequently, the wavelet used is closer to the best wavelet as 

expected. A new criterion for the best wavelet selection is therefore proposed, i.e., a wavelet that can have 

minimum wavelet entropy of the approximation coefficients at each decomposition scale through WT 

decomposition will be selected for denoising of PD detection. The new method has several promising 

advantages: it is scale-dependent, automated, and data-driven.  

The general process for the proposed novel wavelet selection scheme is illustrated in the flow chart in 

Figure 9.  

PLACE FIGURE 9 HERE 

 

Given a wavelet library {𝜓𝑖 : 𝑖 = 1,2, … , 𝑁}, one wavelet of which is selected for a one-level DWT 

decomposition of a noisy PD signal s(n) each time. Next the wavelet entropy of the generated approximations 

is calculated based on (6) and (7). The wavelet 𝜓𝑝 (1 ≤ 𝑝 ≤ 𝑁) that minimize the wavelet entropy of 

approximations will be selected as the best wavelet. The selected 𝜓𝑝  is then applied for the DWT 

decomposition of s(n) for the first scale, obtaining approximation coefficients 𝑎1
(𝑝) and detail coefficients 



𝑑1
(𝑝)

. Finally, 𝑎1
(𝑝)  is used as the input signal for next scale DWT decomposition, using the strategy 

presented above. When the predefined decomposition scale J reaches, the best wavelet for each scale will be 

successfully selected. 

 

5. Results and Analysis 

Generally, parameters, e.g., magnitude error (ME), mean square error (MSE), signal to noise ratio (SNR), 

and cross correlation (XCORR) are adopted to evaluate the performance of a proposed denoising method or 

algorithm. ME, MSE, and XCORR are used in this paper to compare the denoising results of different wavelet 

selection schemes. XCORR is calculated based on (11), and ME, MSE are calculated by the equations as 

follows, 

𝑀𝐸 =  
𝑚 − 𝑚′

𝑚
 ,     (15) 

                   𝑀𝑆𝐸 =  
∑ [𝑠(𝑖) − 𝑠′(𝑖)]𝑁
𝑖=1

𝑁
 ,     (16) 

where 𝑚 and 𝑚′ are the magnitudes of 𝑠(𝑖) and 𝑠′(𝑖) respectively. 𝑠(𝑖) represents the original signal 

and 𝑠′(𝑖) denotes the denoised signal. N is the length of signals. Better denoised results can be obtained with 

lower ME, MSE, and higher XCORR.  

In this paper, PD signals are corrupted by white noise, and then, various wavelet selection schemes are used 

to remove the noise and evaluated by the parameters mentioned above. As mentioned in Section 4.2, EBWSS 

is not strictly true when the decomposition scale increases over 6. To highlight the limitations of EBWSS, the 

decomposition scale is set to 7 for the results analysis. Two simulated PD signals, s1 and s2, and real PD signal, 

s3, as well as their noisy signals NS1, NS2 and NS3 with SNR = -10 are depicted in Figure 10. It is important to 

note that the original real PD signal shown in Figure 6 is corrupted by ambient noise during experiment. To 

mitigate the effect of this noise on the denoising results, it has been pre-processed using the method introduced 

in [10]. The smoothed real PD signal is depicted in Figure 10 (e). 

PLACE FIGURE 10 HERE 

 

Denoised s1, s2, and s3 using CBWSS, EBWSS, and WEBWSS are shown in Figure 11 (a), (b), and (c) 

respectively. The related parameters used to evaluate their performance on PD detection are listed in Table 3. 

It can be seen from Figure 11 and Table 3 that WEBWSS has better performance than the others of wavelet-

based denoising of PD detection. Simultaneously, it also verifies the conclusion presented in [10] that EBWSS 

outperforms CBWSS in PD denoising. 

PLACE FIGURE 11 HERE 

PLACE TABLE 3 HERE 

 

Significant advancement of the proposed scheme in the denoising of single PD signals cannot be directly 

seen from Figure 11. However, two columns in Table 3, Improvement 1 and Improvement 2, have presented 

the improvements by WEBWSS. Improvement 1 is the improved ratio (%) of the use of WEBWSS to CBWSS 

and Improvement 2 is the improved ratio (%) of the use of WEBWSS to EBWSS. From magnitude error (ME), 

mean square error (MSE), and cross-correlation coefficients (XCORR), significant improvements can be seen 



from these figures. The underlying meaning of the improvement of ME is PDs with small magnitude may be 

picked up by the use of WEBWSS as compared to the other two schemes. This enhanced capability of PD 

detection has been verified through the application of WEBWSS in on-site PD data, which will be delineated 

in Figure 15. Also, the improvement of MSE and XCORR indicates that less distortion of the denoised signals 

can be achieved through WEBWSS. It is good for the accuracy of PD location. 

 

In the attempt to fully evaluate the performance of the new wavelet selection scheme, PD signals buried by 

various noise levels are investigated. SNR are set to -15, -10, -5, 0, and 5 for this investigation, representing 

different noise levels.  The parameters used to evaluate the performance of three different schemes are plotted 

in Figure 12, Figure 13, and Figure 14 for S1, S2, and S3 respectively. From the trends of ME, MSE, and 

XCORR for all denoised signals with the increase of SNR (the higher SNR, the lower noise level is), the new 

wavelet selection scheme is better than the existing schemes for wavelet-based denoising of PD detection 

under various noise levels, and the performance is particularly good when the SNR is low. 

PLACE FIGURE 12 HERE 

PLACE FIGURE 13 HERE 

PLACE FIGURE 14 HERE 

 

A PD signal is collected from one power substation in the UK with a sample rate of 100MS/s. The PD 

sensor is the same type of HFCT used in laboratory in Section 3. Figure 15 delineates the original on-

site PD signal and its denoised versions by CBWSS, EBWSS, and WEBWSS, respectively. It can be 

seen that not only the PD pulses with magnitudes higher than the noise level has been extracted, but those 

ones with small magnitudes buried in the noise has been successfully extracted through the application 

of WEBWSS in Figure 15 (d). However, the number of the PD pulses with small magnitude that have 

been extracted by CBWSS and EBWSS, as shown in Figure 15 (b) and (c), is less than that by WEBWSS. 

The difference of the number of small-magnitude PD extraction among these three schemes has been 

highlighted in red line in Figure 15. The denoising result of on-site PD signal provides further support 

that the proposed wavelet selection scheme is more advantageous than the existing EBWSS and CBWSS 

for denoising of PD detection of electrical apparatus in practice.     

PLACE FIGURE 15 HERE 

 

6. Conclusion 

A novel wavelet selection scheme based on the concept of information cost function and Shannon entropy 

has been proposed in this paper and the results showed that the technique improved the effectiveness of 

wavelet-based denoising of PD detection, especially for situations when the signal to noise ratio is unity or 

less. The technique is scale-dependent, automated, and data-driven and these properties enable it to be a 

promising technique in the context of PD detection. Based on the denoised results obtained from both 

simulated and real PD signals, it shows better performance than the existing wavelet selection schemes, 

particularly when the SNR is low. Accordingly, it has the potential to extend the range of PD detection in 

cables through the application of this technique. 
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Figure 1. The implementation of DWT in signal decomposition 
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Figure 2.  The implementation of IDWT in signal reconstruction 
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Figure 3. The frequency bands of filters at each decomposition scale 

 

Table 1. Values of parameters used in (8) and (9) [10]. 

Parameters Values 

𝐴 1 

𝛼1 106𝑠−1 

𝛼2 107𝑠−1 

𝑓𝑑 1𝑀𝐻𝑧 

𝑤𝑑 2𝜋𝑓𝑑 

𝜑 𝑡𝑎𝑛−1(𝑤𝑑/𝛼2) 

 

 

 



 

Figure 4.  (a) and (b): DEP signals simulated in time and frequency domain respectively; (c) and (d): DOP signals simulated in 

time and frequency domain respectively. 

 

Table 2. Specifications of the HFCT. 

Parameters HFCT 

Sensitivity 5 V/A 

-3 dB bandwidth 90 kHz – 20 MHz 

Internal diameter 50 mm 

External diameter 110 mm 

Load resistance 50 𝛺 
Output conductor BNC 

Manufacturer IPEC 
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Figure 5.  PD testing of a defective 11 kV EPR cable. HFCT was used to collect PD pulses (Ck and Zm represent the coupling 

capacitor and measuring impedance respectively). 

 



 

Figure 6.  Real PD pulse, s3, detected from a defective EPR cable under 9kV AC voltage 

 

 

Figure 7.  Representation of (a): DEP, (c): DOP, and (e): WGN by normalized vectors (b), (d) and (f) respectively. 
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Figure 8. Spectrum of (a): DEP, (b): DOP, and (c): WGN. 
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Figure 9.  Flow chart of the general process of WEBWSS. 

 

 

Figure 10.  (a) and (b): s1 and its noisy signal NS1 with SNR = -10, (c) and (d): s2 and its noisy signal NS2 with SNR = -10, (e) 

and (f): s3 and its noisy signal NS3 with SNR = -10. 



 

Figure 11.  (a): Denoised s1 using CBWSS, EBWSS and WEBWSS, (b): Denoised s2 using CBWSS, EBWSS and WEBWSS, 

(c): Denoised s3 using CBWSS, EBWSS and WEBWSS. 

 

Table 3. Parameters used to evaluate the performance of wavelet selection schemes. 

  CBWSS EBWSS WEBWSS 
Improvement 1 

(%) 

Improvement 2 

(%) 

s1 

ME 0.3701 0.3457 0.3071 17 11.2 

MSE 0.0055 0.0028 0.0024 56.4 14.3 

XCORR 0.8689 0.9358 0.9495 8.5  1.4  

s2 

ME 0.5686 0.5673 0.5238 7.9 7.7 

MSE 0.0054 0.0044 0.0041 24.1 6.8 

XCORR 0.8757 0.9182 0.9414 7.0  2.5  

s3 

ME 0.5937 0.5457 0.4997 15.8 8.4 

MSE 0.00035 0.00037 0.00027 22.9 27 

XCORR 0.8501 0.9369 0.9502 10.5  1.4  

 

 

 



 

Figure 12.  ME, MSE and XCORR between s1 and denoised s1. 

 

 

Figure 13.  ME, MSE and XCORR between s2 and denoised s2. 

 

 

Figure 14.  ME, MSE and XCORR between s3 and denoised s3. 

 



 

Figure 15.  The denoising results of on-site PD signal: (a) On-site detected PD signal; (b), (c), (d) are the denoised PD signal by 

CBWSS, EBWSS, and WEBWSS, respectively. 

 


