Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Unmanned aerial vehicles (UAVs) for inspection in construction and building industry

Motawa, Ibrahim and Kardakou, Alexandra (2018) Unmanned aerial vehicles (UAVs) for inspection in construction and building industry. In: The 16th International Operation & Maintenance Conference, 2018-11-18 - 2018-11-20.

Text (Motawa-Kardakou-OMAINTEC-2018-Unmanned-aerial-vehicles-UAVS-for-insoection-in-construction)
Accepted Author Manuscript

Download (540kB) | Preview


Digital data capture is a key component of Industry 4.0 practices. In the past few decades Unmanned Aerial Vehicles (UAVs) have entered the construction industry to capture site data and to cover topographic as well as different types of inspection matters. Photographs, live video, photogrammetric digital elevation models and 3D point clouds can be generated using different photogrammetry facilities, cameras and lasers attached to either a fixed wing or rotorcraft UAVs. UAVs have the ability to deliver information by monitoring, 3Dmaping, measuring, analysing, as well as recording on-site activities. This paper presents the state of art of UAVs usage in construction and building industry and evaluates their applications by experimental case studies. The challenges of using UAVs and their links to BIM will be also discussed. This study found that visual imaging is currently the most popular use of UAVs on construction sites to ensure integrity of structural inspection, however, 3D models derived from LiDAR and photogrammetry techniques are surpassing more traditional methods as they are still significantly cheaper and faster to use. UAVs is also used to monitor workers on site to identify what resources they need in order to carry out their tasks more efficiently and also for the purposes of their health and safety. Despite the approved efficiency of using UAVs on sites to provide better visualization of the working environment, there are still key issues to be tackled such as: the limited flight time of UAVs and its weight. Structural/site investigations have shown that there are some defects on the use of aerial vehicles, with the most important to be the cost along with the precision of the results which may vary depending on the technologies used. There is further study required into the combination of UAVs derived data and its inclusion into BIM, as barriers remain regarding translatable data platforms. There are also some ethical concerns of surveying workers on site and how to protect their privacy.