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ABSTRACT: Targeting the brain cavity formed by an ischemic stroke is
appealing for many regenerative treatment strategies but requires a robust
delivery technology. We hypothesized that self-assembling silk fibroin
hydrogels could serve as a reliable support matrix for regeneration in the
stroke cavity. We therefore performed in vivo evaluation studies of self-
assembling silk fibroin hydrogels after intracerebral injection in a rat stroke
model. Adult male Sprague−Dawley rats (n = 24) underwent transient
middle cerebral artery occlusion (MCAo) 2 weeks before random
assignment to either no stereotaxic injection or a stereotaxic injection of
either self-assembling silk fibroin hydrogels (4% w/v) or PBS into the
lesion cavity. The impact on morbidity and mortality, space conformity,
interaction with glial scar, interference with inflammatory response, and
cell proliferation in the lesion cavity were examined for up to 7 weeks by a
blinded investigator. Self-assembling hydrogels filled the stroke cavity with excellent space conformity and presented neither an
overt microglial/macrophage response nor an adverse morbidity or mortality. The relationship between the number of
proliferating cells and lesion volume was significantly changed by injection of self-assembling silk hydrogels. This in vivo stroke
model confirmed that self-assembling silk fibroin hydrogels provide a favorable microenvironment as a future support matrix in
the stroke cavity.
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■ INTRODUCTION

Stroke is a leading cause of adult neurological impairment, with
20% of its survivors requiring institutionalized care; of these, up
to 30% are severely and permanently disabled, with limited
spontaneous recovery.1 Current strategies aimed at enhancing
the limited spontaneous regenerative capacity of brain tissues
include the use of small-molecular-weight drugs, biologics, and
cell-based therapies. For example, growth and neurotrophic
factors (e.g., vascular endothelial growth factor and brain and
glial cell-derived neurotrophic factors)2,3 improve recovery after
stroke in rodent models, most likely by promoting endogenous
repair by stimulating and recruiting cells. However, biologics
and cell-based therapies face a major unmet challenge due to the
lack of suitable methods to deliver, protect, and retain these
payloads at the desired site of action.4 The lesion cavity is an
ideal site for administration, as it is adjacent to the site of greatest
neuroplasticity after stroke;5 however, it lacks an extracellular
matrix (ECM);6 is surrounded by a glial scar; and is filled with
extracellular fluid, debris, and inflammatory mediators.7

Consequently, engineering strategies are needed to turn the
lesion cavity into a microenvironment that is receptive to
regenerative repair processes.

Biomaterials are ideally placed to serve this function.8,9 For
example, biomaterials can replace the lost 3Dmicroenvironment
by physically filling the lesion cavity, mimicking brain ECM and
supporting endogenous repair mechanisms.10,11 They can also
serve as a potential delivery matrix for therapeutics payloads.12

To date, several studies have shown encouraging results
following the use of synthetic biomaterials in preclinical models
of stroke.4 However, currently used biomaterials, such as
synthetic hydrogels, typically require chemical cross-linking,
which necessitates the use of potentially harmful agents such as
organic solvents, chemical initiators, or UV irradiation. Residual
chemicals can leach from the hydrogels, whereas UV-based
polymerization techniques are incompatible with therapeutic
proteins and cells.13 Synthetic hydrogels are therefore often
plagued by poor biocompatibility and are challenging from a
formulation and regulatory perspective. Biomimetic hydrogels
(e.g., peptides, peptoids, etc.) and biohybrid hydrogels (e.g.,
heparin functionalized polyethylene glycol) may represent a
promising option that avoids these issues.14 However, these
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systems still require significant research efforts to establish self-
assembling hydrogels with the necessary mechanical properties
and biocompatibility for in vivo administration and subsequent
clinical exploitation. A broad range of naturally derived
biopolymers has been proposed for use in therapeutic payload
delivery. For example, collagen-based hydrogels have been
extensively studied,15 but these have poor mechanical properties
and show limited resistance to biodegradation (or the ability to
fine-tune this). Their predominantly bovine origin also raises a
theoretical risk of introducing prions directly into the brain,
which raises major caveats against collagen-based systems.
One naturally occurring polymer with a robust human safety

profile is the silk fibroin from Bombyx mori, which has been

approved for human use for decades as a suture material.16 The
silk fibroin degrades in vivo14,16 and silk can be processed under
entirely aqueous conditions under ambient conditions17 to
create a regenerated silk fibroin solution that can be processed
into a variety of formats,18,19 including self-assembling hydro-
gels. For use in the stroke setting, these self-assembling
hydrogels can be finely tuned to closely match brain
mechanics.20 In addition, the solution−gel transition of silk
fibroin can be controlled enabling minimally invasive admin-
istration; a key feature for their proposed use in the stroke
setting. Recent progress by Fernańdez-Garciá and co-workers
has demonstrated that the injection of self-assembling silk
hydrogels into the caudate putamen (striatum) of healthymouse

Figure 1. Preparation and administration of self-assembling silk fibroin hydrogels into rats with established focal cerebral ischemic stroke. (A)
Experimental timeline, stroke intervention and assessment. Right transient middle cerebral artery occlusion (MCAo)was performed on 24 rats 2 weeks
prior to the grafting surgery. At time 0, animals (n = 22)were randomly assigned to either (i) control (no injection, stroke only) (n = 6), (ii) stereotactic
PBS injection (vehicle) (n = 8) and (iii) stereotactic 4%w/v self-assembling silk hydrogel injection (n = 8). Neurological assessment was performed for
2 weeks during post-MCAo recovery and at 1 week postgrafting. Animals were euthanised at 1 week (subacute phase) and 7 weeks (delayed phase)
post grafting and subjected to (immuno)-histochemical analysis. (B) Schema of the right transient middle cerebral artery occlusion (MCAo). (MCAo
image photograph and diagram reproduced with permission from ref 31. Copyright Neural Regeneration Research, Wolters Kluwer Medknow
Publications.) Self-assembling silk fibroin hydrogels were freshly prepared by reverse engineering Bombyx mori silk cocoons. A 4% w/v silk fibroin
solution was sonicated (i.e., energy input) first to initiate the solution−gel transition (i.e., self-assembly); during this transition, the stereotactic
injection into the stroke cavity was performed.
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brains showed no decline in cognitive function or animal
behavior over the 6 week study period.21 Work by the same
group also showed that delivery of mesenchymal stem cells into
the stroke lesion using self-assembling silk hydrogels resulted in
improved functional recovery and restitution of damaged
circuitry.22 These seminal studies,21,22 in addition to prior
work in spinal cord,23 cardiac,24 ligament,25 vasculature,18,26 and
cancer tissues,27 have successfully used silk fibroin biomaterials
for tissue engineering and to deliver advanced therapeutics
payloads (e.g., proteins, antibodies etc.).14 Nonetheless,
dedicated biocompatibility studies are needed that examine
the performance of silk fibroin hydrogels in the rodent brain
after stroke.
In the present study we used stereotactic injection to deliver

self-assembling silk fibroin hydrogels (4%w/v) into experimen-
tal stroke lesions to establish their capacity for good space
conformity in the stroke cavity, their interaction with the glial
scar, their provocation of inflammatory responses, and their
ability to support endogenous cell proliferation in vivo after
experimental stroke.

■ MATERIALS AND METHODS
Silk Fibroin Hydrogel Manufacture. From silk cocoons, silk

fibroin was extracted and turned into an aqueous solution as described
previously.27 Briefly, Bombyx mori cocoons were cut into ∼25 mm2

pieces, boiled for 60 min in Na2CO3, and then rinsed in ddH2O to
remove sericin proteins. Extracted silk fibroin was subsequently air-
dried and dissolved in 9.3 M LiBr at 60 °C. This solution was dialyzed
(molecular weight cutoff 3500) against ddH2O for 48 h to remove the
LiBr salt. Next, 10× phosphate buffered saline (PBS) was added to the
silk fibroin solution to obtain physiological osmolarity of the final
preparation. The resulting 4% w/v silk fibroin solution was filter
sterilized. Gelation was induced by sonicating the silk fibroin solution
using a Branson Digital Sonifier 450 (Branson Ultrasonics, Danbury,
CT, USA) at 15% amplitude for 15 to 45 s. The sonicated silk fibroin
samples were then filled into Hamilton syringes prior to the onset of
gelation and injected into the animal before the solution−gel transition
was completed. (Figure 1B).
In Vivo Experimental Design. All in vivo studies were approved

by the Home Office of the United Kingdom (Project License number
60/4469). All procedures complied with the UK Animals (Scientific)
Procedures Act (1986) and the Ethical Review Process of the Institute
of Pharmacy and Biomedical Sciences of University of Strathclyde in
adherence with ARRIVE guidelines.28 First, animals were subjected to
the middle cerebral artery occlusion (MCAo) reperfusion stroke model
(detailed below). Two weeks after MCAo, the animals were randomly
assigned to one of the 3 study groups, namely (i) control (i.e., no
injection), (ii) PBS injection, and (iii) 4% w/v self-assembling silk
fibroin hydrogel injection. Animals were euthanised at 1 or 7 weeks
post-transplantation to probe the acute and delayed response toward
the graft (Figure 1A).
Middle Cerebral Artery Occlusion (MCAo). The experimental

focal stroke model was the middle cerebral artery occlusion (MCAo)
reperfusion model by intraluminal thread,29 which leads to progressive
cavitation in one hemisphere.5,30 The model produces different
distributions of lesions, depending on the extent of the ischemia, and
has been described elsewhere as striatal only or encompassing both
striatal and cortical (or full) lesions.32−34 Male Sprague−Dawley rats
(weight 240−290g, 8−9 weeks, Harlan, UK, n = 24) were maintained
on a 12 h light/dark cycle with food ad libitum. The right MCA was
occluded for 60 min by insertion of a propylene filament (Doccol
Corporation, USA, tip diameter with coating 0.33 ± 0.02 mm), via the
common carotid artery to the ostium of the MCA in the circle of Willis,
as previously described.35 Isoflurane (4% for induction, 2% for
maintenance in 30% oxygen) was used for anesthesia during insertion
and removal of the filament and the body temperature was maintained
at 37 ± 1 °C. A priori exclusion criteria were any animal found to be

moribund due to excessive weight loss (>20% of start weight) or
animals that exhibited no neurological deficit. The severity of the deficit
was established by monitoring the animals for the following three week
period, animals for neurological deficits using a grading scale of 0 to 436

(with modifications where 0 = no observable deficit; 1 = forelimb
flexion; 2 = decreased resistance to lateral push (and forelimb flexion)
without circling; and 3 = decreased resistance to lateral push (and
forelimb flexion) with circling. An additional score = 4 was added if the
animal appeared unstable or exhibited reduced spontaneous motility.

Stereotactic Surgery. Two weeks after MCAo, the rats were
anaesthetized with isoflurane (4% induction, 2% maintenance) and
randomly assigned to receive no graft at all (control) (n = 6), PBS (n =
8) or 4% (w/v) self-assembling silk fibroin hydrogel (n = 8). Animals
were placed in a stereotactic frame and injections (10 μL at a 2 μL/min)
were performed at coordinates (L) −1.5 mm, (A-P) −3.5 mm and (V)
−6.5 mm, using a 10 μL Hamilton syringe with a 22G blunt tip needle.
The experimental approach and timelines for this study are shown in
Figure 1.

Histology and Immunofluorescence. Animals were terminally
anaesthetised at either 1 week or at 7 weeks after the transplantation by
overdosing with sodium pentobarbital (60 mg/kg i.p.). A transcardial
perfusion of 0.9% saline was followed by 4% ice-cold paraformaldehyde
in 0.2 M phosphate buffered saline (PBS). Brains were removed
following craniotomy and were fixed in paraformaldehyde for 24 h. The
brains were then immersed in cryoprotective solution (30% sucrose in
PBS with 0.01% sodium azide (NaAz) for 72 h, followed by rapid
freezing on dry ice. Coronal (40 μm) cryostat sections were cut
throughout the MCA territory. The experimenter was blinded to the
experimental groups by recoding the tissue slides. The tissues were
stained with hematoxylin and eosin (H&E) to visualize the silk fibroin
hydrogel graft within the cavity and the lesion topography. Whole brain
images were captured (Samsung Galaxy Neo camera, CMOS 16.0 MP
resolution, with f/1.9 aperture) to identify lesion/graft localization in
H&E-stained sections and were used as adjacent sections to represent
location of immunostaining as described below.

For immunohistochemistry, sections were incubated in 10%
concentrations of the appropriate blocking sera and in PBS with 0.3%
v/v Triton X-100 for 40 min prior to overnight incubation with primary
antibodies (diluted in PBS with 10% v/v normal serum and 0.3% v/v
Triton X-100) at 4 °C. Primary antibodies consisted of rabbit anti-
GFAP (1:1000, Z0334, DAKO, USA, CA) to visualize the glial scar and
to quantify the volume of the cavity, rat anti-CD11b (1:200, ab1211,
Abcam, UK) to detect microglia/macrophages, rabbit anti-Ki67 (1:500,
ab15580, Abcam, UK) to detect proliferating cells and mouse anti-
RECA-1 to detect vascular endothelial cells (1:100, ab9774, Abcam,
UK). After incubation with primary antibodies, sections were washed
three times for 5 min in PBS and then incubated with a secondary
antibody for 2 h at room temperature. Secondary antibodies consisted
of appropriate fluorescent Alexa 488 or Alexa 555 antibodies (1:500,
Invitrogen, UK). Sections were rinsed three times for 5 min in PBS
before application of Vectashield with DAPI (Vector Laboratories,
UK). Images were captured and analyzed using WinFluor V3.9.1
(Nikon Eclipse E600). GFAP positive staining labels the glial scar,
showing the bordered outline of the cavity. Therefore, GFAP was used
to quantify lesion volume. The border outlined by GFAP was
transcribed onto line diagrams and the areas measured by ImageJ and
the volume calculated over the number and thickness of sections that
exhibited tissue loss.

Statistical Analyses. Animal weight and neurological deficit data
were shown as individual animal data points and also expressed with
mean ± standard error of mean (S.E.M.) and analyzed by one-way
ANOVA with a Bonferroni posthoc test. Correlations of number of
Ki67+ cells versus cavity volume were analyzed by regression analysis
(Prism 6; GraphPad Software Inc., USA, CA). A P value of <0.05 was
considered significant.

■ RESULTS

Impact of Silk Fibroin Hydrogels on Morbidity or
Mortality. Given the potential adverse effects of cerebral
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implants, we monitored neurological deficit and weight loss
before and after grafting (Figure 2A, B). Neurological deficit

scores were highest 24 h after MCAo (week −2; Figure 2A).
During the post-MCAo recovery period, prior to grafting, 4 rats
had full restoration of their neurological functions with no
observable deficit (score = 0) (those rats with minor or striatal
only stroke), whereas 18 showed only partial recovery (those
with a full cortical stroke) (Figure 2A). Regression analysis
confirmed this positive correlation between neurological score
and cavity volume in each group (P < 0.05) (Figure S1).
Any contribution of silk fibroin hydrogel grafting to

neurologic deficit was assessed at 1 week postgrafting. No
significant differences were observed in the silk fibroin hydrogel
grafted animals either compared to before grafting or compared
to control or PBS treated animals (Figure 2A). Regression
analysis confirmed no effect of silk fibroin hydrogel admin-
istration on the correlation of neurological score (measured at
24 h postgrafting) with cavity volume (measured at 1 and 7
weeks postgrafting) as the difference between slopes was not
significant (F(2,13) = 1.25, P = 0.3) (Figure S1).
The rats typically had a weight drop 24 h after MCAo (week

−2; Figure 2B), and by the end of the 2 week recovery period, all
animals had gained more than their pre-MCAo weight (F(5,38)
= 37.89, P < 0.0001, one way ANOVA). No significant
differences were observed in body weight at 1 week postgrafting
in the silk fibroin hydrogel grafted animals when compared to
control or PBS rats (F(1.983−13.88) = 1.3, P = 0.3, one way
ANOVA). No animals were excluded from any group due to
excessive weight loss, based on the above-mentioned exclusion
criteria. However, one animal experienced >20% weight loss but
was spontaneously mobile and was eating and drinking well and
therefore did not fall within the exclusion criteria. One
premature death occurred during MCAo surgery that was

attributable to anesthetic accident and another death at 6 h
postreperfusion was due to subacute respiratory distress. One rat
died at the 7 weeks time point in the control group, attributed to
severe brain edema due to the stroke after ruling out
hemorrhagic transformation and on observation of an enlarged
ipsilateral hemisphere. The included animals are detailed in
Figure 1A. Data from two other rats were excluded (silk fibroin
hydrogel (n = 1) and PBS (n = 1) both at 1 week postgraft due to
damage to the tissue during histological processing.

Space Conformity of Self-Assembling Silk Fibroin
Hydrogels over Time. The MCAo treatment resulted in two
main infarct populations across the three treatment groups at
both time points. Cortical-striatal lesions exhibited extensive
tissue loss, resulting in a “large cavity” (Figure 3B, D, left panel,
black box) and further magnification showed that all the

Figure 2. Neurological function and body weight were unaffected by
silk fibroin hydrogel implants. (A)General neurological deficits and (B)
body weight changes in control (n = 5), PBS (n = 7), and silk fibroin
hydrogel implanted rats (n = 7) at 24 h (week −2) and 7 days (week
−1) post-MCAO and pregrafting (week 0) and 7 days postgraft (week
1) (one way ANOVA, Bonferrroni t test, ***P < 0.001).

Figure 3. Self-assembling silk fibroin hydrogels exhibited good space
conformity and retention in small and large stroke cavities. (A−D, F−
H) Representative hematoxylin and eosin stained coronal sections at
the level of the nucleus accumbens (IA 10.56 mm) and (E) the level of
the anterior hypothalamus (IA 6.84 mm) transplanted either with (E−
H) self-assembling silk fibroin hydrogels, (C, D) PBS only, or (A, B)
with no-injection (control) at (A, B, E, F) 1 or (C, D, G, H) 7 weeks.
The whole brain sections and magnified figures illustrate the presence
and structure of the silk fibroin hydrogel graft in the stroke lesion
(visualized by light pink eosin staining), surrounded by the dead tissue
(pyknotic nuclei stained with hematoxylin (purple) in both small (E
and G) and large (F and H) cavities or the presence of an empty stroke
cavity in (A, B) control or (C, D) PBS-treated animals. Please see
Figure S2 for higher magnification of representative hematoxylin and
eosin-stained sections at the regions of interest. Scale bars: 100 μm.
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remaining cells, as indicated by pyknotic nuclei (dark purple)
revealed by hematoxylin staining (right panel; black box). By
contrast, the striatal-only lesions exhibited a “small cavity”
(Figure 3A, C). The silk fibroin hydrogel grafts from a total
analysis of 7 brains (>250 sections per brain) were always
localized in the lesion cavity. In animals with either small or large
stroke cavities, the self-assembling silk fibroin hydrogel filled the
lesion and was evenly spread throughout the entire stroke cavity
at 1 week (Figures 3E, F). The silk fibroin hydrogel was
recognized by its light pink color (black box, Figure 3E, F). In a
similar manner, the silk fibroin hydrogel graft showed good
space conformity at 7 week time point, for both small (Figure
3G) and large (Figure 3H) cavities, with a good signs of
retention and no visible signs of hydrogel degradation. The self-
assembling silk fibroin hydrogels could also be readily visualized
by immunofluorescent dyes due to dye adsorbance, as described
below.
Impact of Silk Fibroin Hydrogels on the Adjacent Glial

Scar. A tight host tissue−hydrogel interface within the stroke
cavity is required to provide a good support matrix for cell
infiltration/proliferation and for good delivery of therapeutic
payloads in order to promote repair processes. We therefore
assessed coronal sections at, and adjacent to, the cavity for
GFAP+ cells, a marker of reactive astrogliosis, the predominant
constituent of the glial scar and of an inflammatory response
(Figure 4). The ischemic cavity was surrounded by a glial scar,
consisting of activated astrocytes (GFAP+, enlarged soma with
more and thicker processes, dotted arrows, Figure 4A1, B1, B2).
The self-assembling silk fibroin hydrogel filled the cavity (green
staining, hash sign) Figure 4C), and was surrounded by the

remaining glial scar (dotted arrows, Figure 4C1). A subtle
change in the structure of the silk fibroin hydrogel was observed
throughout the cavity, with a less dense composition in the
epicenter (Figure 4C2) and a “bubbly” structure in the tissue
adjacent to the epicenter (Figure 4C3). The silk fibroin hydrogel
was interspersed in the surrounding glial scar (Figure 4C1),
indicating an interaction between the silk fibroin hydrogel and
the glial scar. No colocalization of DAPI staining with the
GFAP+ staining was observed in any of the sections studies (for
example see Figure 4C1).

Impact of Silk Fibroin Hydrogels on Microglial/
Macrophages in the Stroke Cavity. The effects of silk
fibroin hydrogel on inflammation and the glial scar were
examined by double labeling of CD11b+ (microglia/macro-
phages) and GFAP+ staining. In control and PBS-injected
animals (Figure 5A, B), at the 1 week time point, CD11b+ cells
(arrows) were observed within the lesion core and were often
associated with activated astrocytes (enlarged soma with many
and thick processes), as part of the glial scar (dotted arrows) in
both cortical (control, Figure 5A2) and striatal lesions (PBS,
Figure 5B2). Tissue at the coronal level of the globus pallidus
(Figure 5C) and the coronal level of the nucleus accumbens
(Figure 5D) were studied as representatives of the posterior and
anterior extents of the lesion, respectively. Unlike in the control
and PBS-treated animals, animals with silk hydrogel grafts had
no evident microglia/macrophages in the core of the lesion;
instead, the core of the lesion was filled with a silk graft (Figure
5C1, hash symbol) and surrounded by the glial scar (dotted
outline), which had associated microglia/macrophages (red
outline) (Figure 5C2, merged and single color figures). A

Figure 4. Silk fibroin hydrogels interfaced closely with the glial scar. Activated astrocytes (green GFAP+ cells; dotted white box and dotted arrows;
DAPI nuclei in blue), staining at coronal levels of the (A, B) nucleus accumbens (IA 10.56 mm,) and (C) globus pallidus (IA 7.68 mm) illustrating the
location of the cortical or striatal voids. (A) Stereotaxic sham control and (B) PBS animals (clear whole brain section which is adjacent section to that
immunostained) surrounded by activated astrocytes or (C) silk fibroin hydrogel-treated animals 1 week post grafting; the cavity is filled with silk
hydrogel (green color, hash symbols in C and C1−C3) and (C1, arrows) a silk fibroin hydrogel−glial scar interface is visible. Scale bars: 100 μm.
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microglia/macrophage agglomerate (Figure 5C2, arrow and red
outline) was observed at some distance from the silk hydrogel. In
the more anterior part of the lesion, again no CD11b+ cells were

evident inside the silk hydrogel (Figure 5D2, D4, D5, hash
symbol), but a substantial number of microglia/macrophages
cells were located next to it and toward the edge of the lesion

Figure 5.No increase inmicroglial/macrophage response toward the self-assembling silk fibroin hydrogel in the stroke cavity at week 1. CD11b+(red)/
GFAP+(green)/DAPI(nuclei in blue) staining at coronal levels of (A) no-injection control at the level of the olfactory tract (IA 12.72 mm) and (B)
PBS injection at the level of the nucleus accumbens (IA 10.56 mm) illustrating location of microglial activation in relation to the stroke lesion and glial
scar. CD11b+ cells were activated (amoeboid shape with large soma, arrows) within the lesion core and often associated with activated astrocytes as
part of the glial scar (dotted arrows in higher magnification, right-hand panels). (C, D) Self-assembling silk fibroin hydrogels (green, hash symbol with
white outline) in the stroke cavity lack CD11+ cells in both (C1) posterior (globus pallidus) and (D) anterior (nucleus accumbens) small lesion sites.
CD11+ cells were observed some distance away from the silk fibroin hydrogel graft (C1, arrow and red line; D1 and D4, asterisk). The silk fibroin
hydrogel was surrounded by the glial scar (C2 and D2, dotted white outline) containing microglia/macrophages (D5−D7 arrows = microglia/
macrophage and dotted arrows = GFAP+ astrocytes). Scale bars: 100 μm.
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(Figure 5D1, dotted line, D3, solid arrows) and at the border
region (Figure 5D6, solid arrows), in close interaction with
GFAP+ astrocytes (Figure 5D6, dotted arrows).
A similar response was observed at 7 weeks, where in control

and PBS there were no or very little CD11b+ microglia/
macrophages visible in the lesion area (Figure 6A, B). After
injection, where the striatal lesion was filled with a silk fibroin
hydrogel graft (hash symbol) (Figure 6C, D), no microglia/
macrophages were evident in the silk fibroin hydrogel graft
(Figure 6D, D1) and the whole silk fibroin graft was surrounded
by the glial scar (Figure 6D2, dotted arrows). At a more rostral
coronal level (Figure 6C), microglia/macrophages were again
observed at the edge of lesion (Figure 6C1, solid arrows) but
>300 μm from the silk fibroin hydrogel graft (hash symbols) and
along the glial scar border (Figure 6C2, dotted arrows).
Impact of Silk Fibroin Hydrogels on Endogenous Cells

in the Lesion Cavity. Extensive nuclear staining (DAPI
positive), as shown in Figures 4−6, that did not colocalize with
GFAP or CD11b was observed in the silk fibroin hydrogel

animals. For this reason, we investigated whether silk fibroin
hydrogels might promote cell proliferation. After MCAo, we
observed many RECA-1+ cells, indicating considerable angio-
genesis, but we observed only a low number of proliferating cells
(teal = green+blue, Figure 7A), which were surrounded by
RECA-1+ cells in control animals (Figure 7A1). However,
animals grafted with the self-assembling silk fibroin hydrogel
showed many Ki67+ cells, indicating the presence of
proliferating cells in the cortical area (Figure 7B) that were
interacting with areas of angiogenesis (RECA-1+) and some
unidentified cell type (DAPI+), resulting in an intimate
heterotypic cell cluster (Figure 7B2). No such structures were
found in control animals (Figure 7A1). The RECA-1+/ Ki67+/
DAPI+ cells (arrows) were located at the edges of the silk graft
(Figure 7C, C1, hash symbol).
The relationship between the volume of the lesion and the

number of proliferating cells was also investigated. The number
of proliferating was significantly influenced by lesion volume and
silk fibroin hydrogel treatment (Figure 7D). The control animals

Figure 6.No increase in the microglial/macrophage response toward the self-assembling silk fibroin hydrogel in the stroke cavity at week 7. CD11b+

(red)/GFAP+ (green)/DAPI (nuclei in blue) staining at the coronal level of the nucleus accumbens with a lack of CD11+ cells in the lesion (B1) and
the whole silk graft (hash symbol) surrounded by the glial scar (B2, arrows, C1 dotted arrows). Microglia/macrophages were observed at the edge of
glial scar, remote from the silk fibroin hydrogel (C, arrows; B2, dotted arrows). Scale bars: 100 μm.
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showed a significant positive correlation between the lesion size
and the number of proliferating cells (r2 = 0.94, P < 0.01). Post-
treatment with the silk fibroin hydrogel abrogated this positive
relationship (r2 = 0.24) and significantly decreased the gradient
of the relationship compared to control (difference between
gradients F(2,13) = 5.94, P < 0.05).

■ DISCUSSION
The key findings in the present study were that self-assembling
silk hydrogels do not impact on morbidity; exhibit good space
conformity and retention in the stroke cavity; interact with the
glial scar; provoke no overt inflammatory response; and support
endogenous cell proliferation in vivo after experimental stroke.
Given the adverse effects associated with some biomaterials in

vivo,11,37,38 we first tested for any potential overt behavioral
effects following implantation of 4% w/v silk fibroin hydrogels
into the stroke cavity; this selected silk fibroin concentration

results in hydrogels with similar mechanical properties of
healthy brain tissue (Figure S3).20 At 2 weeks post-MCAo, the
silk fibroin hydrogel graft had no significant effect on body
weight or neurological score when compared to the no graft
control or PBS, implying no overt adverse effects of intracranial
silk fibroin hydrogels. These results are in line with a previous
study in healthy C57BL/6 mice, in which 5 μL of 2% w/v silk
fibroin hydrogel was injected into the caudate putamen. These
mice showed no cognitive or sensorimotor deficits according to
a set of behavior and electrophysiological assessments.21 We
speculate that the absence of silk fibroin hydrogel swelling, the
minimally invasive application route, the absence of any
chemical cross-linker and the good biocompatibility typically
observed with silk fibroin contributed to the excellent
tolerability of self-assembling silk fibroin hydrogels in the stroke
brain.39 Overall, these findings indicate that the silk fibroin
hydrogel grafting had no effect on mortality, body weight or

Figure 7. Silk fibroin hydrogels supported endogenous cell remodelling of the stroke lesion. RECA-1+ (red)/ Ki67+ (green)/ DAPI (nuclei in blue)
staining in (A) representative control with substantial RECA-1+ cell staining (red) but a low number of Ki67+ cells (teal = green+blue) (A1, white
arrow for a Ki67+ single cell). (B) Silk fibroin hydrogel implanted animals showed many Ki67+ cells present in the cortical area (B1), interacting with
new vessels (RECA-1+) (B2, arrows). RECA-1+ vessels (black arrow), host proliferating cells (white arrows), and some other type of cell (DAPI),
existing as one conglomerate (B2) RECA-1+/ Ki67+/ DAPI+ cells were located inside the silk fibroin hydrogel graft (sharp symbol, C and C1 (white
arrows Ki67+ cells). (D) Relationship (line of best fit) between the number of Ki67+ in the stroke cavity and lesion volume (expressed as volume of
GFAP+ immunostaining). Control slope (green line): gradient r2 = 0.94 (95% CI: 0.96, 1.0), ## P < 0.001. Silk fibroin hydrogel slope (red line):
gradient r2 = 0.25 (−0.7, 0.86), P = 0.78. Difference between slopes * P < 0.05. Scale bars: 100 μm.
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neurological behavior after MCAo in animals with large or small
cavities. Therefore, this study allowed assessment of silk
hydrogel effects on space conformity and host tissue architecture
in large and small cavities at both subacute (1 week) and delayed
(7 weeks) time points.
As is the case in stroke patients, where a large heterogeneity in

outcome exists, variability in the lesion within a group of animals
exposed to MCAo with reperfusion by intraluminal thread can
be partly attributed to the variable net of sub-branches of the
MCA especially observed in Sprague−Dawley rats.40 The
ischemic damage in the present study was striatal only,
extending to the thalamic area, or was a full striatal-cortical
lesion; this variability has been previously described after ILT in
SD rats.41 This allowed assessment of silk fibroin hydrogels in
terms of space conformity and host tissue response in both large
and small cavities.
In all the animals tested with small and large stroke cavities,

the self-assembling silk fibroin hydrogel filled the lesion (bearing
in mind the limit of the 10 μL injection volume) and was evenly
spread throughout the entire stroke cavity implying good space
conformity and retention. The silk fibroin hydrogel was
interspersed between the tissues having different levels of
damage, architecture and density, which would be beneficial for
drug and (stem) cell delivery, especially where a cavity is
present,6,10 as previously shown in spinal cord23 and others CNS
injuries.10

In the present study, the silk fibroin hydrogel was able to
modulate glial scar formation. The space taken by the GFAP-
positive astrocytes (glial scar) was partially displaced by the silk
fibroin hydrogel, potentially decreasing its volume. This type of
biomaterial-glial scar interaction has been observed previ-
ously.42,43 The glial scar formation in the ischemic brain is
essential for beneficial effects such as blood−brain barrier repair,
limiting the inflammatory response and restricting the ischemic
cascade of tissue damage,7 but it also has detrimental effects such
as precluding axonal regeneration into the damaged tissue44−46

and reducing efficacy after cell transplantation. Further studies
are required to establish if the interface between self-assembling
silk fibroin hydrogels and the glial scar facilitate and/or inhibit
these effects on neural repair. Furthermore, how the presence of
the silk fibroin hydrogel impacts the (active) remodelling of the
glial scar remains an open question.
We did not attempt to fully quantify silk fibroin hydrogel

degradation. However, the histological assessment indicated
that silk fibroin hydrogels showed no overt signs of degradation
in the stroke cavity at either 1 or 7 weeks. This observation
contrasts with observations made in healthy mice that had
received a 5 μL injection of 2% w/v silk fibroin hydrogel into the
caudate putamen, where histological assessment revealed an
approximately 50% reduction in hydrogel volume at 4 weeks.21

We can only speculate why different observations were made in
the present study. For example, the observed volume reduction
in the mouse study could simply reflect a collapse of the weaker
silk fibroin hydrogel structure in response to tissue stress (which
is likely to be absent in the stroke cavity) or a greater resistance
of our 4% w/v silk fibroin hydrogels to proteolytic degradation
(i.e., a greater total amount of silk fibroin administered). The
presence of the silk fibroin hydrogels in the stroke cavity beyond
7 weeks indicates the possibility of supporting tissue
regeneration (and/or extended payload release).
One critical aspect is whether the self-assembling silk fibroin

hydrogel implants induced an inflammatory reaction over time.
We only observedmicroglia/macrophages within the lesion core

at 3 and 9 weeks post-MCAo (the 1 week and 7 weeks
postimplant time points) in nongrafted or PBS animals, but no
microglia/macrophages were evident in the core of the lesion
filled with silk fibroin graft at either 1 or 7 weeks post-
implantation (i.e., no colocalization of DAPI+ with the GFAP+

signal). The self-assembling silk fibroin hydrogel appeared to fill
the cavity, displacing and partially superseding the glial scar and
inflamed tissue. Thus, these findings indicate that primary
inflammation was caused by the ischemic insult at early
timeframes (up to 1 week), as reported previously.7,47,48 The
silk fibroin hydrogel graft caused no secondary (or additional)
inflammation, in agreement with the general observation that
silk fibroin hydrogels are typically well tolerated in vivo.14

Ischemeic injury is known to stimulate the production of
newly proliferated cells.49,50 We examined whether self-
assembling silk fibroin hydrogels aid endogenous cell prolifer-
ation in the ischemic brain by staining for RECA+ and Ki67+

cells, as indicators of angiogenesis and endogenous cell
proliferation, respectively. Animals treated with silk fibroin
hydrogel showed numerous proliferating cells, which were
localized alongside new vessels, in addition to another
(unidentified) DAPI+ cell type; these heterotopic multicellular
structures were only observed in the silk fibroin hydrogel group
(Figure 7B2). We further examined the possible modulation of
endogenous processes induced in the stroke cavity by the silk
fibroin hydrogel by examining the relationship between the
lesion volumes and the number of proliferating cells in the stroke
cavity in the control and the silk fibroin hydrogel groups and
found that the slope of the 2 lines was significantly different
(although it should be noted that the extreme point in the
control group will have influenced the result), in that silk fibroin
hydrogel significantly reduced the gradient compared to control.
In any animals with a lesion size at the lower end of the range
(e.g.,∼ 50 mm3), silk fibroin hydrogel significantly increased the
number of proliferating, indicating that smaller lesions are
required to attract proliferating cells to the cavity when silk
fibroin hydrogel is injected. This is in agreement with many
previous in vivo studies which examine hydrogels and
neurogenesis51 and therefore one might speculate self-
assembling silk fibroin hydrogels promote an environment
conducive to cell proliferation/infiltration after an ischemic
insult. However, further experiments, which are beyond the
scope of the present study, are needed to establish the
phenotype of these proliferating cells before conclusions can
be drawn about the regenerative capacity of self-assembling silk
fibroin hydrogels.

■ CONCLUSIONS

The present study indicates that self-assembling silk fibroin
hydrogels performed well in the ischemic brain of stroked rats.
During the solution−gel transition, silk fibroin could be injected
into established stroke cavities of variable sizes using a minimally
invasive stereotaxic procedure. Furthermore, the silk fibroin
hydrogel demonstrated (i) stability over the course of the study
(>7 weeks), (ii) excellent space conformity, (iii) good
biocompatibility in terms of animal welfare and inflammatory
response. We further present preliminary evidence that the silk
fibroin hydrogel was able to support endogenous cellular
mechanisms. In summary, our findings bode well for the use of
this system as a matrix for therapeutic delivery.
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