Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Controlling enzymatic polymerization from surfaces with switchable bioaffinity

Divandari, Mohammad and Pollard, Jonas and Dehghani, Ella and Bruns, Nico and Benetti, Edmondo M. (2017) Controlling enzymatic polymerization from surfaces with switchable bioaffinity. Biomacromolecules, 18 (12). pp. 4261-4270. ISSN 1525-7797

Text (Divandari-etal-Biomacromolecules-2017-Controlling-enzymatic-polymerization-from-surfaces-with-switchable)
Accepted Author Manuscript

Download (1MB) | Preview


The affinity of surfaces toward proteins is found to be a key parameter to govern the synthesis of polymer brushes by surface-initiated biocatalytic atom transfer radical polymerization (SI-bioATRP). While the "ATRPase" hemoglobin (Hb) stimulates only a relatively slow growth of protein repellent brushes, the synthesis of thermoresponsive grafts can be regulated by switching the polymer's attraction toward proteins across its lower critical solution temperature (LCST). Poly(N-isopropylacrylamide) (PNIPAM) brushes are synthesized in discrete steps of thickness at temperatures above LCST, while the biocatalyst layer is refreshed at T < LCST. Multistep surface-initiated biocatalytic ATRP demonstrates a high degree of control, results in high chain end group fidelity and enables the synthesis of multiblock copolymer brushes under fully aqueous conditions. The activity of Hb can be further modulated by tuning the accessibility of the heme pocket within the protein. Hence, the multistep polymerization is accelerated at acid pH, where the enzyme undergoes a transition from its native to a molten globule conformation. The controlled synthesis of polymer brushes by multistep SI-bioATRP highlights how a biocatalytic synthesis of grafted polymer films can be precisely controlled through the modulation of the polymer's interfacial physicochemical properties, in particular of the affinity of the surface toward proteins. This is not only of importance to gain a predictive understanding of surface-confined enzymatic polymerizations, but also represents a new way to translate bioadhesion into a controlled functionalization of materials.