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Abstract

We analyse two models describing disease transmission and control on regular and small-world networks. We use
simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease
against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the
removed/recovered individuals are treated. The differences in models affect choice of the strategy only for very cheap
treatment and slow spreading disease. However for the combinations of parameters that are important from the
epidemiological perspective (high infectiousness and expensive treatment) the models give similar results. Moreover, even
where the choice of the strategy is different, the total cost spent on controlling the epidemic is very similar for both models.
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Introduction

Networks can provide a good representation of how individuals

interact [1–3]. Despite many simplifications, models based upon

network structures have successfully been used in many applica-

tions [4,5] including spread of rumours and news [3] and

computer viruses [1]. A particularly important application of

network models has been in epidemiology [6–10] of plant, animal

and human pathogens [11–13]. Modelling in epidemiology plays

an important role: It allows us to estimate the scale of the

epidemic, to predict how far the disease could spread and to design

effective ways of control. All these tasks need to be achieved

despite the fact that in many cases we are not able to observe the

whole process and/or measure all relevant parameters [14]. The

state of individuals, whether they are susceptible, infected and pre-

symptomatic, infected and symptomatic or recovered, is in

particular often difficult to ascertain [15]. Despite these uncer-

tainties it is possible to use modelling to design effective control

measures leading to the lowest overall cost of the epidemic

outbreak [16–19] and a number of studies have used network

models to address this issue [14,20–23].

Economic and behavioural aspects influence the spread of

disease and affect the choice of a control strategy. For instance, if

the treatment does not cost anything, the best strategy is to control

the whole population. Contrarily, for very expensive control

measures it might be better to refrain from treatment at all.

Optimisation of total disease costs, including palliative cost

associated with disease cases and cost of appropriate control

measures, leads to appearance of three basic strategies [20]: The

Global Strategy (GS) whereby all individuals are treated regardless

of their status can be contrasted with the Null Strategy (NS) when

the public authorities completely refrain from preventive treat-

ment and concentrate on palliative treatment of cases. The Local

Strategy (LS) emerges for intermediate costs of treatment. In this

case, not only detected symptomatic individuals are treated

preventively, but the treatment includes also their neighbours.

The work so far has concentrated on the role of processes

associated with disease spread on the broad choice of the

treatment strategy [20] and on the details of the local strategy

[21]. However, the spontaneous recovery also may affect the

results and in the current paper we explore this dependence in

detail.

We extend our results to two contrasting and yet complemen-

tary models in which we either treat individuals that have been

through the disease or not. Whether the removed individuals (i.e.

those who have been through the disease but then spontaneously

recover or die) are part of the treatment plan depends on the type

of the disease agent. The key factor in choosing the right model is

whether it is possible – and desirable – to distinguish such

individuals from those who are susceptible. If the removed class is

identified with dead individuals, the distinction is very clear.

However, if the removal means recovery and immunity, it might

not be possible to identify those who are immune. For example,

many people might not want to report that they have been

through the infection, or the disease symptoms might be relatively

mild. For animal diseases, immunological testing might be the only

way to identify such individuals, but this leads to increased costs

and test results might not be reliable. In other situations, we might

know the status of the individual, but might not be able to target

the treatment to susceptible and infected individuals. Plant and
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crop diseases might serve as an example here, whereby it might be

easier to treat the whole field regardless of whether some plants

there are already immune to the disease.

Although such individuals do not contribute to the spread of the

disease, the cost of treating them affects the economic side of the

evaluation and therefore leads to changes in the design of the

optimal strategy. We study this case in our paper and show that

although there is a difference in the choice of the strategy (LS vs.

GS) and the resulting number of treated individuals, there is only a

small difference in the overall total cost of the epidemic.

Methods

We assume that individuals are located at nodes of a square

lattice that represents geographical distribution of hosts, see fig. 1.

On this lattice, we define a local infection neighbourhood of order

zinf as a von Neumann neighbourhood. In that neighbourhood

2zinf (zinf z1)z1 individuals are included, involving the central

one. We additionally define z~0 as corresponding to this central

individual, which means that this individual is not in contact with

anyone, while z~? corresponds to the whole population, see

fig. 1. To increase realism of our analysis, we also consider the

small-world model [24,25] which adds a certain number of links

among randomly chosen nodes, thus adding some long-range

connections to the regular lattice ones [24]. Although the disease

can spread along these long-range links, we assume that they are

so difficult to identify that they are not included in any treatment

strategy (see below).

The epidemiological SIDRV model is a standard SIR

(Susceptible-Infected-Removed) model [26], modified to account

for latent period and preventive and responsive treatment (fig. 2),

see also [21]. Taking into consideration the latent period, the

infectious class is now composed of two separate, pre-symptomatic

and symptomatic classes (S, I, D, R and V, respectively). Number

of individuals in each class is denoted by S, I , D, R, and V ,

respectively, and N~SzIzDzRzV is the total constant

number of individuals in the population.

Initially, all individuals are assumed to be susceptible (S). The

epidemic is initiated by an introduction of few infected but pre-

symptomatic (I) individuals, which are located randomly and

uniformly over the whole network. Each infected individual is in

contact with a fixed number of other individuals in its infection

neighbourhood zinf . These connections do not change during the

epidemic. The disease is transmitted along these contact routes

with probability f per contact. Upon a successful infection, the

susceptible individual moves to the pre-symptomatic class.

Each infected pre-symptomatic individual moves to a symp-

tomatic class (D) with probability q. Detected individuals still can

infect other individuals. Subsequently, each detected individual

can spontaneously move to a removed class (R) with probability r.

However, detection also triggers a control event with probability v

and subsequently a number of individuals selected from the von

Neumann neighbourhood of order z centered at the detected

individual move to a treated class (V); for details see below. Neither

R nor V can infect or be re-infected any more.

According to the responsive treatment two versions of the

SIDRV model have considered: (i) model 1 with control of all

individuals in selected area except removed (R class), see fig. 1b,

Figure 1. (a) Definition of the von Neumann neighborhood of
different values of order z, as used in the simulations and
analysis. (b) Illustration of spread of a disease (model 1) on a regular
network with additional randomly chosen long-range links represented
by curved lines (approximation of a small-world network). The applied
control of radius z is centered on node D (yellow shaded area). Note
that in model 1 the R individuals are excluded from the control and
thus non-treated. (c) Representation of model 2: All individuals
contained in the control neighbourhood of order z are preventively
treated and moved to V class. In both models treatment does not take
into account individuals connected by additional long-range links. S, I,

D, R symbols stand for Susceptible, Pre-symptomatic, Symptomatic and
Recovered, respectively. The order z of infection neighbourhood equals
zinf ~2 in (b) and (c).
doi:10.1371/journal.pone.0063813.g001
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and (ii) model 2 with control of all individuals in selected area

regardless of their status (and thus including R), see fig. 1c.

The control event is localized within a von Neumann

neighbourhood of order z centred on a symptomatic individual.

The order of control neighbourhood, z, can be different than the

order of the infection neighbourhood, zinf , and is typically found

larger. Thus, a group of individuals in the treatment neighbour-

hood consists of a mixture of susceptible, infected pre-symptom-

atic, infected symptomatic and recovered individuals (preventive

treatment). We have extended the definition of control neighbor-

hood size in order to include the situation when no control is

applied, z~{1.

Simulations
All simulations have been performed on the lattice of 200 by

200 individuals with periodic boundary conditions. Simulations

started with 40 initial infected foci, which corresponds to 0:1% of

the total population.

Control size, z, has been varied, while other parameters (such as

f , q, v, r, zinf ,) have been kept constant. Each simulation has been

run until I(t)zD(t)~0, which means that no infection can occur

afterwards. At the end of the run all R and V individuals have

been counted, yielding information about severity of the epidemic

as well as effectiveness of the treatment involved.

Effectiveness of control strategies
The effective control strategy is found by taking into account

severity of the epidemic and its financial implications. In order to

quantify the effectiveness of different control strategies we

introduce the severity index, X [15,20]. By seeking the minimum

values of X , we find which strategy is optimal.

The severity index, X , includes two terms corresponding to the

cost of infection and control. First term describes costs associated

with death, absence in work, lower productivity etc., whereas

second term includes costs of vaccine, quarantine, transport of

drugs to infection foci, etc. We assume that X is a linear

combination of number of individuals which have gone through

disease and recovered (R) and treated individuals (V).

We measure X in units of a number of single infected

individuals, so that:

X (z,t~?)~R(z,t~?)zcV (z,t~?) : ð1Þ

Here c represents a cost of treatment relative to the cost of

infection and z stands for the control neighbourhood size. Both

R(z,t~?) and V (z,t~?) are counted at the end of a single

simulation run.

Effective strategy is equivalent to the minimal value of X , which

means that the epidemic is stopped at the manageable cost. In our

simulation, the minimization of the severity index has been

achieved by sweeping through different values of control

neighbourhood size, z while keeping other parameters constant.

Once z is set, we let the system evolve and then compute the value

of X in the stationary state. We repeat this operation 100 times

and then we denote with zc and Xc the average values, of z and X ,

corresponding to the minimum of X , so that

min
{1ƒzƒ50

X (z,t~?)~Xc(zc,t~?) : ð2Þ

Results

In the absence of control, the disease will either progress

through the population until it exhausts a large part of initially

susceptible population (for large values of the infection probability

f ) or it will quickly stop spreading (for small values of f ). As control

is applied in extended neighbourhood of radius zc centred at a

symptomatic individual, the number of recovered (R) individuals

declines rapidly, see fig. 3a. Models 1 and 2 examined in this work

differ in the way they treat or not treat the recovered class, R, cf

fig. 1 We observe the same behaviour for both considered models

(with and without treating R class). However, when we allow the

control of R individuals (model 2), the proportion of recovered

declines faster than in model 2, see fig. 3a (insert). The proportion

of preventively treated individuals, V, in both models is similar for

the whole range of control size, z. With increasing control

neighbourhood, V(z) grows very quickly, then drops near z~6 and

finally rises monotonically till z*50 (fig. 3b). Combination of these

two relationships, R(z) and V (z), according to eq(1), gives total

Figure 2. Model scheme of disease transition (black lines) and control (orange lines). In model 2 there is a possible transition between
recovered (R) and treated (V) class when R-individual is in the control neighbourhood of any symptomatic D-individual.
doi:10.1371/journal.pone.0063813.g002
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cost of epidemic, X , as a function of z, see fig. 3c. For a very low

treatment cost, e.g. c~0:0003, total cost of control of epidemic, X ,

is almost equal for both models, with difference less than 0:1%, see

fig. 3c (insert). The choice of optimal strategies is different for

model 1 (GS) than for model 2 (LS), although the corresponding X

values are similar. In model 1 the minimal value of X corresponds

to the highest value of control size, zc~50 (GS), whereas in model

2, the minimum is identified with zc~6, (LS) fig. 3c.

Regular networks – influence of recovery rate, r on control
strategies

Increasing cost of treatment, c, decreases the optimal control

neighbourhood, zc. For very cheap control the optimal scenario is

identified with zc*45 (GS) for model 1, regardless of the recovery

rate, r (fig. 4a). The more expensive the treatment, the higher the

total costs spent on controlling outbreaks. This leads to change in

optimal strategy, see fig. 4a, b. We cannot afford the preventive

control of the whole population (GS) and have to shift into treating

in neighbourhood of symptomatic individuals. We observe that zc

rapidly decreases with increasing costs, especially for model 1. For

intermediate values of c, zc drops to *10 depending on recovery

rate, r. Higher recovery rate, r, results not only in a shorter

plateaux for LS (see fig. 4a, b) but also moves the plateaux towards

larger control size, zc. As treatment becomes more expensive,

second threshold is observed that describes change from LS to NS.

Although for model 2 the global strategy is selected rather than the

local one as for model 1 (fig. 4b, d) for the high values of recovery

rate, r and low c, the total cost of epidemic, Xc, does not differ

much between the two models, see fig. 5. The highest costs are

associated with fast spreading diseases (large f ) and expensive

treatment (large c) for both models (upper right part of plots in

fig. 5). Slow spreading disease does not significantly affect the

budget for control regardless of treatment costs (lower part of plots

in fig. 5) and model selected. For model 2 the global strategy is

predominantly selected for high values of recovery rate r and at

low c, in contrast to model 1 (fig. 4b, d) where the local strategy

prevails. Despite these differences, the total cost of epidemic, Xc,

does not differ between the two models, see fig. 5.

Regular networks – control strategies
Control size, zc depends strongly on the cost of treatment, c,

and on the infectiousness of the disease, f (fig. 6). For small f and

c, both models suggest preventive control extended to the whole

population (GS) (lower left part of each plot in fig. 6). In case of

highly infectious disease and low treatment costs, model 1 predicts

higher effectiveness of GS whereas model 2 selects LS as an

optimal solution, upper left part of each plot in fig. 6. However, in

both examined models the total cost of epidemic, X, is

approximately the same, see fig. 3. As treatment cost, c, increases,

LS becomes the most cost-effective strategy. LS changes to NS

when c is of order 1 for small f and of order 10 for high f ,

regardless of the choice of the model or the exact value of r,

compare fig. 6a, b with fig. 6c, d.

The main difference in selection of the optimal strategy occurs

for small c. Changes in r affect only low c regions. Increasing r
from 0:1 to 0:2 extends the region of validity of GS and moves it

towards marginally larger values of c and high values of f , fig. 6c,

d. This trend is continued for larger values of r, see fig. 4, and can
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Figure 3. (a) The proportion of recovered individuals, R=N , (b)
the fraction of treated (controlled) individuals, V=N and (c) the
total cost of epidemic as a fraction of the system size, X=N , for
c~0:0003 and various control sizes z. Red solid line: model 1; blue
dotted line: model 2. Results of simulations with parameters f ~0:5,

q~0:5, r~0:1, v~0:1 and zinf ~1 performed on regular networks.
Inserts show the relevant magnifications of the graph.
doi:10.1371/journal.pone.0063813.g003
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be associated with faster removal of individuals without triggering

control events.

Small world networks – control strategies
Addition of small-world links does not change the behaviour for

small f and c. However, there are substantial differences for large

f and the effect differs for the two models. Introducing disorder

into the topology by adding long-range links changes ranges of

optimal strategy for both considered models, compare fig. 6a, b

with fig. 7. In model 1 small number of links, e.g.6%, fig. 7a,

extends GS when disease spreads fast and costs are higher. The

small number of links 6% in model 2 does not change choice of

control strategy, compare fig. 6b with fig. 7b, as in model 1 (top

panel in fig. 7). Nonetheless, the total cost of epidemic remains

almost the same. For large values of f , destroying spatial structure

by adding 20% links results in only two effective strategies for

highly infectious disease, GS for cv1 and NS otherwise, fig. 7c.

The higher disorder (20% of long range links) in model 2,

introduces GS when probability of spreading the epidemic, f ,

increases, fig. 7d.

Discussion

The goal in designing cost-effective control strategy is to stop the

epidemic outbreak very quickly at a minimal possible cost. In

order to achieve this by using the local strategy (LS) we need to

catch in the preventive control neighbourhood as many infected

but pre-symptomatic individuals and to form a fire-break by

treating around the infection focus. The extend of control is a

crucial factor; however, it is not obvious by how much we need to

enlarge the neighborhood in which preventive treatment is

applied. We need to balance epidemiological and economic

aspects of disease spread and control [27]. When we extend

prevention to the whole population we might be able to

successfully protect population from epidemic outbreaks but we

will need to spend a lot of resources. On the other hand, when we

apply control to too small neighbourhood, we will spend a lot but

the disease will still invade the whole population. Under some

conditions an optimal solution emerges in between these two

extremes and can be associated with the Local Strategy; in other

cases the extreme solutions (Global Strategy and Null Strategy) are

optimal. As we have already shown [20,21], the effective control

neighbourhood can be chosen based on combined epidemiological

and economic analysis.

The previous analyses [20,21] left three key questions unan-

swered. Firstly, should we treat individuals that are already

immune? Although the answer clearly depends on the nature of

the disease and the treatment, some general principles can be

established. This depends on the relative – economic, social and

medical – cost of the preventive treatment compared to the

palliative care (when we just let the disease to run its natural

course). Secondly, are our results stable with respect to structural

changes of the model? We illustrate the stability by considering

two versions of the same model, with and without treating

recovered R individuals. Finally, it is the dependence of the results

on the actual recovery rate, r. In real-life applications it is difficult

to distinguish between individuals that have been through the

disease and those who do not. It is therefore very important to

check whether the model and the resulting policy implications are

robust with respect to the potential uncertainties. We show that

this is the case in general but also identify the region of the

parameters when the two models have different behavior (small c,

large f ).

Figure 4. Control size zc as a function of the treatment cost c ((a) and (b)) and as a function of the recovery rate, r, and the treatment
cost, c ((c) and (d)) for model 1 (left column) and model 2 (right column). In (a) and (b) r~0:10 (red line), r~0:63 (green dashed line), r~0:98
(blue dotted line). All simulations done on regular networks with parameters f ~0:1, q~0:5, v~0:1, zinf ~1.
doi:10.1371/journal.pone.0063813.g004
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Figure 5. Total cost of epidemic at optimum, Xc, as a function of the treatment cost c ((a) and (b)) and as a function of both
infectiousnes, f , and cost, c ((c) and (d)) for model 1 (left column) and model 2 (right column). In (a) and (b) f ~0:001 (red line), f ~0:032
(green dashed line), f ~0:1 (blue dotted line). All simulations done with parameters q~0:5, v~0:1, r~0:1, zinf ~1. Disease spreading on regular
networks.
doi:10.1371/journal.pone.0063813.g005

Figure 6. Control size, zc, as a function of both infectiousness, f , and treatment cost, c, for model 1 (left column) and model 2 (right
column). Simulation parameters for top panel ((a) and (b)): r~0:1; for bottom panel ((c) and (d)): r~0:2; other parameters: q~0:5, v~0:1, I(0)~40,
zinf ~1. Disease spreading on regular networks.
doi:10.1371/journal.pone.0063813.g006
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Two contrasting cases can be distinguished in answer to the first

question. If the treatment is costly and/or may lead to

complications, the authorities might want to invest in testing

individuals in order to find out who is and who is not naturally

immune. This would identify individuals in the R class who then

might not be offered the treatment. Contrariwise, if it is not

immediately obvious what the actual status of the individual is and

testing is expensive, lengthy or unreliable, the authorities might

decide to treat all individuals regardless of their status. Our results

from this paper suggest that the choice of the strategy depends on

whether treatment includes or excludes R but the total budget

spent on controlling epidemic remains similar for both models.

Secondly, in the most important region of parameter space,

corresponding to expensive preventive treatment and a highly

infectious disease, both models yield very similar scenarios (right

part of fig. 4c, d). Thus, the results appear to be stable with respect

to structural changes of the model. Where the difference is

marked, for low c and high f , the models suggest a different choice

of strategy (GS for model 1 and LS for model 2). However, we also

found that in this case the economic outcome of either GS or LS is

very similar (see fig. 3c).

Thirdly, the main effect of increasing r is to shift the boundary

between the GS and LS for small c, rendering the GS less

attractive as r decreases – and the infectious period increases. For

model 2 (without treatment of R) the area of preference of GS over

LS is limited to very small values of c. Thus, the longer the

infectious period, the more likely the local strategy is to work. The

boundary between LS and NS for large values of c remains

unchanged.

Addition of long-range links enlarges the region of applicability

of GS towards higher f and c for both models. The large number

of randomly placed long-range links destroys spatial structure of

spreading the pathogen and causes that it spreads mostly globally

so that LS is no longer effective option of control the epidemic.

The results obtained in this paper can be used for those diseases

for which spread is dominated by local transmission or by a

mixture of local and long-range links. Examples include human

(notably SARS [28] and influenza [29–31]), animal (foot-and-

mouth disease [32]) and plant diseases (citrus canker [33], sudden

oak death [34–36] and rhizomania of sugar beet [37,38]).

Although our model assumes a simple network structure, we

believe that the results can be generalised to more complex, but

also more realistic networks, including social networks [31]. This

work can also be extended in several ways. The most interesting

will be the SIRS model, in which after some period of immunity to

the disease individuals become susceptible again and could catch a

disease few times; with influenza [29–31] and sexually-transmitted

diseases [39,40] being the best examples.
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20. Kleczkowski A, Oleś K, Gudowska-Nowak E, Gilligan C (2012) Searching for

the most cost-effective strategy for controlling epidemics spreading on regular
and small-world networks. Journal of The Royal Society Interface 9: 158–169.
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