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Abstract 

To get insight into nano-scale deformation behavior and material removal 

mechanism of RB-SiC ceramic, nanoscratch experiments were performed using a 

Berkovich indenter. Structure changes in chips and subsurface deformation were 

characterized by means of Raman spectroscopy. The result shows that the SiC phase 

underwent amorphization in ductile chips, while no amorphous feature can be 

observed in brittle chips and substrate within scratch groove. The following estimated 

stress surround the indenter reveals that amorphous deformation in ductile chips is 

governed by tangential stress (above 95 GPa), whereas the dislocations-based 

substrate deformation mechanism was dominated by normal stress. In the end, the 

effects of normal load and scratching velocity on the scratch behavior including 

scratch residual depth, elastic recovery and friction coefficient that related to RB-SiC 

ceramic deformation mechanism were also analyzed. With the increase of normal load, 

the deformation mechanism transfers from ductile to brittle fracture mode and cause 

the decrease of elastic recovery and the increase of residual depth and friction 

coefficient. Furthermore, the increased high density of dislocations as a result of the 

increased scratching velocity give rise to the increase of scratch hardness, which 
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finally result in the increase of elastic recovery and decrease of residual depth and 

friction coefficients. This study contributes a new understanding of the brittle material 

deformation mechanism during a nano-scale scratching process. 

Key words: RB-SiC ceramic; amorphization; dislocation; brittle fracture; scratch 

behavior. 

Nomenclature 

h Scratch depth τ Interfacial tangential stress 

α 

The centerline-to-face angle of 

Berkovich indenter 

σ Interfacial normal stress 

hd Pile up of residual scratch groove γ Material flow orientation 

A 

The contact area between scratch 

groove and Berkovich indenter 

k Modified coefficient 

FN Normal force a Width of scratch groove 

FT Lateral force   Strain rate 

D, m Empirical coefficients Er Elastic recovery 

v Scratch velocity Hr Residual depth 

μa Adhesion coefficient μp Ploughing coefficient 

s Shear strength σy Yield stress 

H Vickers hardness E Elastic modulus 

 

1. Introduction 

Reaction bonded silicon carbide (RB-SiC) ceramic is being considered as a 

prime material candidate for large mirrors of space or ground based telescopes due to 

its combination of mechanical properties of high strength, high chemical inertness, 

enhanced radiation stability and thermal shock resistance [1,2]. Such applications 



have strict requirements on surface tolerance, surface finish and surface/subsurface 

damage. However, intrinsic high hardness and brittleness characteristics of ceramics 

make fracture defects are inevitable in traditional grinding process. Hence, it is 

desirable to fabricate brittle material in ductile removal mode, through which an 

optical quality surface with little or even no surface and subsurface damages is 

expected to be obtained [3, 4]. Understanding the material removal mechanism and 

critical transition from ductile to brittle fracture (DTB) has therefore been a subject of 

significant interest [5-8]. 

Actually, it is general acceptable that no matter how brittle of the material, it has 

some level of ductility if the undeformed chip thickness is below a certain critical 

limit in machining [9, 10]. Several researchers, thereafter, attempts to quantify the 

critical depth of DTB with material physics properties [3] or a variety of different 

contact loading conditions such as pressure loading [11], scratching [12,13], 

nanoindentation [14] and nanometric cutting [9,15]. Meng et al. [12] performed 

nanoscratch tests on 6H-SiC and found the critical depth for DTB is around 75 nm 

when the applied normal load is about 12.2 mN. However, Cao et al. [13] got that 

0.08 μm is the critical depth for ductile to brittle transition in the conventional scratch 

test of SiC ceramic. They also found that with the assist of ultrasonic vibration the 

depth of cut can increase around 56.25% than conventional scratch to 0.125 μm. 

Besides, in the nano-indentation of 6H-SiC (0001) Yin et al. [14] found that the no 

cracks were occurred when the normal load is up to 400 mN, which has controversy 

with the findings in reference [11]. Currently the critical depth of cut for SiC is still 

inconclusive because its value is determined by several parameters pertaining to 

intrinsic material properties, tool geometry, processing parameters and removal 

mechanism. The key factor to reveal the difference of critical depth lies in 



understanding the corresponding deformation mechanism induced by different 

machining conditions. Especially for RB-SiC ceramics which compose of Si phase, 

SiC phase and phase/grain boundary to lead to more complicated deformation 

mechanism than a single crystal material. To date, the deformation mechanisms of 

SiC materials were mainly including, high pressure phase transformation [16], 

dislocations slip [17] or amorphization [15, 18]. For instance, Yan et al. [17] found 

that dislocations were the primary ductile mechanism of 6H-SiC grain in the 

subsurface of diamond turning RB-SiC ceramics. No amorphous phase peaks can be 

identified in Raman spectrum. However, Zhang et al. [15] proposed that 

amorphization (High-Pressure Phase Transformation, HPPT) occurred for both SiC 

and Si phases in the outmost layer during micro grinding of RB-SiC ceramics 

according the results of X-ray diffraction (XRD) detection [10]. Similarity, Xiao et al. 

[16] also claimed that HPPT accompanied Frank partial dislocations and basal plane 

edge dislocations indeed took place in the molecular dynamic (MD) simulation of 

diamond turning of 6H-SiC. On the contrary, Goel et al. [19, 20] insisted that HPPT 

will not happen in the nano-machining of SiC since the maximum pressure remains 

less 100 GPa in their MD simulations using the Tersoff potential. Wu et al. [6] 

concluded that in the nano-scale machining of 6H-SiC, the ductile-regime can be 

achieved by either the structural transformation (Wurtzite structure to an amorphous 

structure), or by the migration of dislocations (in the case of plan-strain deformation), 

or by a combination of them. From the above mentioned studies, it can be concluded 

that the researches on the DTB transition depth and deformation mechanism in 

diamond machining of SiC are inconclusive. Therefore, this paper focuses on the 

investigation of the removal mechanism of RB-SiC ceramics through analyzing the 

structure changes in chips and subsurface substrate. 



It is known that nano-scratch technique was the most effective and common 

method to investigate the material mechanical properties and removal behavior in 

abrasive machining [21-23]. The material deformation/fracture patterns arising from 

the surface morphologies of the scratch provide primary information for determining 

material removal behavior. In the current work, therefore, a series of nano-scratch 

tests were performed on RB-SiC to investigate the material removal mechanism based 

on the scanning electron microscopy (SEM) observation and Raman measurement of 

residual scratch groove and chips. The tangential and normal stresses around the 

Berkovich indenter were analyzed to explain the difference deformation mechanism 

emerged in ductile chips and subsurface of substrate. Finally, based on the 

deformation mechanism under different process conditions, the effect of scratch speed 

and normal load on removal behavior such as residual depth, elastic recovery and 

scratch force were discussed. This research is expected to give a further insight into 

the deformation mechanism in the nano-scratch of RB-SiC ceramic, and determine the 

inner link between material deformation mechanism and removal behavior. 

2. Experiments 

2.1 Material properties 

The RB-SiC ceramic used in this investigation was fabricated by Goodfellow 

Cambridge Limited. The size of specimen dimension was 12.5 mm×12.5 mm×5 

mm and its main physical characteristics were listed in Table 1. To minimize the 

defects induced by sintered process, the received samples were polished with diamond 

of 1～3 µm grit size until the surface roughness (Ra) less than 5 nm as measured with 

AFM. 

 

 



Table 1. The physics properties of RB-SiC 

Workpiece RB-SiC 

Elastic modulus E (GPa) 390 

Vickers hardness H (kg/mm−2) 3000 

Compressive strength (MPa) 2000 

Fracture toughness KIC (MPa·m1/2) 4.0 

Density ρ (g/cm3) 3.1 

Passion ratio υ 0.24 

Average diameter (μm) 10 

2.2 Experimental setup 

All the nano-scratching tests were conducted on the Nano Indenter G200 (MTS 

Systems Corp.) (Fig. 1a), employing a standard diamond Berkovich indenter with a 

tip radius about 130nm, as shown in Fig. 1b. In this study, the Berkovich indenter was 

oriented in an edge leading in the scratch direction (Fig. 1c). This machine equipped 

with a transducer with a normal force/displacement sensor and two lateral 

force/displacement sensors, which can acquire the lateral force and scratch depth in 

real time. 

To insight the effect of normal load and scratching velocity on removal behavior, 

scratch depth/ elastic recovery ratio and friction, a serials of constant and continuous 

loading mode scratch tests were performed with applied normal load ranging from 0 

mN～50 mN and scratching velocity within 1 μm/s～2000 μm/s. Besides, in order to 

obtain a statistically reliable data at least three scratches were made at each set. All 

tests were carried out at the temperature about 23℃.After the scratch experiments, 

for the purpose of characterizing the material removal behavior and fracture pattern, 
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the topography of the scratch groove was observed by a scanning electron microscope 

(SEM). A J-Y HR 800 Raman system equipped with an argon ion laser with 488 nm 

line excitation wavelength was employed to uncover structure changes in the debris 

and subsurface of substrate. The laser beam was focused to a spot size of 0.8 μm in 

diameter. After the non-contact examination, the specimens were cleaned in acetone 

for 10 min using an ultrasonic washer. The three-dimensional scratch groove 

topography including the residual depth and the height of pile-up along grooves sides 

were obtained using an atomic force microscopy (AFM) (Germany Bruker, dimension 

icon). 

 

Fig. 1. (a) The apparatus of Nano indentor G200 used for scratching tests (b) The 

detail of 3D topography of Berkovich indenter and tip radius profile measured by 

AFM (c) A schematic of nano-scratch process. 

3. Results and discussion 



The effects of several parameters such as the applied normal load, scratching 

velocity on the material removal mechanism, elastic recovery, residual depth and 

scratch friction of the studied RB-SiC ceramic are discussed in the following sections. 

3.1 Effect of normal load and scratching velocity on material removal 

mechanism 

Fig. 2 shows the residual topography after nano-scratch with ramp normal 

loading condition which increased linearly from 0 to 50 mN. From the traces of 

residual scratch morphology, it can be identified that the deformation behavior of 

RB-SiC ceramic is divided into three different regimes based on the surface cracks in 

a typical scratch process. As shown in Fig. 2a, when the normal load increases to 

about 2 mN, the deformation behavior entrances the plastic deformation stage that the 

surface topography appears smooth and no cracks can be observed. After that, as the 

load increases up to about 20 mN, the micro-cracks were emerged within the grooves 

as depicted in Fig. 2b and c. At the last regime, with the continues increase of normal 

load, the successive crack comes into being along the grooves and some lateral cracks 

propagated to the sides of the groove which might leading the material removed in 

macroscopic chipping. The residual topography results reveal that the deformation 

behavior of RB-SiC ceramic is strongly dependent on the normal load (contact stress) 

level. In addition, it is very interesting to note that the phase boundary and grain 

boundary play an important role in the propagation of crack as shown in Fig. 2e and f. 

As shown in Fig. 2e, the crack is blocked at the interface of the Si /SiC phase 

boundary or SiC/SiC grain boundary. 

Fig. 3 shows the typical scratch topography inflicted with varied scratching 

velocity from 1 μm/s～2000 μm/s under the normal load of 10 mN. For scratch 

groove interior, the micrographs did not show an obvious difference between each 



other, except some micro-cracks occurrence when the scratch speed at 1 μm/s (Fig. 

3a). However, the AFM measurement results (shown in section 3.2) exhibit that the 

residual depth and width of the scratch grooves decrease with the increase of 

scratching velocity (The reason will be discussed in Section 3.2). 

 

Fig. 2 Surface topography corresponding to the different removal stage with 

continuous load mode. 

 



Fig. 3. Surface topography with different scratching velocity (a) 1 μm/s;(b) 500 

μm/s;(c) 1500 μm/s (d) 2000 μm/s. 

3.2 Structural analysis 

Raman spectroscopy can be used to distinguish the structural changes in chips 

and substrate of RB-SiC ceramics induced by the scratching process. As shown in Fig. 

4a, the Raman spectrum obtained before scratching, indicates that RB-SiC ceramics 

are mainly composed of Si-I phase with diamond structure (515 cm-1) and 6H-SiC 

phase with hexagonal structure (600-1000 and 200-600 cm-1 region) [24]. The weak 

bands at the points of 145 cm-1, 245 cm-1 ascribe to the folded modes of transverse 

acoustic (FTA) of 6H-SiC at q/q0=1/3 and q/q0=2/3 (q is wave vector), respectively. 

After scratching, if SiC or Si did not change its structure, the Raman spectra would 

totally reversible. However, the spectrum collected from ductile debris D-1 (Fig. 4b) 

shows a significant broadband peak at 802 cm-1, which can be assigned to heavily 

disordered SiC [24, 25]. In addition, another broadband associated with C-C bonds in 

the region of 1300-1600 cm-1 was detected. This is closely related to the 

characteristics of disordered sp2 bonded arrangements. In general, these evidences 

revealed that in the ductile chips, high pressure phase transformation (amorphization) 

of SiC, indeed occurred during scratching with normal load of 30 mN. Whereas, in 

contrast, the Raman spectrum collected from the inside of residual groove (Position 1) 

or brittle fracture chips (D-3) (Fig. 4d) shows no evidence of amorphous pattern of 

SiC as illustrated in Fig. 4b. Therefore, it can be concluded that amorphous 

transformation took place in SiC grain during the ductile chips formation, while 

plasticity response of substrate most likely originates from the dislocation mobility. 

Such phenomenon has also been proved in our previous observation using 

transmission electron microscope [26], which showed that dislocations accompanied 
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with stacking faults were the main defects in subsurface of substrate. It is known from 

the theory of the plasticity that the contact stress between indenter determines the 

deformation mechanism. Thereby, the interfacial tangential stress and normal stress 

around the indenter will be estimated in the following section. 

Apart from the SiC grain, it should be noted that a broadband located at 470 cm-1 

arise on the spectrum of debris (D-2) and in grooves (Position 2), signifying Si has 

been partially transformed into an amorphous state. Another interesting observation 

from Fig.4b is the split peaks at the Raman shift of 515 cm-1 and 533～537cm-1, 

which due to the non-uniform distribution of stress as a result of the plastic 

deformation of dislocations [27, 28]. Under the influence of the anisotropic stress of 

Si three-fold degeneracy phonon modes at Brillouin zone q=0 was broken, resulting in 

the split of different phonon frequencies. 

 



Fig. 4. Raman spectra collected from (a) original structure of RB-SiC ceramics 

(b) the debris and SiC grains present within and away from the scratch grooves as 

shown in (c) and (d). 

3.3 Stress analysis 

In this part, the normal stress and interfacial tangential stresses around the 

indenter were estimated, which can be used to explain the foregoing phenomenon of 

the different deformation mechanism in chips and substrate within scratch grooves. 

 

Fig. 5. The schematic of forces on the contact area (a) and the cross section of 

residual scratch groove (b). 

Fig. 5 shows the contact area and cross section of residual scratch groove. The 

surface of one face of the Berkovich indenter for a height h is: 

23 tan
A +

cos 2cos

dah
h



 
                                                 (1) 

2 3 tan

a
h


                                                           (2) 

Where α=65.3︒ for a Berkovich indenter. 

The measured normal force FN and lateral force FT can be expressed as [29]: 

2sin 2sin cosN n tF F F                                          (3) 
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If we assume that the normal stress and interfacial tangential stress oriented at an 

angle relative to the horizontal are applied to two frontal indenter faces. So the 

relationship between the interfacial tangential stress τ/normal stress σ, angle γ, FN and 

FT can be given by [30]: 

2
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According to Eqs. (5) and (6), the stress calculated in this manner is not a unique 

solution, but varies with material flow orientation γ. Fig. 6 shows how the normal 

pressure and the facial tangential stress evolved with the angle γ. It is interesting to 

note that both the normal stress σ and tangential stress τ under 30 mN and 40 mN is 

larger than 50 mN (shown in enlarged part), which is associated with scratching depth 

and pile-up of grooves. Besides, it can be found that the maximum interfacial 

tangential stress is much larger than normal stress when the angle γ reached about 

3π/5. Especially when the applied normal is 30 mN, the maximum interfacial 

tangential stress approximates 120 GPa. Previous study [31] has testified that 6H-SiC 

has no high-pressure data beyond 95GPa. A transition to a metallic phase has been 

observed only in shock compression experiments at a pressure of 105(±4) GPa. 

However, the maximum normal stress within the chosen normal load during the 

scratching process is about 48.6 GPa, which is not sufficient to result in 

amorphization. Therefore, these results indicate that the amorphous phase in ductile 

debris is determined by interfacial tangential stress rather than normal contact 

pressure. The dislocation deformation behavior in the substrate of 6H-SiC, however, 

is mainly dominated by the normal contact pressure. This is the reason why there is no 

broadband Raman-peak appeared in substrate of 6H-SiC grain. Whereas, the absence 



of amorphous phase in fracture chips is due to the fact that the facture chips are 

induced by the lateral cracks nucleation and propagation, which is not involved in 

plastic deformation. 

 

Fig. 6. (a) Normal and tangential stresses acting on the indenter faces as functions of 

the direction (angle) of the friction on the considered face for RB-SiC ceramic. 

3.2 Effect of normal load and scratching velocity on scratch behaviour 

In this section, the intent is mainly to analyse the effects of applied normal load 

and scratching velocity on the residual depth and elastic recovery based on the 

corresponding deformation mechanism during scratching of RB-SiC ceramic. 

The typical 3D topography and cross section of scratch grooves that measured by 

AFM were illustrated in Fig. 7. For increasing normal load case, the residual depth 

has a significant increase. Besides, it can be found that when normal load reached 30 

mN, the split valley appeared within the scratch groove which attribute to the fracture 

features as presented in Fig. 4. To identify the quantitative relationship between the 

applied normal load and residual depth and elastic recovery, the measured data are 

plotted against the normal load as shown in Fig. 8. 



Before choose the suitable fitting function, we must make clear the inner link 

between the removal behaviour characterize and removal mechanism. Here, according 

to previous research, we can assume that the scratch depth is proportional to scratch 

hardness. Scratching hardness is commonly used as an indicator of the inherent 

material resistance to scratch deformation [22, 32]. It can be obtained through applied 

normal load FN on indenter divided by project area AN as follows [22]: 

2

NF
H k

a
                                                       (7) 

Where k is the modified coefficient. What’s more, the hardness can be written as 

a simplified function of strain rate which put forward by reference [33]: 

( )mH D                                                       (8) 

Where D and m are empirical coefficients, 𝜀̇ is the time derivative of strain, 

which can be used to characterize the deformation velocity of the material. The strain 

rate during the scratching process can be calculated by dividing the scratching 

velocity v by scratch width a as [34]: 

v
C

a
                                                          (9) 

Here, C is a constant expressing the effective strain and introduced to account for 

the relative strain imposed due to the indenter geometry. Since, the groove width of 

scratch has a definition relationship with scratch depth for Berkovich indenter, 

thereby combining Eqs. (7), (8) and (9), it can be deduced as: 

2 m nN

m

F
a h

v

                                                   (10) 

Consequently, it is expected that the trend lines of scratch depth should follow a 

direct proportion relationship with applied normal force and opposite to scratching 

velocity. As shown in Fig. 8a, the residual depth of scratch grooves and normal force 



was best suitable fitted with the linear function, and the variance was equal to 0.9524, 

which indicated that the fitting results were highly reliable. As shown in Eq. (12), the 

relationship between elastic recovery and normal force was fitted by power function, 

and the variance was equal to 0.9565. 

5.62 41.146r NH F                                                 (11)

0.18445.198r NE F                                                    (12) 

From Eq. (11), the fitting results confirmed that the residual depth increased 

approximated linearly as the normal force increased. Besides, it can be found that the 

dispersion of data become significant with the increase of normal load (as shown in 

Fig. 8a), which should be attribute to the deformation transition from ductile to 

fracture, that is, micro-cracks start to occur in front of the moving indenter, resulting 

in the instability of the depth ratio. Especially, when the applied normal load was set 

to 30 mN to 50 mN, severe irregular brittle fracture will be generated as shown in Fig. 

2e and f, which could further lead the residual scratch depth much deeper. 

Correspondingly, the elastic recovery ratio was decreased with the increase of normal 

load as shown in Fig. 8b. A good agreement between the prediction obtained by Eq. 

(10) and experimental results calculated by Eq. (12) is observed. This further 

illustrated that the fracture dominated removal mode gradually with the increase of 

applied normal load, and the elastic deformation zone will decrease accordingly. 



  

Fig. 7. The typical 3D groove morphology and corresponding cross-section 

profile measured by AFM. 



 

Fig. 8. (a)The residual scratch depth vs. normal load and (b) elastic recovery 

ratio vs. normal load. 

On the other hand, the data of residual depth and elastic recovery vs. scratching 

velocity were shown in Fig. 9. It is evident that residual depth of scratch groove has 

an opposite trend to the scratching velocity, while the elastic recovery ratio is 

proportional to the scratching velocity. The empirical formulas fitted for residual 

depth and elastic recovery vs. scratching velocity were developed as follows: 

0.0368497.2834rH v                                               (13) 



0.0667127.91 v

rE e                                                 (14) 

The outputs of Eq. (13) demonstrated that the scratch hardness is proportional to 

scratch velocity, in which the fitting results variance was equal to 0.9759 (Fig. 9a). In 

short, high scratch velocity leads to the increase of resistance to material deformation 

and final reduce the residual scratch depth. This result can be explained by the 

dislocation-based plastic deformation mechanism. As mentioned earlier in Section 3.1, 

ductile mode material removal can be realized when the applied normal load is set to 

10 mN. In addition, the substrate deformation response of SiC during ductile process 

is primary dominated by dislocations as verified by the Raman test. Therefore, it is 

reasonable to assume that high density of dislocations will be formed and propagated 

simultaneously with the increase of scratching velocity, which could cause the 

generation of locks and dislocation tangles. These dislocations prefer to nucleate 

underneath the indenter, which can hardly assist the plastic removal of 6H-SiC. 

Instead, this phenomenon will impede propagation of successive mobile dislocations. 

Hence, the scratch resistance at the contact area where dislocations accumulated was 

enhanced. On the other hand, the relationship between elastic recovery ratio and 

scratch velocity follows an exponential function and had a high reliability with the 

variance is equal to 0.9683 as shown in Fig. 9b. This result suggests that as the 

scratch depth decreases with the increase of scratch velocity, the proportion of elastic 

deformation also increases, which will further lead to the reduction of residual depth. 

This finding is especially important for the selection of machining parameters to 

process hard and brittle materials, and is sounder in explaining the reason of scratch 

behaviour changes with different scratch velocity. 



 

 

Fig. 9 (a) The residual scratch depth vs. scratching velocity and (b) elastic 

recovery ratio vs. scratching velocity. 

3.3 Effects of normal load and scratching velocity on friction 

The aim of this section is to investigate the evolution of friction coefficient in a 

scratch test with a ramp load mode under different scratching velocity. 

Fig. 10 shows a typical scratch friction profile with the increase of applied 

normal load within the range of 0～50 mN at a given scratching speed of 100 μm/s. It 

can be seen that the overall friction process can be divided into three stages based on 



material deformation characteristics. At the first stage, only the elastic took placed, 

the surface energy and adhesion of solids in charge of the friction value, which was 

larger than 1. At the second regime, with the increase of normal load the deformation 

behavior gradual transited into the elastic-plastic mode. So the adhesion status 

weakened, and the effect of the ploughing part was increased, which was linked to the 

deformation of the solids in contact. So the coefficient of friction (COF) dropped 

rapidly. Besides, the average value of COF under10 mN is about 0.359 (as shown in 

Fig. 10). Such a low coefficient of friction is due to Hexagonal close-packed structure 

(c/a～1.628), which possess limited number of slip planes as stated in [35]. At last, 

with the further increase of normal load (24.5 mN), the deformation of RB-SiC enters 

an unstable stage, in which fracture occurred as presented in Fig. 2 and Fig. 4. From 

Fig. 2, it also should be noted that the grain/phase boundary could contribute to the 

fluctuation of the friction coefficient. The movements of near surface dislocations in 

the sliding process are blocked by grain or phase boundary, they accumulated at the 

grain/phase boundary and produce strain hardening in the surface layer. Hence, this 

strain hardening makes sliding more difficult and leads to the formation of 

micro-cracks. As a result, there are some increased peaks emerged on the COF curve 

as displayed in the insert image of Fig. 10. 



 

Fig. 10. Typical measured result of friction profile and lateral force for a ramp loading 

scratch from 0 to 50 mN. 

Fig. 11a shows the variations in the average COF with various normal loads of 

5～50 mN at a given scratching velocity of 100 μm/s. It clearly shows that the COF 

increases from 0.358 to 0.51 with the increase of applied normal load. Increased 

higher intensity of fracture at higher load in the contact region was believed to be 

responsible for higher friction. Fig. 11b shows a drop in the coefficient of friction as a 

function of scratching velocity. It can be seen that the magnitude of the scratching 

velocity could alters the overall COF value from 0.332 to 0.425. This fact suggests 

that the plastic deformation of RB-SiC ceramics is dependent of the strain rate during 

nanoscratching. Based on Bowden and Tabor’s suggestion [36], the overall friction 

coefficient can be estimated by the sum of two parts, namely, adhesion term μa and 

ploughing term μp: 

T
a p

N

F

F
                                                        (15) 
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Where, the ploughing friction coefficient can be approximated to the ratio of 

projected area in the scratching direction and projected area in the thrust direction in 

the contact area: 

P
p

a

A

A
                                                           (16) 

According to the geometrical relationship described in Section 3.3, this expression 

can be rewritten in terms of the angle of γ and α as: 

2

tan
2

2 3 tan cos
p




 

                                                (17) 

From Eq. (17), we can found that the ploughing COF is just related with material 

flow orientation γ, which is independent of the scratch depth.  

Besides, on the basis of reference [37], the adhesion term μa can be given by: 

( / 2)( / )a ys                                                     (18) 

Where s is the effective of shear strength at the interface,  y
is the yield stress. If 

we assuming that yielding of the body is isotropic, the compressive yield stress can be 

expressed by 43 y H E . 

Hence, combining Eqs (8), (9) and (18), μa can be rewritten as: 

43(2 / )( / ( / ) / )m

a s v h E                                           (19) 

Eq. (19) indicates that the increase of scratching velocity will lead to the increase 

of compressive stress underneath the indenter, at the end, the dropping of μa. The 

interactions between the high density of dislocations or the impede affection of 

grain/phase boundary on the mobility of dislocations enhanced the scratch resistant. 

Therefore, a decrease in percentage reduction of adhesion will result in a decrease of 

COF, which can be clearly seen in Fig. 11b. This result suggests that the COF could 

be reduced by choosing suitable applied normal load and scratch velocity in the 



machining of RB-SiC ceramics. In addition, the fluctuation behavior of COF could 

reflect the material removal mode during the machining process of RB-SiC ceramics. 

 

Fig. 11. Coefficient of friction as a function of (a) Normal Load and (b) Scratching 

velocity. 

4. Conclusion 

In this paper, a series of nanoscratch experiments followed by SEM, Raman and 

AFM measurements were performed on RB-SiC ceramic to reveal the material 

removal mechanism and its effect on the material deformation behavior. The stress 

underneath the indenter was estimated to analyze the deformation mechanism, which 

provides an impetus to understand the underlying reason of the different mechanism 

between ductile chips and substrate within the grooves. The following conclusions 

can be drawn: 

1. Raman spectroscopy revealed that amorphous transformation of SiC and Si 

occurred in the ductile chips, while amorphous phase absents in the substrate of SiC 

and brittle fracture chips. The dislocations mobility was the primary response of the 

ductile deformation in the substrate of SiC. The calculated stress beneath the indenter 

indicates that the amorphous deformation mechanism in ductile chips and dislocations 

mobility in subsurface of substrate were governed by the tangential and normal 

stresses, respectively. 



2. The AFM measurement results showed that with the applied normal load 

increased, the residual scratch depth increased linearly and the elastic recovery 

decreased follow power law. The residual depth and elastic recovery has a power-law 

and exponential function relationship with scratching velocity, respectively. The 

interaction of dislocations accounts for the enhanced scratching hardness with the 

increase of scratching velocity. 

3. The magnitude and the fluctuation of friction coefficient increase with the 

increase of the applied normal load, which is due to the influence of brittle facture 

deformation mode. In this process, the grain and phase boundary also contribute to the 

fluctuation of the friction coefficient. The gradually weakened adhesion coefficient 

leads to the overall COF decreases with the increase of scratching velocity. 
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