Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Micromechanical parameters from macromechanical measurements on glass-reinforced polyamide

Thomason, J.L. (2001) Micromechanical parameters from macromechanical measurements on glass-reinforced polyamide. Composites Science and Technology, 61 (14). pp. 2007-2016. ISSN 0266-3538

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many elegant techniques have been developed for the quantification of composite micromechanical parameters in recent years. Unfortunately most of these techniques have found little enthusiastic support in the industrial product development environment. We have developed an improved method for obtaining the micromechanical parameters, interfacial shear strength, fibre orientation factor, and fibre stress at composite failure using input data from macromechanical tests. In this paper we explore this method through its application to injection moulded glass-fibre-reinforced thermoplastic composites. We have measured the mechanical properties and residual fibre length distributions of glass fibre reinforced polyamide 6,6 containing different levels of glass fibre. These data were used as input for the model. The trends observed for the resultant micromechanical parameters obtained by this method were in good agreement with values obtained by other methods. Given the wealth of microstructural information obtained from this macroscopic analysis and the low level of resources employed to obtain the data we believe that this method deserves further investigation as a screening tool in composite system development programmes.