Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes

Wang, Peng and Su, Wei and Zhu, Lianhua and Zhang, Yonghao (2019) Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes. International Journal of Heat and Mass Transfer, 131. pp. 291-300. ISSN 0017-9310

Text (Wang-etal-IJHMT2018-Heat-and-mass-transfer-of-oscillatory-lid-driven-cavity-flow)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB) | Preview


Although effective cooling of micro-electro-mechanical systems (MEMS) with oscillatory components is essential for reliable device operation, the role of oscillation on heat transfer remains poorly understood. In this work, heat and mass transfer of the oscillatory gas flow inside a square cavity is computationally studied by solving the Boltzmann model equation, i.e. the Shakhov model. The oscillation frequency of the lid and rarefaction and nonlinearity of the flow field are systematically investigated. Our results show that, when the oscillation frequency of the lid increases, the usual cold-to-hot heat transfer pattern for highly rarefied flow changes to hot-to-cold, which contradicts the well-known anti-Fourier (i.e. cold-to-hot) heat transfer in a non-oscillatory lid-driven cavity. In addition, the thermal convection will be dramatically enhanced by lid oscillation, which may play a dominant role in the heat transfer. Meanwhile, the average Nusselt number varies non-monotonically with the oscillation frequency, with the maximum occurring at the anti-resonance frequency. Finally, the average Nusselt number on the lid at various oscillation frequencies is found to reduce when the gas becomes more rarefied. These findings may be useful for the thermal design of MEMS.