Biocompatibility of common implantable sensor materials in a tumor xenograft model

Gray, Mark E and Meehan, James and Blair, Ewen O and Ward, Carol and Langdon, Simon P. and Morrison, Linda R. and Marland, Jamie R. K. and Tsiamis, Andreas and Kunkler, Ian H. and Murray, Alan and Argyle, David (2018) Biocompatibility of common implantable sensor materials in a tumor xenograft model. Journal of Biomedical Materials Research Part B: Applied Biomaterials. ISSN 1552-4973 (https://doi.org/10.1002/jbm.b.34254)

[thumbnail of Gray-etal-JBMR-AB-2018-Biocompatibility-of-common-implantable-sensor-materials]
Preview
Text. Filename: Gray_etal_JBMR_AB_2018_Biocompatibility_of_common_implantable_sensor_materials.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (1MB)| Preview

Abstract

Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018.