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Abstract 

This paper describes a solution to enhance Knowledge Management (KM) and Reuse at the early stages of space 

mission design in the frame of Concurrent Engineering (CE) studies via the implementation of an Expert System 

(ES). CE is a centralized engineering approach which significantly accelerates and increases the reliability of space 

mission feasibility assessment by having experts work concurrently, thus enhancing the communication flow. An ES 

is an AI-based agent capturing Human expertise in a computer program. There are many examples of ES being 

successfully implemented in the aeronautical, agricultural, legal or medical fields. To assess the feasibility of a 

mission, experts rely both on their implicit knowledge (i.e., past experiences, network, etc.) and on available explicit 

knowledge (i.e., past reports, publications, datasheets, books, etc.). This latter type of knowledge represents a 

substantial amount of unstructured data, continuously increasing over the past decades. The amount of information 

has become highly time consuming to search through within the limited timeframe of a feasibility study and is 

therefore often underutilised. A solution is to convert this data into structured data and store them into a Knowledge 

Graph (KG) that can be traversed through an inference engine to provide reasoning and deductions. Information is 

extracted from the KG via a querying module from a User Interface (UI) supporting the Human-Machine Interaction 

(HMI). The Design Engineering Assistant (DEA), the ES for space mission design, aims to enhance the productivity 

of experts by providing them with new insights on large amount of data accumulated in the field of space mission 

design. Not only will it act as a Knowledge Engine (KE) but, integrated to the design environment, it could play a 

much more active part into the design process, advising the Human experts on design iterations. This paper 

introduces the proposed integration of an Artificial Intelligence (AI) agent into the CE process, the preliminary 

architecture of the tool and identified challenges. The study will also present the outcomes of a set of experts 

interviews carried out at the European Space Research and Technology Center (ESTEC) of ESA in July-August 

2018, to define the DEA requirements following a User-centred approach. 

Keywords: Expert System, Space Mission Design, Concurrent Engineering, Artificial Intelligence, Knowledge 

Graph 

 

Acronyms/Abbreviations  
AI Artificial Intelligence 

API Application Programming Interface 

CDF Concurrent Design Facility 

CE Concurrent Engineering 

DEA Design Engineering Assistant  

ES Expert System 

ESTEC European Space Research and Technology 

Center  

HMI Human Machine Interaction 

KG Knowledge Graph 

KM Knowledge Management 

ICE Intelligent Computational Engineering 

IE Information Extraction  

JPL Jet Propulsion Laboratory 

OCDT Open Concurrent Design Tool 

RT Round Table 

UI User Interface  

 

1. Introduction 
The amount of data generated every day in the space 

field is continuously increasing. All this knowledge is 

becoming more and more difficult to handle by 

Humans. Artificial Intelligence (AI) tools such as 

Expert Systems can greatly facilitate Knowledge 

Management (KM), Knowledge Reuse and Knowledge 

Discovery. This article focuses on the field of AI of 

Knowledge Representation and Reasoning. 

The main goal of an Expert System (ES) is to 

capture Human expertise in a computer program.  Most 
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applications of expert systems will fall into one of 

following categories:  interpreting and identifying, 

predicting, diagnosing, designing, planning, monitoring, 

debugging and testing, instructing and training, 

controlling [20]. The general definition of an ES 

includes three components: the Knowledge Base or the 

Knowledge Graph (KG), the inference engine and the 

User Interface (UI) [21].  The Knowledge Base in 

literature includes the knowledge about the domain and 

the rules stated for the particular tasks to be 

accomplished by the ES in that domain. The creation of 

the Knowledge Base is usually performed manually. In 

the frame of this study, the requirement of the 

automation for the creation of the KG led the team to 

the decision to separate explicitly the Knowledge Graph 

and the Database of Rules as shown in Figure 1. 

 

 
Fig.1. General Expert System Architecture 

 

As displayed in Figure 1, the back-end is usually 

composed of the KG, containing the structured 

knowledge from the specific domain, of an inference 

engine reasoning on the information found in the KG, 

and of the rules defined in the Database of Rules. The 

front-end of the ES is mainly the UI, which allows 

extracting information from the KG and supports the 

Human-Machine Interaction (HMI). 

This paper focuses on the preliminary work done to 

develop an ES in the field of space mission design to 

assist experts during feasibility studies in the context of 

concurrent engineering (CE) sessions. The ES is called 

Design Engineering Assistant (DEA). 

 

2. The Design Engineering Assistant Project 
The DEA is an ES meant to support Human experts 

for the assessment of space mission feasibility. In that 

sense, the DEA will act as a knowledge engine, 

providing a fast and reliable access to previous design 

decisions and as a design engineering assistant plugged-

in into the design environment. The DEA project started 

in January 2018 and involves two PhD students from 

the Intelligent Computational Engineering (ICE) Lab of 

the University of Strathclyde. They work on two 

complementary parts of the project and are supported by 

the ESA Concurrent Design Facility (CDF) and 

industrial partners: AIRBUS, RHEA and satsearch. This 

chapter will give an overview of the project, its status 

and finally the main challenges identified by the team.  

 

2.1. Incentives for integrating an AI-agent into the 

Concurrent Engineering process 

 

2.1.1. Concurrent Engineering methodology 

As defined by ESA: “Concurrent Engineering is a 

systematic approach to integrated product development 

that emphasises the response to customer expectations. 

It embodies team values of cooperation, trust and 

sharing in such a manner that decision making is by 

consensus, involving all perspectives in parallel, from 

the beginning of the product life-cycle.” [1]. CE 

involves the simultaneous participation of all main 

disciplines required to assess the space mission 

feasibility. The multidisciplinary team usually works 

concurrently during live study sessions and preferably 

physically located in the same facility (e.g., the CDF, in 

the case of ESA).  A study is typically divided in three 

main parts: the preparation, the study sessions and the 

post-study. The preparation phase usually starts one 

month prior to the study and involves the core team 

(i.e., the team leader, system engineer and assistant 

system engineer) with the client and potentially a few 

critical subsystems experts. This restricted team 

discusses the mission background, objectives, 

requirements and initial design inputs. The bulk of the 

work is done within the following months during the 

study phase, with the complete team studying different 

design options and selecting a design baseline. Finally, 

the outputs of the study is transposed into a final report 

(usually in pdf format). 

CE methods were introduced at NASA and ESA in 

the 90s, to accelerate the processes of mission definition 

and preliminary conceptions for new mission proposals 

with growing complexity [2]. This engineering 

approach has proven to enhance communication and 

data sharing, leading to high reduction of study 

durations and, consequently, of cost. The number of 

studies performed per year also increased. [3]. With the 

expected future growth of systems complexity and 

amount of data generated [4], new methods and tools 

(e.g., wikis, expert systems, tool integrations) are 

needed to relieve the Human experts’ workload and 

furthermore improve their work process and 

contribution to CE studies. 

 

2.1.2. Artificial Intelligence for space mission design 

in the literature 

Reusing past study models could prevent 

unnecessary additional model creation during a new 
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design study. This is an idea put forward at least by 

Team X from NASA Jet Propulsion Lab (JPL) in [5]. 

Another analysis from [2] also underlines that smart 

application and re-use of accumulated knowledge from 

previous designs can speed up the whole study process 

by avoiding to “reinvent the wheel” and improve the 

output quality. An ES could provide quick, easy and 

reliable access to all this knowledge. 

Integrating expert systems into the design process of 

space missions is an idea already formulated by [6] in a 

paper describing the early beginning of concurrent 

engineering at NASA JPL. At the time however, in the 

late 90s, expert systems were only at the beginnings of 

their development. Although we still cannot expect 

today that an expert system could replace the judgement 

of a Human expert, the potential implementation of 

powerful expert systems now appears more doable 

considering recent AI progress. Today, algorithms can 

more effectively and efficiently process information 

including taking into account uncertainties (e.g., 

fuzziness, vagueness) into the decision making process. 

There are many examples of ES being successfully 

implemented in the agricultural [16], astronomical [17], 

medical [18] or legal [19] fields.  

Figure 2 displays a potential integration of the AI-

agent DEA into the CE study process. The classical 

process of a study (below) is put in parallel with the 

potential entry points of the DEA to support the Human 

experts (above). More details on the integration of the 

DEA into the CE process can be found in [7]. 

 

 

 
Fig. 2. A potential CE process taking advantage of an AI agent interaction 

 

2.2. Design Engineering Assistant Goals 

Due to the complexity of the work and the timeline 

(i.e., 3 years) two main development stages have been  

set: 

Stage 1 - a Knowledge Engine for Space Mission 

Design: Developing and populating a KG that can be 

queried by the User is the first development stage of the 

DEA. The queries will be entered via a natural language 

interface. The UI will extract information from the KG 

in order to provide knowledge summary and data 

analytics including traceability and recommendations. It 

will also include an active user feedback loop in order to 

acquire the tacit knowledge of the experts. 

Stage 2 - a Space Mission Design Active Assistant: 

The integration in a modelling environment tool (e.g., 

the Open Concurrent Design Tool (OCDT) [15] used at 

ESA and based on the European standard ECSS-E-TM-

10-25A Annex A&C [22]) will transform the DEA into 

an actual ES. This is the ultimate goal of the project. As 

an active assistant, it will monitor in the background the 

case study, anticipate the User needs, and actively 

provide design suggestions in a non-invasive manner. 

 

2.3. Design Engineering Assistant preliminary 

architecture 

Figure 3 displays a preliminary architecture of the 

DEA. The architecture also illustrates the tasks 

separation between the two PhDs via the development 

of two complementary tools: smart-dog and smart -

squid  

 

2.3.1. smart-dog: Framework for Development and 

Validation of a KG 

The DEA KG will contain all the information related 

to the space mission design (e.g., final mission reports 

of past missions, datasheets, web data, textbooks, and 

publications). This component is tightly connected to 

the inference engine that needs to be able to reason on 
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the knowledge accumulated, together with the provided 

rules. 

   Fig. 3. DEA architecture 

smart-dog is a framework that can be used for the 

semi-automatic generation of a KG. It allows its 

development and validation. Figure 4 shows the general 

use of the tool as a complementary part of intelligent 

systems. The entire framework is built on top of Grakn 

(http://grakn.ai), the intelligent database, which provides 

the interface for the creation of the KG, thanks to its 

Application Programming Interface (API), using Graql 

syntax and Grakn data model, and the possibility to 

validate the KG with the Graql reasoner.  

 

 

Fig. 4. General use of smart-dog 

In the frame of the DEA project, the factors to be 

considered for the back-end part are: 

● Source of data and user requirements 

● Data modelling 

● Rules 

● Inference engine 

The lifecycle for the development of the back-end 

part consists of 3 high-level phases: 

Phase I DEFINITION: Statement of the requirements 

coming from data source and User, selection of the 

technologies and language for the data modelling. 

Phase II IMPLEMENTATION: once the sources have 

been identified, the generation and population of the 

knowledge graph can be started. Verification of each 

stage shall be performed because the process is iterative. 

In this phase the rules will be introduced and tested. 

Phase III VALIDATION: for the final integration of 

the system. 

 

Once the definition phase is concluded the data 

modelling construction starts. This is the most critical 

and time-consuming task. This is where smart-dog 

comes into play. 

The generation and population of the KG are two 

separated tasks. Before populating the KG with data, it 

is important to select a model for the structure and a 

language that allows reasoning on it. When the structure 

is ready, the population task can take place. In both 

tasks, uncertainty needs to be taken into account. 

The generation of the ontology is an iterative 

process. It is important to have a good amount of data 

source because of Machine Learning algorithms used in 

the modules, but at the same time it is also important to 

have a complete reliable source of data able to give the 

correct semantic and notions of the space mission 

design. In the frame of the DEA, the users will benefit 

from using the ES if several reliable sources are 

inserted. 

smart-dog architecture is modular due to the 

different algorithms adopted and the main modules can 

be listed below: 

● Raw Text Extraction Module, it will extract 

the raw text from several formats (e.g., .pdf, .html, 

.docx, pptx). 

● Natural Language Processing (NLP) 

Module, it will perform NLP techniques on the raw 

text. 

● Context Identification Module, it is used for 

two purposes mainly, to understand the domain context 

of the documents, but also to avoid the introduction of 

sources out of the domain.  

● Ontology Learning (OL) Module, it applies 

OL techniques for the generation of the Knowledge 

Graph Structure. 

● Ontology Population Module, it performs 

Knowledge Graph Information Extraction to populate 

the Knowledge Graph. 

● Grakn Interface Module, it is the API with 

Grakn. 

● Validation Module, it performs integration 

tests to validate the results provided from the 

Knowledge Graph. 

 

http://grakn.ai/
http://grakn.ai/
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Fig. 5. smart-dog modular architecture

2.3.2. Smart-squid: Front-end of Expert System,  

Design Environment Integration and Tacit 

Knowledge Elicitation 

The smart-squid is not only the front end of the ES, 

it also encompasses the extraction of structured data 

from the design environment and the elicitation of the 

users tacit knowledge via a feedback loop. 

The front-end of the DEA consists of a web-based 

UI, the main pillar of the DEA-User HMI. Via this UI, 

the User will enter a request in natural language. The 

range of requests accepted by the tool has been refined 

after a set of experts interviews described in chap 3. The 

complex Human request has to be decomposed into 

basic machine-understandable ones by the query 

compiler. The role of the query compiler is also to grasp 

the real intent behind the User query (i.e., perform 

semantic search). An optimised decomposition of the 

User query into basics ones will allow to more 

efficiently extract knowledge from the KG. The queries 

will be translated into the Graql query language, as the 

KG will have been coded with the Grakn data model. 

Once the candidate facts have been extracted from 

the KG, the “result generation” module of the smart-

squid will have to rank the facts and transform the 

“raw” information into the most useful format (e.g., 

comparison tables, text summaries, etc.) to be made 

available to the User via the UI. The ranking of the 

candidate facts is based on weights depending on the 

source fidelity, relevance, and User feedback 

parameters. It is also foreseen that basic analytics 

capacities will need to be implemented into the “answer 

generation” module to answer the users’ need (see 

section 3).  The role of the UI will also be to boost 

knowledge discovery via the implementation of a 

recommender system pushing the experts to explore 

alternative design options. 

There are two different kind of knowledge: tacit 

(e.g., unspoken rules of know-hows, “rule of thumb”, 

etc.) and explicit (e.g., reports, presentations, etc.) [6]. 

The manual elicitation of tacit knowledge is a time-

consuming process and would require in itself another 

full-time project. On the other hand, ignoring this source 

of knowledge would be missing out on the opportunity 

to enrich the DEA with precious expert knowledge that 

is not found in explicit sources. The solution proposed 

would therefore be to capture some of the experts tacit 

knowledge via a feedback loop embedded into the UI. 

At the stage of the project, the exact process of this 

feedback loop is not defined yet. As a preliminary 

option, it is considered that the User feedback could be 

collected by ranking an output content or format as well 

as provide more detailed comments in natural language. 

However, this automatized feedback process must be 

considered with care to avoid the injection of 

uncertainties and disequilibrium (i.e., unreliable and/or 

too subjective feedback) into the KG. The uncertainty 

challenges are discussed in more details in 2.4. 

Finally, while the smart-dog focuses on unstructured 

data, the smart-squid will study the possibility to 

integrate structured data into the KG, for instance, from 

the mission model generated with the design 

environment (e.g., the OCDT model). To become an 

active assistant, the DEA needs to access the design 

environment used by the experts. This way the DEA 

will be able to follow the design iteration as an 

observer, running in the background, and potentially 

step in if it notices a model inconsistency or an outlier 

value. The DEA could indeed be able to “understand” 

the type of mission the experts are studying and identify 

an outlier value based on its knowledge of previous 

similar missions. The DEA intends to be a non-invasive 

assistant and therefore will only provide suggestions of 

modifications to the experts.  

The smart-squid development is at the stage of 

requirement definition. Its preliminary architecture, at 

the time of this paper writing is summarised in Figure 6. 

 

2.4. Main challenges 

This subsection focuses on the main challenges or 

issues to be tackled for the development of the DEA 

after a preliminary analysis of the data and the experts 

interviews. 
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Fig. 6. smart-squid architecture

2.4.1. Subdomains and continuous learning 

DEA source data will be different in formats, length 

and context. To understand the different sources, it is 

necessary to know the general vocabulary of the 

language, the space mission design vocabulary and all 

the subset of vocabularies related to each discipline in 

the context of spacecraft design. Many concepts and 

terms are used differently in different sources, it is 

important to create a map-ability between these 

concepts across the different source of information. 

When we focus on a specific discipline, the ES has to be 

able to recognize accurately that discipline in order to 

provide reliable information related to a specific 

context. Human brain can deal with a wide range of 

domains and every time recognizes the context 

automatically. In order to try to emulate the behaviour 

of the mind, first of all the vocabularies of the different 

sub-domains shall be defined. The different sub-

domains in the case of space mission design are related 

to the different disciplines considered during the space 

mission design. It is necessary to emulate this behaviour 

analysing the vocabularies of the different sub-domains, 

so of the different disciplines. This is also fundamental 

because same nomenclature for a technical term is 

referred in several domains and this requires context 

identification of the term in order to avoid the extraction 

of wrong information for the wrong subdomain. At the 

same time the context identification act as filter to avoid 

the introduction of information related to other domains 

not relevant for DEA.  

The DEA performs continuous learning indirectly 

through the new source of data added and directly with 

the User feedback. The complexity of this task is related 

to the different formats from which the DEA could 

learn.  

2.4.2. KG data modelling 

The data modelling is a fundamental task for the 

success of the project because this choice will affect the 

use of the inference engine end therefore the possibility 

to retrieve the information requested. This specific task 

is highly time-consuming and requires several 

iterations. Moreover the requirements for the data 

modelling arise not only for the data but also from the 

users, as it is critical to understand what they expect to 

find inside the KG. The big challenge is to make the 

generation of the model semi-automatic. This task has 

mostly previously been done manually but it is too time-

consuming, prone-error and subjective. The space 

mission design KG will rely on Ontology Learning 

techniques following the Ontology Layer Cake model 

[8] [9] [10]. 

2.4.3. Uncertainty and Validation 

The uncertainty deriving from processing textual 

information can be of several types according to [13]: 

● Uncertainty, because it is not possible to 

determine whether an assertion in the model is true or 

false (e.g., the height of the battery is 38 cm); 

● Imprecision, because the information 

available in the model is not as specific as it should be 

(e.g., the height of the battery is between 32 and 38 

cm); 

● Vagueness, because the model includes 

elements that are inherently vague (e.g., predicated or 

quantifiers, for example the plant is early middle age); 

● Inconsistency, because the model contains two 

or more assertions that cannot be true at the same 

time; 

● Ambiguity, because some elements of the 

model lack complete semantics, leading to several 
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possible interpretations. 

 

 2.4.3.1.     from the back-end perspective 

All the information used to generate and populate 

the KG are affected by uncertainty. KG Population is 

performed through a Knowledge Base Information 

Extraction (IE) algorithm. General issues of this process 

have been already addressed in [14]. The difficulty of 

extraction of precise data is related to the uncertainty in 

the natural language, described above, to the structure of 

the documents, and to the variety of sources. Two main 

effects from the use of an algorithm to automatically 

extract the information shall be taken into account due 

to their impact on the outputs for the application: 

● incompleteness,  because the patterns inserted 

could not cover all the available cases.  

● redundancy, the elimination of redundancy in 

the instance set requires entity disambiguation, which is 

the process of identifying instances that refer to the 

same real object or event. If an ontology is populated 

with an instance without checking if the real object or 

event represented by the instance already exists in the 

ontology, then redundant instances will be inserted. A 

worst case scenario is that redundant instances contain 

contradicting information, which may lead to an 

inconsistent ontology [10]. This problem has to be taken 

into account by the inconsistency resolution engine.  

One countermeasure is the implementation of an 

inconsistency resolution engine to guarantee the 

consistency of the data inserted, to check the lack of 

information and solve redundancies issues. This step is 

fundamental because the main sources are unstructured 

data. There are several techniques adopted in order to 

deal with uncertainty in expert system [13]. One 

approach considered for the engine could be to rely on 

fuzzy approach. Fuzziness is a way to represent 

uncertainty, possibility and approximation.[13] 

The corpus used to extract the data will be composed 

by different types of sources (e.g., data provided by the 

partners, data extracted from the web, data found in 

conference proceedings, etc.). A web page would for 

instance be a less reliable source of information than a 

peer-reviewed paper. The DEA also needs to be able to 

assess the fidelity of all the information source. A factor 

of reliability could be associated to the element of the 

KG depending on its source. This information would be 

transmitted to the extraction module which would then 

rank the facts accordingly. 

The validation of the KG can be performed with 

different methodologies. [10] The one applicable in this 

case is the application-based approach, in which the KG 

is validated iteratively relying on the application for 

which it is developed (e.g., expert system). Our 

approach foresees the use of potential queries, to 

validate the information inserted inside the knowledge 

graph. In other words this solution can be compared to 

the use of integration test, to validate the outputs from 

the KG and eventually take actions for the mission 

information. The issues could come from the extraction 

of process or from the type of data modelling adopted. 

In other words, it will be performed creating integration 

test derived from the range of queries elicited during  

expert interviews. This task is fundamental to obtaining 

a consistent and reliable KG.  

 

 2.4.3.2.     from the front-end  perspective 

The uncertainty from the DEA back-end will be 

inherited by the front-end and could affect the reliability 

and accuracy of the answers provided. In addition, new 

uncertainties will be injected into the ES UI via the User 

queries and the feedback loop.  

The uncertainty injected at the level of the KG and 

the inference engine will be reflected into the outputs 

generation. It will be necessary for the front-end to 

perform uncertainty quantification and management in 

addition to the ones performed by the back-end. It will 

be critical to ensure that information on the level of 

fidelity of the elaborated answer is transmitted to the 

User (e.g., via for instance a percentage of reliability 

displayed with the output).  

The Human request entered in natural language via 

the UI will most likely be vague or incomplete due to, 

for instance, an initial insufficient knowledge of the tool 

capabilities, to a fuzzy search goal of the User or simply 

related to the difficulty of expressing a Human thought 

into a written question. In addition, the query might 

include some typos or misuse of words, concepts. To 

increase the flexibility of the UI with regard to the User 

query vagueness or mistakes, the interface could include 

some error-tolerant features, the chain queries could be 

tracked [11] or a vague-query processor could be chosen 

[12]. Furthermore, the UI will include filters to refine 

the search.  

The Feedback loop represents an even more 

complex case of uncertainty quantification and 

management. As presented in 2.3.2, the Feedback loop 

will allow to capture part of the tacit knowledge from 

the DEA users by allowing them to comment or add 

information to the KG via the UI. By doing so the KG 

could be exposed to imprecise, vague or wrong inputs. 

For these reasons, it is critical to integrate into this User 

feedback process a resilient uncertainty quantification 

and management strategy to filter feedback and to avoid 

compromising the KG data population. For instance, 

specific users could be identified as space mission 

design experts and be allowed to provide new 

documents, while other Users might have access to 

more restricted feedback options.  

The different uncertainty sources, from the back-end 

and front-end perspectives are summarised in Figure 7. 
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Fig.7. Overview of uncertainty sources and potential 

mitigation methods for the DEA project.   

2.4.4. Ensuring Data Security 

Ensuring the data security of the information 

provided to the project by the partners to populate the 

KG is a priority for the DEA. Users with different 

affiliations might not be allowed to access sensitive 

information provided by another partner but enclosed in 

a part of the KG. A similar issue was encountered by the 

NASA JPL foundry as described in [5]. In that case, a 

Security layer was implemented to ensure the safety of 

all the data. A single sign-on was used to access all the 

applications, reinforced by role-based control of access 

to the data. In the case of the DEA, different levels of 

accessibility to the knowledge graph will be devised 

(i.e., a login could be implemented on the User interface 

to identify the User affiliation and to which part of the 

KG the User can have access).  

 

3. Requirements definition based on User-centred 

approach  
A User-centred approach holds the needs of the 

User at the center of each design decision throughout 

the project lifecycle.  In the frame of the DEA project, 

the academic team chose to include the users as early as 

possible in the project, i.e., at the stage of the 

requirements definition. To do so, the team could rely 

on their partner, ESA, to provide a pool of experts with 

CDF experience. A set of interviews and a Round Table 

(RT) were organised in July-August 2018 involving a 

total of 48 experts. This last chapter will present the 

main outcomes of the interaction with the ESA experts 

that will be used to define the tool requirements. 

 

3.1. Discussions goals 

Interacting with the DEA target users was a unique 

opportunity to orientate the tool requirements definition 

to match the users expectations and needs. The goals of 

the discussions were numerous: 

(1) Raise awareness on the potential of AI-agents to 

support space mission design 

(2) Understand the concurrent engineering process 

in practice (during the first six months the team studied 

the CE process in the literature, comparing with “field” 

information allowed the team to better understand how 

to integrate the DEA into the process as shown in Figure 

2) 

(3) Define the preliminary range of queries: a critical 

point to anticipate the level of complexity the UI will 

have to handle and the data to integrate into the KG 

(4) Discuss the UI preferences including the output 

formats (e.g., comparison tables, reports extracts, etc.) 

(5) Identify more material to feed to the KG by 

directly asking the users which data they usually rely on 

(e.g., standards, textbooks, etc.) 

(6) Generate the tool requirements  

 

3.2. Discussions Organisation 

The experts pool included system and subsystems 

engineers but also CDF users and experts from the KM 

team. The experts were all affiliated to ESA. 

A few Round Tables on “AI for Space Mission 

Design” were originally planned to take place at 

ESTEC, ESA throughout the summer. However, after 

the first round table end of July, the DEA team realised 

that collecting specific User needs was too complex 

with a large audience from various backgrounds. The 

elicitation process was then reviewed to focus on face-

to-face interviews. In total, 18 experts attended the 

expert round table and 29 experts were interviewed in a 

face-to-face meetings. 

 

3.2.1. Round Table elicitation process 

The RT was scheduled to last around 1h30, to allow 

an additional 30-minute of open discussions. The 

session started with a 30-minute introduction on the 

DEA. The presentation set the context of the project. To 

avoid influencing the experts’ answers, the presentation 

remained at high level. The following hour was focused 

on an interactive session based on a Mentimeter 

presentation, which allowed collecting live answers 

from the audience. The Mentimeter presentation was 

divided into two parts: “About your work habits” and 

“Human-Machine Interaction with the DEA”. The first 

part focused on the User’s work process, to estimate the 

workload caused by researching through available 

documents in the frame of a study, the kind of sources 
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they would rely on and if they were open to the use of 

an AI-agent to support them. The second part, “HMI 

with the DEA”, aimed to discuss about the Users 

preferences for some of the UI features (i.e., output 

formats and content, query inputs types, feedback loop). 

The elicitation process was tested with a pool of 13 

trainees and Young Graduate Trainees (YGTs) from 

ESA end of July. The following day, the expert RT took 

place and the outcomes are presented in 3.3, merged 

with the rest of the interviews outcomes.  

The background distribution of the experts involved 

in the RT is illustrated by Figure 8. The participating 

subsystems were cost, chemical propulsion, thermal and 

risk.  

 
Fig. 8 Expert background for RT 

 

3.2.2. Face-to-face interviews elicitation process 

The face-to-face interviews usually lasted around 1h 

and followed a similar process as for the RT (i.e., a 

similar set of questions were used). The format of the 

interview (i.e., discussing with only 1 or 2 experts at a 

time) allowed to pinpoint more accurately the User’s 

needs w.r.t his/her background or field of work. The 

subsystems involved in the interviews were 

AOCS/GNC, configuration, electric propulsion, 

mechanisms, mission analysis, thermal, TT&C, 

operations and ground segment, power and 

programmatic. Figure 9 displays the background 

distribution of all experts interviewed. 

 

 
 Fig. 9. Expert background for interviews 

 

3.3. Interview and Round Table main outcomes 

 

3.3.1. DEA outputs  

The goal of the DEA as a knowledge engine is to 

facilitate the access and reuse of accumulated 

knowledge. Discussions with experts have confirmed 

that they currently need to have a quicker access to 

reliable and synthesized information concerning 

previous missions. When experts start to design a new 

mission, their first step is usually to look into the 

heritage from similar missions to get a rough idea of 

values range and architecture options judged valid and 

feasible in the past. The system engineers often rely on 

colleagues and on internal database to identify similar 

missions. Subsystems experts are made aware of similar 

past missions by the system team and can mine for 

additional information within their sections. Discussion 

with colleagues frequently appear as a primary source of 

information. Human colleagues might however not be 

aware of all past missions, or have a more biased point 

of view. Experts underlined that the DEA could be 

especially be useful for newcomers to get up to pace 

with the support of an easily accessible source of 

reliable information. 

Targeting information extraction of similar missions 

raises the fundamental question of how to define 

“similar”, taking into account different parameters and 

users’ perspectives. A starting point could be to 

compare the mission requirements and executive 

summaries present in all feasibility reports. During the 

interviews, the DEA team asked the experts to identify 

key comparison parameters that could be used both by 

the querying module of the UI to define the query 

execution plan and to structure the KG model.  

In conclusion, the experts seemed mainly interested 

to use the DEA knowledge engine to access or generate:  

● comparison tables of previous similar missions 

● comparison of available components and their 

performance 

● heritage information (e.g., for which mission 

has a specific platform been selected) 

● trade-off information (e.g., criteria to select the 

design baseline and disregard other design options) 

● trend analysis (e.g., see if the current study fits 

in the mass trend of all previous similar missions) 

Experts underlined that they would often prefer to 

have access to the original document to better grasp the 

context of a decision or of a computation output. Only 

providing an extract of the document might not be 

enough to reflect the information context. The DEA 

should therefore connect the User to the original format 

of the source to ensure full transparency and justify the 

tool outputs. Transparency and justification of the DEA 

reasoning are keys to build a trust relationship with the 

User. Trust is a vital element for the success of the HMI 

and the adoption of the tool into the Users’ work 

process. 

Regarding the outputs of the DEA as an active 

assistant embedded into a modelling environment, 

experts were in majority open to the idea of integrating 

a design assistant into their modelling environment, 

provided that they could first test its reliability. When 
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asked the question “would you rely on an AI-agent to 

mine information for you” during the Round Table, 

70% of the experts answered that they were unsure. 

Once again being able to establish a trust relationship 

with the User is a key element  for the tool successful 

integration and will be a focus of the design process.   

Finally, it has to be noted that the outputs of the 

DEA can only be as complete and as reliable as the 

information contained into the KG.  

 

3.3.2. Data sources for the DEA KG 

A primary source of explicit data to populate the 

DEA KG are feasibility studies reports. Via the 

partnership with ESA, the team can access ESA CDF 

reports to perform a few case studies in the next 

development phases of the DEA. 

During discussions with experts, the team realised 

that there is also a high demand from experts to have 

access to a wider set of sources: CE sessions 

presentations after each iterations, reports from later 

phases of design, technology development updates, 

lessons learned, and anomaly investigation reports. It 

would indeed be highly relevant to loop back 

information from more developed or even flown 

missions to the early design phases. This could highly 

contribute to generate more feasible and reliable design 

solutions or avoid repeating similar mistakes. However, 

due to the limited timeframe of the DEA project and to 

access restriction to data, the team will firstly focus on 

the population of the feasibility studies reports into the 

KG. 

To generate reliable outputs, the different sources of 

the DEA need to undergo an uncertainty evaluation. 

This process will evaluate not only the degree of 

reliability of the DEA outputs but could apparently also 

be useful to the User. A few experts have indeed 

underlined that validating the reliability of an 

information source is a common issue, an issue that the 

expert system could contribute to solving. 

 

3.3.3. User Interface - Query range 

A first approach assumed that the DEA would have 

to be able to answer a range of queries as large as 

possible. Interacting with the experts was a unique 

opportunity to refine the set of queries that the users are 

most likely to be interested in. 

The User queries are submitted to the DEA via the 

UI in natural language format. Understanding which 

type of queries the users are interested into provides an 

insight into the necessary answer content and therefore 

the information that should be included into the DEA 

KG. It also contributes to evaluating the level of details 

and complexity both query manager and KG model will 

have to handle to successfully answer the request. 

Although the query list cannot be exhaustive, and 

should not restrict the DEA, the following table displays 

a few examples of requests collected from experts. 

 

Table 1. Query sample provided during interviews 

Field Sample query 

AOCS Did mission x have star-trackers? 

Electric  

Propulsion 

Which engine would fit the required 

range of max . power [min1,max1] or 

min. thrust  [min2,max2]? 

Systems Provide payload performance for all 

European launchers to reach altitude 

of x km? 

Thermal Which were the thermal control 

hardware used in mission x? 

 

3.3.3. User Interface - HMI  

A feature of the interface questioned by some 

experts during the interviews was the adaptation of the 

query answer based on the User background. The 

original intention was for the DEA to adapt its answer 

based on the User field of work and to target more 

specific areas of the KG to decrease the computation 

time. However, it was argued that doing so could 

contribute to limit the scope of answers made available 

to the User and narrow down his/her view. Under the 

shape of refinement checkboxes available on the UI, the 

User will him/herself indicate to the DEA if there is a 

need to narrow down the research scope (e.g., by 

specifying the type of program, mission, payload, etc.). 

Knowledge Discovery will be boosted both by  the 

wider range of answers generated and via a 

recommender system suggesting similar request or 

answers based on the connections in the KG. 

 

3.3.4. Integration of the DEA to the CE process 

Discussing with experienced CDF experts was the 

best occasion to compare the theory of CE with its 

practice, at least in the context of ESA activities. The 

latest version of the integration of the DEA into the CE 

process is presented in subchapter 2.1. The DEA will 

support the system and subsystems experts throughout 

the whole study (including preparation, study and post-

study phases).  

The interviews have allowed distinguishing between 

the different workflow dynamics of system and 

subsystems engineers. For instance, the system 

engineers recognized they would mostly use the DEA 

knowledge engine during the Preparation phase of the 

study where the bulk of the research work is in their 

case.  
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While some fields can begin their simulations from 

the first study session (e.g., power), other fields have to 

wait until the later study sessions for other fields’ inputs 

(e.g., programmatic). These fields have then a lot less 

flexibility in the architecture or component choices, and 

therefore need more targeted answers from the DEA. 

In some cases, it appears that reusing a similar 

previous architecture is simply impossible, as each new 

mission needs a tailored made answer. The discussions 

have therefore outlined that there are different levels of 

knowledge reuse depending on the subsystems.  

In conclusion, the different experts involved in 

concurrent engineering studies might all find a different 

use for the DEA (e.g., scout for similar previous 

missions, generate trend analyses or compare two 

equipment performances) and use it at different stages 

of the study. 

 

4. Conclusions  

The present paper is a continuity of the DEA project 

overview presented in [7]. The present paper however 

includes significant updates in the tool architecture and 

challenges. The paper also presented the outcomes of 

discussions with experts involved in feasibility studies 

at the ESA concurrent engineering facility, CDF. The 

interviews outcomes were used to refine the DEA 

objectives and requirements.  

The interaction with the experts, potential end users 

of the DEA, confirmed the interest for a tool facilitating 

knowledge management and reuse at the early stages of 

space mission design. Experts also welcomed the idea 

of integrating an AI-agent into their work habit and the 

design environment after testing and validation. 
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