
This version is available at https://strathprints.strath.ac.uk/65906/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
VALIDATING DECENTRALISED FREQUENCY CONTROL REGIMES: A DISTRIBUTED HARDWARE IN THE LOOP APPROACH

Introduction
- An increasing level of complexity is associated with power system operation, with increased levels of distributed generation contributing to this.
- Reduced levels of system inertia are emerging as synchronous plant closes in the GB grid.
- Novel control schemes can increasingly be validated using proven systems testing HIL infrastructure like the University of Strathclyde’s Dynamic Power System Lab (DPSL) and Power Network Demonstration Centre (PNDC).
- The scalability of increasingly decentralized schemes places new demands on infrastructures, causing increased interest in distributed experimentation.

GB Frequency Problem
- Increasing number of distributed resources and large synchronous plant closing leads to the following:
 - Increased RoCoF
 - Frequency/voltage instability
 - Controller interaction
 - Sub-synchronous oscillations and interaction with conventional machines
 - Increased sensitivity

Novel Frequency Controllers
- Web-of-Cells (WoC) and Enhanced Frequency Control Capability (EFCC) projects – two novel solutions to GB frequency problem
- WoC distributed and decentralised control paradigms within each cell enables more effective and scalable frequency regulation
- A “responsibilizing” frequency control approach enables cells to address frequency events locally, with resources in the cell can have been demonstrated at the DPSL with hardware in the loop (HIL)
- Transient phase offset (TPO) droop based method shown to provide improved regulation when compared to existing droop

Overview of Distributed HIL Approach

Power-HIL (P-HIL) Time Delay Challenges, Solutions, and Distributed Real-Time HIL Results
- Contrary to widely deployed fixed deterministic delay, P-HIL delay is variable.
- This delay needs to be accurately characterised to enable accurate compensation – otherwise instability occurs.
- Proposed technique developed offers improved accuracy and achieves stability
- Consequently, the advanced technology compensation facilitates more accurate system-level studies e.g. Increased fidelity GB network studies.
- Benefits of utilising distributed HIL within the context of frequency response shown in Fig. 6. with effects of inter-platform delays shown

Conclusions
- Novel frequency control regimes have been tested and evaluated to good effect on RT HIL infrastructures.
- Distributed HIL schemes enable utilization of multiple facilities simultaneously for increased computing power: the developed platform successfully deals with P-HIL delay issues
- The platform offers improved fidelity by combining computing power at multiple facilities.
- Complexity and increasingly decentralized nature of power system problems being tackled within HIL environment is also increasing: combined computing resource extremely useful in addressing these problems
- Future work will investigate and further understand outstanding issues whilst using the multi-platform distributed RT simulation environment, to validate novel controllers as part of the ERIGRID project