Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy

Pandit, Ravi Kumar and Infield, David and Carroll, James (2018) Incorporating air density into a Gaussian process wind turbine power curve model for improving fitting accuracy. Wind Energy. pp. 1-14. ISSN 1095-4244

[img] Text (Pandit-etal-WE2018-Incorporating-air-density-into-a-Gaussian-process-wind-turbine)
Pandit_etal_WE2018_Incorporating_air_density_into_a_Gaussian_process_wind_turbine.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 22 October 2019.

Download (2MB) | Request a copy from the Strathclyde author

Abstract

A power curve conventionally represents the relationship between hub height wind speed and wind turbine power output. Power curves facilitate the prediction of power production at a site and are also useful in identifying the significant changes in turbine performance which can be vital for condition monitoring. However, their accuracy is significantly influenced by changes in air density, mainly when the turbine is operating below rated power. A Gaussian process (GP) is a nonparametric machine learning approach useful for power curve fitting. Critical analysis of temperature correction is essential for improving the accuracy of wind turbine power curves. The conventional approach is to correct the data for air density before it is binned to provide a power curve, as described in the IEC standard. In this paper, four different possible approaches of air density correction and its effect on GP power curve fitting model accuracy are explored to identify whether the traditional IEC approach used for air density correction is most effective when estimating power curves using a GP. Finding the most accurate air density compensation approach is necessary to minimize GP model uncertainty.