
SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 1

SIMULATION SYNERGY: EXPANDING TRNSYS CAPABILITIES

AND USABILITY

Timothy P. McDowell
1
, David E. Bradley

1
, Jeff W. Thornton

1
 and Michael Kummert

2

1
Thermal Energy System Specialists, LLC, Madison, WI

2
Solar Energy Lab, University of Wisconsin, Madison, WI

ABSTRACT

Developers of simulation packages are now able to

take advantage of the increase in available desktop

computing power to expand the capabilities and

usability of their programs. This paper will illustrate

these opportunities by discussing the different

techniques the developers of the TRNSYS software

package have used to try and create a synergy between

TRNSYS and external programs and between the

developers and users of the program.

INTRODUCTION

With the increase in available desktop computing

power, there has been an increased interest in

expanding the capabilities of whole building energy

simulation programs. For example, users are no longer

satisfied to run separate programs to perform airflow

analysis and energy analysis. They would rather have

one program perform both analyses at the same time.

These desires have led the program developers to look

at methods of expanding their packages in ways that

don�t over-complicate either the code itself or the user

input required to perform a simulation.

The developers of TRNSYS, the Solar Energy

Laboratory at the University of Wisconsin-Madison,

the Centre Scientifique et Technique du Batiment in

France, and Transsolar Energietechnik in Germany,

have utilized a variety of approaches to expand the

capabilities and the ease of use of the software

package. These approaches vary from adding new

functionality into the program source code, to adding

links to external programs, to creating new programs

to simplify the input of simulation parameters.

The intent of using these different approaches is to

create a synergy between many divergent programs

and techniques that work together to provide a wide

variety of capabilities to the overall software package.

While the techniques described in this paper are

specific to the TRNSYS software package, they are

also generic concepts that can be applied to many of

the other whole building energy simulation programs.

However, many of them are programming language,

compiler, and operating system specific and also

depend on the internal coding of the simulation

package. It is beyond the scope of this paper to

provide instructions on how to program these

techniques, as many are too complex to be clearly

articulated in a limited space. However, they all take

advantage of standard techniques that are well

documented in the programming literature.

TRNSYS OVERVIEW

TRNSYS (Klein 2000) is a transient system simulation

program with a modular structure that was designed to

solve complex energy system problems by breaking

the problem down into a series of smaller components.

Each of these components can then be solved

independently and coupled with other components to

simulate and solve the larger system problem.

Components (or Types as they are called) in TRNSYS

may be as simple as a pump or pipe, or as complicated

as a multi-zone building model. The entire program is

then basically a collection of energy system component

models grouped around a simulation engine (solver).

The simulation engine provides the capability of

interconnecting system components in any desired

manner, solving differential equations, and facilitating

inputs and outputs.

The modular nature of the program makes it easy for

users to add content to the program by introducing new

component models to the standard package.

ADDING COMPONENTS

 One of the features of TRNSYS is that its modular

nature allows users to add content to the package by

introducing new component models to the standard

package. The traditional method of adding a

component model to the TRNSYS package was for the

new component to be written in FORTRAN following

a standard format. Then the entire code needed to be

recompiled to create the new version with the added

SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 2

component. Many users felt that the restriction to

using FORTRAN was archaic and the developers felt

that the recompilation of the kernel source code was

redundant. So a new method of adding components to

the TRNSYS package was developed that can be used

in place of the traditional method, while retaining the

traditional method for those who prefer it. The new

method takes advantage of dynamic link libraries (dll)

in a technique known as �drop-in dlls� to develop a

multi-dll, distributed architecture (See Figure 1).

Figure 1 TRNSYS single dll architecture on the left

and multi-dll distributed architecture on the right

In this method the user can create the new component

using any programming language that can produce a

dll and which provides for importing information to

and exporting information from other dlls. This dll is

then placed in a specific directory in the TRNSYS

hierarchy. When the simulation is started, the

TRNSYS kernal searches the dlls in this directory for

any exported components to be included in the

simulation. One advantage of this method is that the

kernal does not need to be recompiled to add content to

the package. Another advantage is that the user is no

longer limited to the use of FORTRAN for creating

new components. Any programming language, such

as C or C++, can be used to create the dll that is called

by the TRNSYS FORTRAN kernal code

automatically. The disadvantage of this technique is

that it requires the addition of the exporting commands

in the component. These commands are often

compiler and operating system specific.

Another issue arose as some users had begun their

projects by first developing stand-alone models in

other software packages and then later wanting to

connect these models into a TRNSYS simulation.

They felt that the need to recreate their models in

TRNSYS format was too time consuming. Rather they

wanted some method of connecting their already

created models into the TRNSYS simulation structure.

One approach to this would be to add code to the

TRNSYS kernel to perform the same function as the

steady-state modeling program. Since this requires

rewriting algorithms that have already been

programmed and tested in a different modeling

package, the TRNSYS developers felt this approach

unnecessarily reinvents the wheel. A different

approach is to continue to allow the stand-alone

modeling program to perform its task and create a

linking structure between TRNSYS and the other

program. This idea poses different difficulties than

linking in components from dlls. In this case the

components do not follow the TRNSYS conventions

and they are often housed in unmodifiable external

programs not dlls. To allow for such models to be

included in TRNSYS simulations it was necessary to

create components in the TRNSYS code that explicitly

link to the external programs, execute the models and

provide some method of data transfer between the

programs. So far these links have been created for

Engineering Equation Solver (EES) (Klein 2004),

MATLAB� and Simulink� (Mathworks 2003), and

Microsoft Excel� (Microsoft 2004). These

components work by having TRNSYS call the external

program at each iteration and executing the model in

its program. The results are then passed back to

TRNSYS where they can be used in a TRNSYS

simulation like any other results from a standard

component. A disadvantage of this technique is that in

order to create a communication pathway between two

programs requires the use of operating system specific

commands. This techniques also leads to a longer

simulation time than if the model had been package

into a normal TRNSYS component.

ADDING EXTERNAL CONTENT

Sometimes the desired added content already exists in

a separate program and previously it was too

computationally intensive for both the TRNSYS and

additional analyses to be carried out at the same time

(i.e. airflow simulation, daylighting, or CFD

modeling). But with the increase in computer power

available to the common user, the possibility of

combining these analyses now exists.

There are many different techniques for combining

analysis programs but they fall into two general

categories: adding the algorithms of one analysis into

the algorithms of the other or linking the two programs

together externally.

These can be demonstrated by looking at the

combining of building energy and airflow analysis in

TRNSYS. Two widely used airflow analysis progams

� CONTAM (Dols 2002) and COMIS (Feustel 1998) �

have been integrated into TRNSYS using two very

different methods. The COMIS-TRNSYS link was

SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 3

developed using the more standard method where the

algorithms in COMIS were directly integrated into the

building model of TRNSYS. In essence, the COMIS

code has become a part of the TRNSYS building

model code. The advantage of this technique is that

the TRNSYS solution engine takes care of all of the

iterative solution schemes. The disadvantage is that

the airflow code is spread throughout the building

model code and is present even when airflow analysis

is not desired. This makes determining the source of

problems in the airflow or building analysis more

difficult. The CONTAM-TRNSYS link, on the other

hand, was done by utilizing TRNSYS�s modular

structure. A stand-alone version of the CONTAM

code (called AIRNET (Walton 1989)) was turned into

a TRNSYS component by including some �wrapper�

code that includes the standard calling structure used

by TRNSYS. This airflow component can then be

included in a TRNSYS simulation like any other

component. The advantages of this technique are that

the airflow modeling code is included whole as it is

used in its stand-alone form and the component is only

linked into the simulation when airflow calculations

are to be performed. The disadvantage of this method

is that the airflow model carries out its own iterative

solution at each iteration of the TRNSYS simulation.

This can lead to convergence issues during the

simulation. At the same time, this allows for some

novel solution techniques to combat the convergence

problems. The linking of the airflow and building

energy components can be adjusted so that they both

come to an iterative solution at every timestep or the

outputs from one component from the previous

timestep can be used at the current timestep as inputs

to the other component (i.e. onion vs ping-pong

(Hensen 1996)).

These same techniques are being explored for adding

additional external programs to the TRNSYS package

such as CFD analyses.

EASE-OF-USE ENHANCEMENTS

One of the long-standing drawbacks to the large

simulation packages is the difficulty in creating the

input files that controlled the simulation. Typically

these files are text documents containing large

quantities of numbers that set the parameters and

connections that control the simulation with little, if

any, description as to what they mean. The beginning

user was often overwhelmed with the concept of

starting a simulation and determining what someone

else had done in a simulation was difficult. So

developers began to add ease-of-use enhancements to

their packages to increase the usability of the

packages. These enhancements are often referred to as

front-ends or graphical user interfaces (GUIs). For

TRNSYS the first generation of these enhancements

were IISibat and Presim for the general simulation and

Prebid for the building model, all released in 1996.

The simulation front-ends allow for the links between

components to be graphically shown and the

simulation parameters entered (See Figure 2). The

building model front-end allows for the input

parameters to be grouped in logical ways for user

entry. For example the physical properties of the

building materials are entered and then grouped

together to form the wall structures used in the

simulation and all of the zone parameters are entered in

a single screen. The front-ends then create the text

files needed by the simulation engine and execute the

simulation program.

Figure 2 An example of a project in the IISiBat front-

end program

While these first-generation programs were dramatic

improvements over the text file entry of the simulation

package, they were just baby steps down the path of

usability. The lessons learned and experience gained

from the use of these front-ends has led to the

development of the next generation of ease-of-use

enhancements: TRNSYS Studio, TRNBUILD, and

SimCad. In the first-generation of simulation front-

ends the parameters and variables continued to be

entered by the user in tables or lists with only minimal

commentary as to their meaning. A new alternative

has been added where applications can be created, by

the user or the developer, which gather this

information from the user in more descriptive or

meaningful ways (TRNSYS Studio plug-ins). For

example instead of filling out a list of the width,

length, and depth of a solar collector, these numbers

can be entered on a diagram of the collector which

clearly shows what is meant by those dimensions on a

collector (See Figure 3). The old method for entering

SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 4

the parameters has also been retained for users that are

experienced and comfortable with the parameter lists.

Figure 3 An example of an application for entering the

parameters of a solar collector model

One of the drawbacks of the first generation building

model front-end was that it did not provide for a direct

link between the CAD plans of a building and the

building model simulation parameters. Information

was manually taken from the drawings and entered in

the building model front-end. SimCad represents a

step toward generating the building model parameters

directly from the CAD drawings (See Figure 4).

Instead of representing a building wall as two parallel

lines in a purely pictorial representation, SimCad

represents a wall as an object. As such, a wall (or

another building element) can have associated

properties such as area, azimuth, layer composition,

etc. While the SimCad user builds a graphical

representation, they simultaneously build the basis of

the building�s thermal model. In the current version,

additional information such as heating and cooling set

points still need to be entered into the building model

front-end, however, SimCad is seen as a first step

toward taking all of the building model information

directly from the CAD drawings.

Figure 4 An example of a project in the SimCad

building front-end program

Ease-of-use enhancements are not limited to the

simulation package itself, but can also be applied to

external programs that enhance the overall packages.

For example, GenOpt® (Wetter 2004) is a generic

optimization program developed by Lawrence

Berkeley National Laboratory (LBNL) that can be

used to run optization studies with simulation

packages. The GenOpt® program is an external

program that controls the simulation program inputs

based on an user-entered error function calculated by

the simulation package. It has been developed in such

a way that it can be used with most of the simulation

packages available today. While it is a very powerful

program it is also somewhat complicated to figure out

how to apply it to your specific simulation package.

So a program called TrnOpt has been developed to

provide an easier link between the two programs. This

program parses the simulation file to determine the

available variables that can be used for an optimization

study and provides a straightforward way of selecting

the variables, the optimization method, and the

parameters of the optimization. It then creates the

appropriate simulation and optimization files and then

lets the programs do their processes. While this does

make it easier to get started with the optmization

process, it does not recommend any optimization

method or parameters for a given situation. It is still

important that the user understand how both the

simulation program and the optimization program

work in order to select the most appropriate method

and parameters.

Figure 5 An example of a project in the TRNSED

front-end program

END-USER ENHANCEMENTS

The typical end product of a simulation study is a large

quantity of data that are packaged into a report and

submitted to a client. But what if the client would like

to perform some parametric study of their own without

SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 5

having to learn how to use the simulation package

itself? One method of doing this is to have the client

provide all of the details of the parametric study and

then provide the client with the results of all of the

runs. This can lead to many iterations back and forth

with the client because the details are not well known

before the study is begun. The TRNSYS developers

have created a different method in the form of a front-

end program called TRNSED (See Figure 5).

The concept behind TRNSED is that a TRNSYS user

can modify the text based simulation input file in such

a way as to hide unnecessary simulation details, show

only those aspects of the simulation that are of interest

and give the end client the ability to make targeted

modifications to the simulation and rerun it

themselves. In so doing, the text based input file is

recast as a dedicated front end specifically designed for

that simulation.

OVERALL SIMULATION

ENVIRONMENT

While all of the programs and enhancements discussed

are a part of or connected to the TRNSYS program,

most are still separate programs which are called in

some sequence to perform the simulation. The long-

term vision for the TRNSYS package is to develop an

over-all simulation environment which will encompass

the links to external programs, the front-ends, and the

user enhancements with the TRNSYS simulation

engine. This simulation environment would continue

the TRNSYS concept of separate components that are

linked together into a single entity and easy addition of

new components to the package. Thus as new links

and enhancements are developed they can be quickly

integrated into the overall simulation environment. The

first generation of this process will be released with

version 16 of TRNSYS in the form of the TRNSYS

Simulation Studio program.

CONCLUSION

As the available computing power continues to

increase it will create more and more opportunities for

the capabilities and features of simulation packages to

be expanded. It is important that the developers of

these packages not lose sight of other products already

available and the end-users of their packages. There is

no reason to re-invent the wheel. If there is already a

product that can perform the desired function it may be

adequate to develop an external link to that program

rather than create new code to perform the same

analysis in their software package. Adding more and

more features to simulation packages is wonderful

unless it is done in such a way to limit their use to the

�expert� users of these packages. If enhancements are

not made which make it easier for these packages to be

learned and used then the new features will do little to

impact the simulation community as a whole. While

this paper has discussed enhancements to the TRNSYS

package, these issues and improvements are not

limited to this one specific simulation package.

Developers of all of the simulation packages are

dealing with the same opportunities and difficulties

and continue to strive to bring the best products

possible to the simulation community. Finally it is also

important that the users of these programs not assume

that these ease-of-use enhancements have done their

simulation job for them. Any development work, from

writing the models to creating front-ends, involves

assumptions being made by the developers. If the

users do not understand the concept in the models and

the assumptions made in the models or the developers

do not make the limitations clear, then the program

may be used to simulate a process that is not

adequately covered by the simulation.

ACKNOWLEDGMENT

The authors would like to thank the members of the

TRNSYS Development Group � Solar Energy

Laboratory at the University of Wisconsin-Madison,

the Centre Scientifique et Technique du Batiment in

Nice, France, and Transsolar Energietechnik in

Stuggart, Germany for their assistance.

REFERENCES

Dols, W.S. and G.W. Walton. 2002. CONTAMW 2.0

User Manual, NISTIR 6921.

Feustel, H. 1998. COMIS � Am International

Multizone Air-Flow and Contaminant Transport

Model. LBNL Technical Report LBNL-42182.

Lawrence Berkeley National Laboratory.

Hensen, J. 1996 �Modelling coupled heat and air flow:

ping-pong vs. onions.� 16th AIVC Conference, Air

Infiltration and Ventilation Centre.

Klein, S. 2000. TRNSYS � A transient system

simulation program. Engineering Experiment Station

Report 38-13. Solar Energy Laboratory, University of

Wisconsin-Madison.

Klein, S. 2004. EES � Engineering Equation Solver. F-

Chart Software.

The Mathworks, Inc, 2003 � MATLAB and Simulink

are registered trademarks

Microsoft Corporation, 2004 � Microsoft Excel is a

registered trademark

SimBuild 2004, IBPSA-USA National Conference Boulder, CO, August 4-6, 2004 Page 6

Walton, G., 1989. AIRNET � A Computer Program for

Building Airflow Network Modeling. NISTIR 89-4072

National Institute of Standards and Technology.

Wetter, M. 2004. GenOpt® Generic Optimization

Program User Manual Version 2.0.0, LBNL Technical

Report LBNL-54199, Lawrence Berkeley National

Laboratory.

