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1. WLA Process for Carbon Capture 2. Microwave heating

The 'Wetting Layer Absorption’ (WLA) process!? is a novel concept which Advantages of microwave heating:
attempts to combine the positive aspects of adsorption and absorption for > Volumetric heating — much faster.
application in post-combustion carbon capture. A porous material is used to > Taraeted heating — h £ficient
support liquid-like regions of absorbed solvent which in turn absorb carbon argeted heating — much more efricient.
dioxide » Operates at lower temperatures. _ _
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» Potential use and optimization of physical or chemical solvents. Y ¢/ min
> Lower regeneration penalty than amine scrubbing tower (no water). Figure 2: Heating profile

3. Determination of the frequency-dependent dielectric constant

The dielectric constant of a medium

Dielectric constant

: % is related fto the fluctuations in the
8(0)) = 8'((0)+ Ig"(a)) ’ dipole moment of the system:
4 o I

¢(w): Ability to store potential energy by being > g(a))— i =1+ Ia)¢?(a))
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transformed into heat due to collisions Fiaure 3: Dielectric heatin ¢ (0): Fourier fransform Of. the dnpo.le Figure 4: Dipole moment
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4. Molecular Dynamics simulations

Explicit-Hydrogen (EH) models United-atom (UA) model
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In Molecular Dynamics (MD) simulations, atoms and
molecules are allowed to interact, and their Q p ¢ @ ® ©
trajectories are determined by integrating Newton's .
equations of motion. The forces acting in the system
are defined through parameterized sets of
equations called force fields. In this work, MD
simulations are performed using the software
GROMACS® to analyze the interactions between

& Time -
molecules of different solvents and determine their Molecular model Simulation box
dielectric properties. Figure 5: Simulation procedure: example of ethylenediamine (EDA)
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5. Results - Dielectric spectra

Little data have been found in the literature for the frequency Spectra Comparison » Validate method with more solvents
dependence of the dielectric constant of solven)“s of interest in carbon Microwaves  +/ci Infrared (IR) > Analyze the effect of pore confinement
capture. Because these are essential to ascertain the feasibility of the 01 1 10 100 1000 10000 100 . .
; : = . : L —————— on dielectric constant.
microwave regeneration process , our objective is to obtain the required : — wamtwsic |
properties by means of MD simulations. ‘I\W\T — .
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