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Abstract 

This study presents a novel modeling approach for 
wetness and moisture concentration in the presence of time 
dependent saturated moisture concentration by employing the 
traditional ANSYS thermal and surface effect elements.  The 
accuracy of the present approach is established by comparison 
with those of the existing ANSYS “diffusion” and “coupled 
field” elements as well as peridynamic theory.  The 
comparison concerns the desorption process in a fully 
saturated bar made of two different materials with equal and 
unequal values of solubility activation energy in the presence 
of time dependent saturated moisture concentration under 
uniform and nonuniform temperature conditions.  The results 
from the present approach agree well with those of 
peridynamics and ANSYS “coupled field” elements if the 
diffusivity is specified as time dependent.  Significant 
deviation occurs if the diffusivity is specified as temperature 
dependent.  The ANSYS “diffusion” element is applicable 
only for uniform temperature, and deviation becomes 
significant especially for unequal values of solubility 
activation energy. 

 
Introduction 

A large portion of microelectronic and optoelectronic 
components are made of polymeric materials including die 
attach materials, molding compound, underfill materials, etc. 
Polymeric materials are susceptible to moisture absorption 
which may yield significant amount of volume expansion. For 
multi-material systems as in electronic packages, such 
deformations can cause hygroscopic swelling and stresses. 
During the solder reflow process, moisture turns into high-
pressure vapor that can result in cracking coined as “popcorn 
cracking” [1]. Hence, it is essential to analyze the effect of 
moisture to ensure the reliability of the electronic packages.   

As part of a finite element analysis, “wetness” concept 
introduced by Wong et al. [2] is commonly accepted for 
moisture concentration prediction in electronic packages with 
multi-material interfaces.  Wetness approach is rather 
straightforward in the case of saturated concentration when 
independent of time and temperature. In such cases, a 
standard thermal-moisture analogy can be performed through 
a thermal diffusion analysis using a commercial software after 
calibrating its parameters.  If saturated concentration depends 
on time, the wetness equation is no longer analogous to the 
thermal diffusion equation.   

Wong et al. [3] extended the applicability of wetness 
concept for multi–material systems under transient loading 

and named it as “piecewise normalization” approach.  
However, this approach requires several load steps to ensure 
accuracy, and it is also computationally expensive due to its 
complex subroutines.  For this reason, Wong [4] introduced 
another approach, which is more convenient and is easy to 
implement, named as “internal source” approach.  However, 
the convergence of this approach is highly dependent on 
number of iterations carried out during each time step.  Also, 
Diyaroglu et al. [5] applied peridynamics within the ANSYS 
framework to solve for wetness and moisture concentration in 
the presence of time dependent saturated moisture 
concentration without requiring iterative solution schemes. 

As an alternative to these approaches, ANSYS, a 
commercial finite element software, offers “diffusion” and 
“coupled field” elements for wetness field and moisture 
concentration.  These elements allow for either time or 
temperature dependent saturated moisture concentration.  The 
ANSYS “diffusion” element is applicable only for uniform 
temperature.  Although it permits time dependent saturated 
moisture concentration, the contribution from its rate of 
change is disregarded in the governing field equations.   

This study presents a novel modeling approach for 
wetness and moisture concentration in the presence of time 
dependent saturated moisture concentration by employing the 
traditional ANSYS thermal and surface effect elements.  Its 
accuracy is established by modeling the desorption process in 
a fully saturated bar made of two different materials with 
equal and unequal values of solubility activation energy in the 
presence of time dependent saturated moisture concentration 
under uniform and nonuniform temperature conditions.  The 
present results agree well with those of ANSYS “coupled 
field” elements having time dependent diffusivity and 
peridynamics.  Significant deviation occurs if the diffusivity 
is specified as temperature dependent.  The ANSYS 
“diffusion” element leads to significant deviation especially 
for unequal values of solubility activation energy. This new 
approach removes the need for coupled field analysis and it is 
computationally efficient and easy to implement.   
 
Classical form of wetness equation  

Moisture diffusion can be described by the first Fick’s law 
as 
 

( ) ( )D t C t  J  (1) 

 



where ( )C t  is the moisture concentration, J  is the diffusion 

flux vector and D  is the material diffusivity.  During the 
diffusion process, conservation of the mass solute is satisfied 
by 
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G t
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in which ( )G t  is the diffusing substance generation rate per 

unit volume.  Substituting from Eq. (1) into Eq. (2) leads to   
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This equation also known as the second Fick’s law is valid 
only in homogeneous domains.  In order to consider 
nonhomogeneous domains, Wong et al. [2] introduced a 
normalized wetness parameter, C  in the form of   
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C
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in which ( )satC t  is the saturated moisture concentration 

which defines the degree of saturation in a material. This 
normalization satisfies the equality of chemical potentials at 
the interface of dissimilar materials.  According to this 
principle, the ratio of concentrations at the interface of 
materials A and B remains constant at any time as   
 

,

,

constantsat A AA

B sat B B

C CC

C C C
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which results in A BC C .  Thus, the continuity of wetness 

automatically satisfies the equalization of chemical potentials 
at the interfaces.   
 
Invoking the wetness parameter into Eq. (3) leads to the 
wetness equation as   
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For a constant, satC , this equation becomes 
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Within the ANSYS framework, the solution to this equation 
can be directly constructed through the thermal analogy.  
However, the thermal analogy is not applicable when satC  is 

time dependent.  Therefore, ANSYS element library offers 
“diffusion” elements and “coupled field” elements to solve for 
the wetness field in the presence of time dependent satC  [6].  

However, these elements are based on the modified form of 
the first Fick’s law as  
 

( ) ( ) ( )D t C t C t   J v   (8a) 

 
and 
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in which v  represents the transport velocity vector, Q  is 

particle heat of transport, k  is Boltzmann constant.  
Substituting from Eq. (8a) into Eq. (2) leads to  
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in which the unknown field is  ,C tx .  Assuming the rate of 

saturated moisture concentration to be negligible, this 
equation can be reduced to a simpler form as  
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Similarly, substituting from Eq. (8b) into Eq. (2) leads to  
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If the saturated concentration is expressed as ( )satC T  with 

( , , , )T x y z t  representing temperature, applying the chain rule 

permits this equation to be rewritten as   
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in which the unknown fields are  ,C tx  and  ,T tx .  

Therefore, it is referred to as coupled wetness field equation.  
In this, equation, diffusivity can be specified as time or 
temperature dependent, i.e., ( )D D t  or ( )D D T . 

 
ANSYS “diffusion’ and “coupled field” elements   

ANSYS, a commercial finite element software, offers 
“diffusion” elements (Plane 238 with 8 nodes, Solid 239 with 
20 nodes and Solid 240 with 10 nodes) with only one degree 
of freedom (DOF) as concentration (CONC) at each node.  
These elements are suitable for the solution of Eq. (10) based 
on constant satC  approximation.  If satC  is defined with “MP, 

CSAT” command in ANSYS, the concentration DOF 
represents the wetness parameter.  This element permits either 
time or temperature dependent satC  values .  However, it is 

suitable for only uniform temperature.  In the case of 
nonuniform temperature, ANSYS offers “coupled field” 
elements (Plane 223 with 8 nodes, Solid 226 with 20 nodes 
and Solid 227 with 10 nodes) with two DOF as wetness, C  
and temperature, T  at each node.  The “coupled field” 
elements enable the modeling of temperature dependent 
conditions; thus, suitable for the solution of Eq. (12).  Their 
approximation over element “ e ” can be achieved by 
 

eC  N C   (13a) 

 
and 
 

eT  N T   (13b) 

 
where eC  and eT  are the vectors of unknown wetness and 

temperature at the nodes, and N  is the vector of element 

shape functions.  Their nodal rates are denoted by eC  and eT .  

Applying the virtual work principle over the element “ e ” 
with arbitrary virtual quantities of eC  and eT , Eq. (12) can be 

rewritten as   
 

 
 

1 2

1 2 2                    

dt d d dN dN
e e e

dtN dt dt dtN
e

   

    

C T C C K K K C

K K K K T R


 (14) 

 
where dC  is the element diffusion damping matrix, dtC  is the 

element thermal–diffusion damping matrix, dK  is the 
element diffusion conductivity matrix, 1

dNK  is the nonlinear 

part of the element diffusion conductivity matrix associated 
with thermomigration, 2

dNK  is the nonlinear part of the 

element diffusion conductivity matrix produced by satC T  , 
dtNK  is the nonlinear part of the element transport 

conductivity matrix, 1
dtK  is the element transport conductivity 

matrix, 2
dtK  is the element thermal – diffusion conductivity 

matrix produced by satC T  , 2
dtNK  is the nonlinear part of 

the element transport conductivity matrix produced by 

satC T  , and R  is the nodal diffusion flow rate vector.  

They are explicitly defined in ANSYS manual [6] as   
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As described in the ANSYS manual [6], the final form of the 
coupled finite element thermal-diffusion matrix equations can 
be expressed as  
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in which tC , tK  and Q  are relevant only to the heat flow 
representing the element specific heat matrix, the element 
thermal conductivity matrix and the element heat generation 
load matrix, respectively.  The thermal conductivity matrix 
can be expressed as t tm tb tc  K K K K  in which tmK , tbK  



and tcK  are the element mass transport conductivity matrix, 

element diffusion conductivity matrix and element convection 
surface conductivity matrix, respectively.  If the 
thermomigration is negligible, this equation can be reduced to   
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ANSYS thermal and surface effect elements   
The traditional ANSYS thermal element and surface effect 
element can be employed for solving the wetness equation, 
Eq. (6) with ( )D D t  and  ( )sat satC C t .  Applying the 

virtual work principle and using the divergence theorem, Eq. 
(6) can be rewritten as 
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where eV , eS  and n  indicate the element’s volume, surface 

and unit normal to the surface, respectively.  In this equation, 
the rate of change of ( )satC t , i.e. /satdC dt , is approximated 

by using backward Euler method as   
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After substituting for C  in Eq. (18) from Eq. (13a) with 
arbitrary eC , Eq. (18) can be rewritten in a matrix form  
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where dtC , dC  and dK  are expressed as 
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This equation is analogous to the heat flow equation 
described in ANSYS as 

( )t tb tc g
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where t
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eK , tc

eK  and g
eQ  are element specific heat 

matrix, element diffusion conductivity matrix, element 
convection surface conductivity matrix and element heat 
generation load, respectively.  They are explicitly defined as   
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where  , c , ( )D t , fh and q  indicate the density, the 

specific heat, the thermal conductivity, the film coefficient 
and the heat generation rate per unit volume, respectively.  
Comparing the wetness and heat flow equations with each 
other, i.e., Eqs. (20) and (22), there exists correspondence 
between the thermal parameters, c , tD , fh  and q  and 

diffusion parameters, ( )satC t , ( )satDC t , /satC t   and G.  

Therefore, Eq. (20) can be easily constructed by modifying 
variables in ANSYS as demonstrated for one-dimensional 
analysis in Tables 1 and 2.   

For one-dimensional analysis, this equation can be 
constructed by using thermal link (LINK33) and thermal 
surface effect (SURF151) elements between two nodes, 
shown in Fig 1. The thermal link element is used for t

eC  and 
tb
eK  matrices and the thermal surface effect for tc

eK  matrix.  

The modification of thermal parameters with diffusion 
parameters for LINK33 and SURF151 elements are 
demonstrated in Tables 1 and 2.  In Table 1, the subscript n at 

1nD   and , 1sat nC   specifies the current time step number.  In 

Table 2, the rate of satC  is approximated with backward Euler 

method as /satC t   in which  implies the difference of 

values between the time steps. Moreover, the nodal heat 
generation rate per unit volume, q , can be used in place of 

diffusing substance generation rate per unit volume, G, in 
ANSYS by defining the nodal loads with “BF, Node, HGEN, 
Value” command.   
 
 

 
 

Fig. 1. Thermal link and surface effect elements between 
nodes 1 and 2   



 
Numerical results 

The numerical results concern the modeling of desorption 
process in a bar by employing the traditional thermal link and 
surface effect elements, “diffusion” elements and “coupled 
field” elements.  The bar is composed of two different 
materials as shown in Fig. 2.  It is initially fully saturated at 
85C/100% RH with isolated lateral surfaces. The properties 
of each material are given in Tables 3 and 4 previously 
considered by Wang et al. [7].   
 
 

 
Fig. 2.  A bar composed of two materials 

 
The initial and boundary conditions in terms of the wetness 
parameter can be specified as   
 

( , 0) 1C x t     with  L x L    (24a) 

 
( , ) 0C x L t    (24b) 
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in which 2L  and h  represent the length and thickness of the 
bar, respectively.   

Also, the solubility activation energy of materials 1 and 2 
can be either equal or unequal at the interface.  The saturated 
concentration, ( )satC t  and diffusivity, ( )D t  can be expressed 

as   
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in which R is the universal gas constant 
( 8.3145 J/KmolR  ), 0D  is the diffusivity factor, 0S  is the 

solubility factor, 0P  is the pressure factor, DE  is the 

activation energy of the diffusivity, SE  is the activation 

energy of the solubility, VPE  is the vapor pressure activation 

energy, and RH indicates the relative humidity.   
In the case of “coupled field” elements, the saturated 

concentration, ( )satC T  is specifed as temperature dependent.  

However, the diffusivity can be specified as either time 
dependent, ( )D t  or temperature dependent, ( )D T .  The 

temperature field can be either uniform or nonuniform.  The 
uniform temperature is applied as   

 

 ( , ) 85 2 CT x t t      (26a) 

 
The nonuniform temperature is achieved through the 
boundary conditions specified as   
 

 (  ,  ) 85 2 CT x L t t       (26b) 

 
However, the “diffusion” element is not applicable under 
nonuniform temperature because the temperature is not 
known apriori.  Also, the solutions with “diffusion” and 
“coupled field” elements are obtained for negligible transport 
velocity and thermomigration, respectively. 

The FE discretization of a bar with thermal elements and 
with 2D “diffusion” or “coupled field” elements are shown in 
Figs. 3 and 4.  The bar has a length of 2 2 mmL   and a 
thickness of /100h L .  Its cross sectional area is specified as 

2A h .  The spacing between the nodes is specified as 
x h  .  In modeling with of 1D thermal elements, the cross-

sectional area is defined by “R, NSET, A” command and with 
2D “diffusion” and “coupled field” elements only the 
thickness of the bar is defined by “R, NSET, x ” command.  
The solution time step size is chosen as 2 sect   and the 
total time is specified as 80 sect  , and the moisture 
concentration results are plotted at 60 sect  .  The results 
obtained with the ANSYS thermal, diffusion and coupled 
field elements are also compared against the peridynamic 
solution [5] for uniform and nonuniform temperature with 
equal and unequal solubility activation energy of materials 1 
and 2.  In the case of unequal solubility activation energy, 
material 2 has 

2

44.50 10  J/molSE   .   

 

 
 

Fig. 3.  The FE discretization of a bar with present 
approach  

 
 

 
 

Fig. 4.  The FE discretization of a bar with “diffusion” or 
“coupled field” elements 

 
 
Desorption under uniform temperature with equal and 
unequal values of SE  

As shown in Figs. 5 and 6, the predictions based on the 
present approach with thermal elements, “coupled field” 
elements with ( )D t  and ( )satC T  and peridynamics are in 



excellent agreement for both equal and unequal values of SE .  

The “coupled field” elements with ( )D T  and ( )satC T and 

“diffusion” elements present significant deviation from the 
other solutions.  When diffusivity, ( )D t  is imposed as a time 

dependent property, its value is known before the next time 
step as part of time integration, and does not require 
approximation.  However, it requires approximation for the 
next time step if imposed as ( )D T  leading to the deviation in 

results.  Therefore, the results deviate significantly from the 
correct solution.  Also, the “diffusion” elements do not predict 
the correct concentration because it disregards the effect of 
rate of saturated concentration. 
 
Desorption under nonuniform temperature with equal and 
unequal values of SE  

The “diffusion” element is not applicable due to the 
nonuniformity of temperature field.  Also, the “coupled field” 
element with time dependent ( )D t  is not applicable because 

diffusivity, ( )D t given in Eq. (25a) highly depends on 

temperature which is the unknown DOF in this problem.  The 
concentration results along the bar are plotted in Figs. 7 and 
8.  As apparent from these figures, the predictions from the 
present approach and peridynamics are in excellent 
agreement.  However, the results from the ANSYS “coupled 
field” elements with temperature dependent ( )D T  deviate 

significantly. 
 
Conclusions 

This study presents a new modeling approach for wetness 
and moisture concentration in the presence of time dependent 
saturated moisture concentration by employing the traditional 
ANSYS thermal and surface effect elements.  The accuracy of 
the present approach is established by comparison with those 
of the existing ANSYS “diffusion” and “coupled field” 
elements as well as peridynamic theory.  The comparison 
concerns the desorption process in a fully saturated bar made 
of two different materials with equal and unequal values of 
solubility activation energy in the presence of time dependent 
saturated moisture concentration under uniform and 
nonuniform temperature conditions.  The present approach 
predicts correct concentration for all cases considered.  
However, the accuracy of the predictions based on ANSYS 
“coupled field” elements depends on the applied temperature.  
Significant deviation occurs if the diffusivity is specified as 
temperature dependent.  The ANSYS “diffusion” element is 
applicable only for uniform temperature, and deviation 
becomes significant especially for unequal values of solubility 
activation energy.  This new computationally efficient and 
accurate approach removes the need for coupled field 
analysis. 
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Table 1. The correspondence of variables for thermal link element   
  LINK33 

Material 
Properties 

 Original Modified  ANSYS Command  

Thermal Conductivity tD  1 , 1n sat nD C    MP, KXX, MAT*, 1 , 1n sat nD C   

Density   1.0  MP, DENS, MAT*, 1.0  

Specific Heat c , 1sat nC    MP, C, MAT*, , 1sat nC    

Real 
Constants  

Cross Sectional Area A A  R, NSET*, A  

 

                            *MAT: Material reference number   
                     *NSET: Real constant set identification number   
 
 

Table 2. The correspondence for surface effect element   
  SURF151 

Applying Surface 
loads on elements 

(SFE) 

Convection (CONV) Original Modified  ANSYS Command  

Film Coefficient fh  satC A

t




 SFE, Elem*, , CONV, 1, satC A

t




  

Bulk Temperature BT  0.0 SFE, Elem*, , CONV, 2, 0.0  

           *Elem: Element to which surface load applies   
 

 
Table 3. Diffusion Material Properties [7] 

 Material 1 Material 2 

Diffusivity factor, 0D  ( 2m /s ) 35 10  34 10  

Solubility factor, 0S  3(kg/m Pa)  106 10  102 10  

Pressure factor, 0P  ( Pa ) 105.0492 10  105.0492 10  

Diffusion activation energy, DE  ( J/mol ) 45 10  45 10  

Solubility activation energy, SE  ( J/mol ) 44 10  44 10  

Vapor pressure activation energy, VPE  ( J/mol ) 44.08737 10  44.08737 10  

 
 

Table 4. Thermal Material Properties [7] 
 Material 1 Material 2 

Density,   ( 3kg/m ) 33 10  33 10  

Specific Heat, vc  ( J/kgK ) 31.5 10  31.5 10  

Thermal Conductivity, k  ( W/mK ) 0.6  0.6  

 
 
 



 
 

Fig. 5. Moisture concentration variation along the bar 60 sect   with equal SE  

 
 

 
Fig. 6. Moisture concentration variation along the bar 60 sect   with unequal SE  

 
 

 
Fig. 7. Moisture concentration variation along the bar 60 sect   with equal SE  

 



 
Fig. 8. Moisture concentration variation along the bar 60 sect   with unequal SE  


