
Stochastic prey-predator system with foraging arena
scheme

Yongmei Caia,∗, Xuerong Maoa

aDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

Abstract

In this paper we extend the foraging arena model describing the dynamics of prey-
predator abundance from a deterministic framework to a stochastic one. This is
achieved by introducing the environmental noises into the growth rate of prey as
well as the death rate of predator populations. We then prove that this stochastic
differential equation (SDE) has a unique global positive solution. The long-time
behaviours of the system are then developed. Furthermore the existence of a sta-
tionary distribution is pointed out under certain parametric restrictions. All the
results are illustrated by the computer simulations.
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1. Introduction

In prey-predator models, the trophic function λ2 in equation (1.1) links the
dynamics of prey and predator populations:

dx(t)
dt

= λ1(x(t))x(t) − λ2(x(t), y(t))y(t) (1.1a)

dy(t)
dt

= γλ2(x(t), y(t))y(t) − λ3(y(t))y(t), (1.1b)

where x(t) and y(t) represent the population densities of prey and predator at time t,
λ1(x(t)) is the per capita net prey growth in absence of predator, λ2(x(t), y(t)) is the
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density-dependent uptake response of consumers, γ is trophic efficiency ranging
from 0 to 1 and λ3(y(t)) is the consumers death rate. Especially, λ2(x(t), y(t)) is
called the ”functional response” in the prey equation (1.1a) and the ”numerical
response” in the consumers equation (1.1b) [1, 2]. The simplest description of
the trophic function λ2(x, y) is dependent solely on prey abundance. One is the
classic Lotka-Volterra type response in which per capita uptake by the consumers
is linearly related to the prey density. Another is Holling Type equation [3]. The
Holling II function is widely studied in terrestrial and aquatic food chain models
[4] of the form

λ2(x) = u1x/(u2 + x),

where u1 is a maximum uptake rate by the predator and u2 is a prey half-saturation
coefficient. An alternative nonlinear formulations of trophic function is the Holling
III function:

λ2(x) = u1x2/(u2
2 + x2).

In contrast to the prey-dependent uptake response, the trophic function depending
on both the prey and consumers abundance suppresses responsiveness by regulat-
ing the flux between prey and predator [2]. The simplest form of uptake regulation
is ratio dependence [1, 5, 6] of the form

λ2(x, y) = λ2(x/y).

However, an extreme property happened to the ratio-dependent formulation is that
the uptake rate tends to infinity as consumer abundance tends to zero [7]. Hence
the concerned model fails to satisfy the continuity condition at origin. To alleviate
this property, the Beddington-DeAngelis type was then proposed by [8, 9]. This
type is capable to take care of a number of ecological mechanisms with

λ2(x, y) = u3x/(u4 + u5x + y),

where u3/u4 = predator capture rate and u5/u4 = handling time per prey item [10].
Another functional response to avoid the extreme property happened to the ratio
dependence model is the foraging arena model pointed out by [11, 12] with

λ2(x, y) = sx/(β + y),

where β is the consumer density at half maximum per capita uptake rate and s/β is
the maximum per capita uptake rate by predator. Foraging arenas are common in
aquatic systems. They are formed by a series of mechanisms such as restrictions
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of consumer distributions in response to predation risk due to their own predators
and the risk-sensitive foraging behaviour by their prey. In foraging arenas, the
prey populations are divided into vulnerable and invulnerable population com-
ponents, with exchange between these two states potentially limit overall trophic
flow [12]. The classic Lotka-Volterra model and the Holling type ones assume that
the individual prey and predator items are distributed in a spatially uniform way.
While the foraging arena model considers the spatial and temporal restrictions in
predator and prey activities. Moreover compared to the Beddington-DeAngelis
response, the foraging arena model focuses more on the vulnerability exchange
of prey abundance, though both models consider a space-limited predation. The
foraging arena theory has been widely used in fisheries scientists to explain and
model responses of harvested ecosystems. This is done mainly through the appli-
cation of Ecosim which is the dynamic modelling part of an ecosystem modelling
software suite called Ecopath with Ecosim (EwE). Ecosim is built around forag-
ing arena theory and is capable to fit historical data on responses of multiple fish
populations to harvesting and changes in primary production regimes. The key
feature of the foraging arena model is equifinality, in the sense that the qualitative
model form is robust to lack of information about the cause of limited access to
prey and vulnerability exchange [11, 12]. The two-dimensional foraging arena
prey-predator model is in a form

dx̄1(t) = x̄1(t)
(
a − bx̄1(t) −

sx̄2(t)
β + x̄2(t)

)
dt,

dx̄2(t) = x̄2(t)
(

hx̄1(t)
β + x̄2(t)

− c − f x̄2(t)
)
dt,

(1.2)

where x̄1(t) and x̄2(t) represent the population densities of prey and predator in
model (1.2) at time t and a, b, s, β, h, c and f are all positive constants. a is the
intrinsic growth rate of prey, c is the density-dependent mortality rate of consumer,
h = γs, b and f are the quadratic mortality rates of prey and predator respectively.
We set x̄(t) = (x̄1(t), x̄2(t))T as the solution of model (1.2) with the initial value
x̄0 = (x̄1(0), x̄2(0))T . In model (1.2), there are two non-negative trivial equilibrium
points Ē0 = (0, 0) and Ē1 = ( a

b , 0). Also an unique interior equilibrium point
Ē∗(x̄∗1, x̄

∗
2) with the nullclines

(a − bx̄∗1)(β + x̄∗2) = sx̄∗2,
(β + x̄∗2)(c + f x̄∗2) = hx̄∗1
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exists and is globally asymptotically stable provided that a > bβc
h [13].

In fact, population systems are always subject to environmental noise, however,
the deterministic models do not take environmental changes into account. Hence a
natural response to the inevitable variability in the real world would be to consider
stochastic model which incorporates some representation of randomness [14, 15].
So far many authors have been studying the population systems under environ-
mental noises described by stochastic differential equations (SDEs). These are
obtained by perturbating the parameters in the existing deterministic model sys-
tem or as scaling limits of individual based model [16]. There have been intense
studies on the Lotka-Volterra model (e.g.[15, 17–19]). Mao et al.[15] revealed an
important fact in the Lotka-Volterra model that the environmental noise can sup-
press a potential population explosion. Takeuchi et al.[20] discussed a surprising
effect of colour noise on a Lotka-Volterra model. The stochastic prey-predator
systems with Holling II response are also well studied [21–24]. According to Liu
et al.[23], the long-time behaviours of the two species and the stationary distri-
bution were explored. Moreover, the more complicated ratio-dependent response
and the Beddington-DeAngelis functional response have also been considered by
some authors (e.g.[25, 26]). Ji et al.[25] established the conditions for species in
a ratio-dependent population system to be either extinct or persistent. In [26], the
asymptotic behaviours of the prey-predator system with Beddington-DeAngelis
response were investigated and the conditions of having a stationary distribution
were produced. However to the best of our knowledge, there has not been enough
work about the foraging arena model incorporating the environmental noise. Ob-
viously the intrinsic prey growth rate and the consumer death rate in model (1.2)
are varied by some environmental factors such as temperature fluctuations and the
changes in the composition of the nutrient resource. Suppose that a and c are
stochastically perturbed with

a→ a + σ1Ḃ1(t) and c→ c + σ2Ḃ2(t),

where B1(t) and B2(t) are two independent Brownian motions with the intensities
represented by two positive constants σ1 and σ2. As a result this perturbed system
is given by

dx1(t) = x1(t)
(
a − bx1(t) −

sx2(t)
β + x2(t)

)
dt + σ1x1(t)dB1(t) (1.3a)

dx2(t) = x2(t)
(

hx1(t)
β + x2(t)

− c − f x2(t)
)
dt−σ2x2(t)dB2(t), (1.3b)
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where x1(t) and x2(t) represent the population densities of prey and predator in
model (1.3) at time t. We set x(t) = (x1(t), x2(t))T as the solution of model (1.3)
with the initial value x0 = (x1(0), x2(0))T . Throughout this paper, unless otherwise
specified, we let (Ω, {Ft}t>0,P) be a complete probability space with a filtration
{Ft} satisfying the usual conditions (i.e.it is right continuous and increasing while
{F0} contains all P-null sets). Let B(t) = (B1(t), B2(t))T be a two-dimensional
Brownian motion defined on this probability space. We denote by R2

+ the positive
cone in R2, that is R2

+ = {x ∈ R2 : x1 > 0 and x2 > 0}. We also set inf ∅ = ∞. If A
is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm
is |A| =

√
trace(AT A) whilst its operator norm is ‖A‖ = sup{|Ax| : |x| = 1}. If A

is a symmetric matrix, its smallest and largest eigenvalue are denoted by λmin(A)
and λmax(A). Consider the n-dimensional stochastic differential equation

dz(t) = f̄ (t)dt + ḡ(t)dw(t) (1.4)

for t > 0, where z(t) = (z1(t), · · · , zn(t))T and w(t) = (w1(t), · · · ,wn(t))T be
an n-dimensional Brownian motion defined on the complete probability space
(Ω, {Ft}t>0,P) adapted to the filtration {Ft}t>0. Let C2,1(Rn × R+;R) be the family
of all real-valued functions V(z, t) defined on Rn × R+ such that they are continu-
ously twice differentiable in z and once in t. Given V ∈ C2,1(Rn × R+;R), define
an operator LV : Rn × R+ → R by

LV(z, t) = Vt(z, t) + Vz(z, t) f̄ (t) +
1
2

trace(ḡT (t)Vzz(z, t)ḡ(t)),

which is called the diffusion operator of the Itô process (1.4) associated with the
C2,1-function V (see e.g.[27, p. 41]). With the diffusion operator, the Itô formula
(1.4) can be written as

dV(z(t), t) = LV(z(t), t)dt + Vz(z(t), t)ḡ(t)dw(t) a.s.

In this paper, we first verify the existence of a positive global solution of model
(1.3) in section 2. Next we explore the asymptotic moment average of model
system in section 3. Moreover in the following section we give the parametric
conditions for the system to be extinct. Finally the stationary distribution of sys-
tem (1.3) is examined in section 5.

2. Global positive solution

To investigate the dynamical behaviour of model (1.3), the existence of a
unique global positive solution is verified first. The coefficients of the SDE model
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(1.3) are locally Lipschitz continuous, however, they do not satisfy linear growth
condition (see eg.[28, pp. 51, 56-57] for more details). Hence the existing general
existence-and-uniqueness theorem on SDEs is not applicable to model (1.3) and
there exists a unique maximal local solution to model (1.3). That is, the solution
may exit from R2

+ space at a finite time [15, 27]. In this section, we shall show
that the solution of model (1.3) is positive and global as in [15, 29].

Theorem 2.1. For any given initial value x0 ∈ R
2
+, there is a unique solution x(t)

to equation (1.3) on t > 0 and the solution will remain in R2
+ with probability 1,

namely x(t) ∈ R2
+ for all t > 0 almost surely.

Proof. Since the coefficients of the equation (1.3) are locally Lipschitz continu-
ous, for any given initial value x0 ∈ R

2
+, there is a unique maximal local solution

x(t) on t ∈ [0, τe), where τe is the explosion time (exit time) from R2
+. To show

that this solution is global, we need to verify τe = ∞ a.s. Let k0 > 0 be sufficiently
large for x1(0) and x2(0) lying within the interval

[
1
k0
, k0

]
. For each integer k > k0,

define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) <
(1
k
, k

)
for i = 1, 2}.

τk is increasing as k → ∞. Set τ∞ := limt→∞ τk and whence τ∞ 6 τe a.s. Hence to
complete the proof, we need to show that

τ∞ = ∞ a.s. (2.1)

If (2.1) is not true, there are three constants T > 0, k1 > k0 and ε ∈ (0, 1) such that

P(Ωk) > ε for all k > k1, where Ωk = {τk 6 T }.

Define a C2−function V : R2
+ → R+ by V(x) = x1 − log x1 + x2 − log x2. From the

Itô formula,

dV(x(t)) = LV(x(t))dt + (σ1x1(t) − σ1)dB1(t)−(σ2x2(t) − σ2)dB2(t),

where

LV(x) = −a +
sx2

β + x2
+ c +

σ2
1

2
+
σ2

2

2
+ (a + b)x1 +

hx1x2

β + x2
+ ( f − c)x2 −

sx1x2

β + x2

−
hx1

β + x2
− bx2

1 − f x2
2

6 −a + s + c +
σ2

1

2
+
σ2

2

2
+ (a + b + h)x1 + ( f − c)x2 − bx2

1 − f x2
2,
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which is bounded, say by Q, in R2
+. Consequently,

EV(x(τk ∧ T )) 6 V(x0) + QE(τk ∧ T ) 6 V(x0) + QT. (2.2)

Moreover for all ω ∈ Ωk, x1(τk, ω) or x2(τk, ω) equals either k or 1
k . Hence

V(x(τk)) > (k − log k) ∧
(√1

k
+ log k

)
.

This with (2.2) infers

V(x0) + QT > E(IΩkV(x(τk))) > ε
(
(k − log k) ∧

(√1
k

+ log k
))
.

This leads to a contradiction as we let k → ∞,

∞ > V(x0) + QT = ∞.

So we have τ∞ = ∞ a.s.

3. Asymptotic moment estimate

After analysing the global positive solution of model (1.3), we now explore
the long-time dynamical behaviours of the prey and predator populations.

Theorem 3.1. For any θ > 0, there exists a positive constant K(θ) such that for
any initial value x0 ∈ R

2
+,

lim sup
t→∞

E|x(t)|θ6K(θ)

Proof. Applying the Itô formula to eηt(xθ1 + xθ2) for any η > 0 and θ > 0,

eηt(xθ1(t) + xθ2(t)) = xθ1(0) + xθ2(0) +

∫ t

0
eηs f (x(s))ds + θσ1

∫ t

0
eηsxθ1(s)dB1(s)

−θσ2

∫ t

0
eηsxθ2(s)dB2(s), (3.1)

where

f (x) =
(
aθ +

1
2
θ(θ − 1)σ2

1 + η
)
xθ1 +

(
− cθ +

1
2
θ(θ − 1)σ2

2 + η
)
xθ2 −

sθxθ1x2

β + x2

+
hθx1xθ2
β + x2

− bθxθ+1
1 − f θxθ+1

2 .

7



For θ > 1, the Young inequality yields

x1xθ2
β + x2

6 x1xθ−1
2 6

xθ1
θ

+
θ − 1
θ

xθ2.

Hence

f (x) 6
(
aθ +

1
2
θ(θ − 1)σ2

1 + h + η
)
xθ1 +

(
(θ − 1)h − cθ +

1
2
θ(θ − 1)σ2

2 + η
)
xθ2

− bθxθ+1
1 − f θxθ+1

2 ,

which is bounded, say by K∗(θ). Moreover, it follows from (3.1) that

E
[
eη(t∧τk)

(
xθ1(t ∧ τk) + xθ2(t ∧ τk)

)]
6 xθ1(0) + xθ2(0) + K∗(θ)

∫ t∧τk

0
eηsds.

Letting k → ∞ and then t → ∞ yields

lim sup
t→∞

E
[
xθ1(t) + xθ2(t)

]
6 lim

t→∞

1
eηt

(
xθ1(0) + xθ2(0) +

K∗(θ)(eηt − 1)
η

)
=

K∗(θ)
η

.

On the other hand, we have

|x|2 6 2 max(x2
1, x

2
2), so |x|θ 6 2θ/2 max

(
xθ1, x

θ
2
)
6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6
2θ/2K∗(θ)

η
= K(θ). (3.2)

For 0 < θ < 1, H ölder’s inequality yields

E|x|θ 6
(
E|x|

)θ
.

Hence from (3.2)

lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(
E|x(t)|

)θ 6 K(θ).
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4. Extinction

In this section, we investigate the conditions for the system to be extinct.

Lemma 4.1. A one-dimensional Brownian motion {W(t)}t>0 has the property that
for almost every ω ∈ Ω,

lim
t→∞

min06u6t W(u, ω)
t

= lim
t→∞

max06u6t W(u, ω)
t

= 0. (4.1)

Proof. According to [28], for any ε > 0, there exists a positive random variable
ρε such that for almost every ω ∈ Ω,

−(1 + ε)
√

2t log log t 6 W(t, ω) 6 (1 + ε)
√

2t log log t for all t > ρε(ω).

It then follows that for almost every ω ∈ Ω,

max
06u6t

W(u, ω) 6 max
06u6ρε (ω)

W(u, ω) + (1 + ε)
√

2t log log t.

Letting t → ∞,

0 = W(0) 6 lim
t→∞

max06u6t W(u)
t

6 0 a.s.

Hence we obtain
lim
t→∞

max06u6t W(u)
t

= 0 a.s.

Similarly, we also have

lim
t→∞

min06u6t W(u)
t

= 0 a.s.

Theorem 4.2. For any initial value x0 ∈ R
2
+,

(a) if

2a < σ2
1, (4.2)

both x1(t) and x2(t) tend to zero exponentially as t → ∞ with probability 1;
(b) if

σ2
1 < 2a < φ, (4.3)
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where

φ = σ2
1 +

2bβc
h

+
bβσ2

2

h
, (4.4)

x1(t) obeys

lim
t→∞

1
t

∫ t

0
x1(u)du =

2a − σ2
1

2b
a.s.

and x2(t) tends to zero exponentially as t → ∞ with probability 1.

Proof. (a) Applying the Itô formula on log x1, we have

d log x1(t) =

(
a − bx1(t) −

σ2
1

2
−

sx2(t)
β + x2(t)

)
dt + σ1dB1(t) (4.5)

6
(
a −

σ2
1

2

)
dt + σ1dB1(t).

Integrating from 0 to t and dividing by t, we get

1
t

log x1(t) 6
1
t

log x1(0) + a −
σ2

1

2
+
σ1B1(t)

t
.

Letting t → ∞ and by the large number theorem

lim
t→∞

σ1B1(t)
t

= 0 a.s.

and thus from condition (4.2)

lim sup
t→∞

1
t

log x1(t) 6 a −
σ2

1

2
< 0 a.s.

as required. Hence x1(t) tends to zero exponentially as t → ∞ and

lim
t→∞

1
t

∫ t

0
x1(u)du = 0 a.s. (4.6)

Meanwhile

d log x2(t) =
( hx1(t)
β + x2(t)

− c −
σ2

2

2
− f x2(t)

)
dt−σ2dB2(t). (4.7)
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It follows that
log x2(t)

t
6

1
t

(
log x2(0) +

h
β

∫ t

0
x1(u)du

)
−

(
c +

σ2
2

2

)
−
σ2B2(t)

t
.

Letting t → ∞ and recalling equation (4.6),

lim sup
t→∞

log x2(t)
t

6 −
(
c +

σ2
2

2

)
< 0 a.s.

(b) Applying Itô’s formula on 1
x1

gives

d
( 1

x1(t)

)
=

( 1
x1(t)

( sx2(t)
β + x2(t)

− a + σ2
1

)
+ b

)
dt −

σ1

x1(t)
dB1(t).

Hence by the variation-of-constants formula (see e.g. [28, pp. 98-99]),

1
x1(t)

= exp
( ∫ t

0

(1
2
σ2

1 − a +
sx2(u)

β + x2(u)

)
du − σ1B1(t)

)
·[ 1

x1(0)
+ b

∫ t

0
exp

( ∫ u

0

(
a −

sx2(v)
β + x2(v)

−
1
2
σ2

1

)
dv + σ1B1(u)

)
du

]
= exp

(
− σ1B1(t)

)[ 1
x1(0)

exp
(
−

(
a −

1
2
σ2

1

)
t + s

∫ t

0

x2(u)
β + x2(u)

du
)

+ b
∫ t

0
exp

(
−

(
a −

σ2
1

2

)
(t − u) + s

∫ t

u

x2(v)
β + x2(v)

dv + σ1B1(u)
)
du

]
.

(4.8)

On the one hand, (4.8) leads to

1
x1(t)

6 exp
(
− σ1B1(t)

)[ 1
x1(0)

exp
(
−

(
a −

1
2
σ2

1

)
t + s

∫ t

0

x2(u)
β + x2(u)

du
)

+ b exp
(
σ1 max

06u6t
B1(u) + s

∫ t

0

x2(u)
β + x2(u)

du
) ∫ t

0
exp

(
−

(
a −

σ2
1

2

)
(t − u)

)
du

]
6 exp

(
σ1

(
max
06u6t

B1(u) − B1(t)
)

+ s
∫ t

0

x2(u)
β + x2(u)

du
)
·[

1
x1(0)

exp
(
−

(
a −

1
2
σ2

1

)
t
)

+ b
∫ t

0
exp

(
−

(
a −

σ2
1

2

)
(t − u)

)
du

]
= exp

(
σ1

(
max
06u6t

B1(u) − B1(t)
)

+ s
∫ t

0

x2(u)
β + x2(u)

du
)
·

[
1

x1(0)
exp

(
−

(
a −

1
2
σ2

1

)
t
)

+
2b

(
1 − exp

(
− (a − σ2

1
2 )t

))
2a − σ2

1

]
.
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It follows that

log x1(t)
t

> −
log K1(t)

t
−
σ1

(
max06u6t B1(u) − B1(t)

)
t

−
s
t

∫ t

0

x2(u)
β + x2(u)

du, (4.9)

where

K1(t) =
1

x1(0)
exp

(
−

(
a −

1
2
σ2

1

)
t
)

+
2b

(
1 − exp

(
− (a − σ2

1
2 )t

))
2a − σ2

1

and sup06t<∞ K1(t) < ∞ if condition (4.3) holds. By (4.5) and (4.9),

1
t

∫ t

0
x1(u)du

=
2a − σ2

1

2b
−

log x1(t)
bt

+
log x1(0)

bt
−

s
bt

∫ t

0

x2(u)
β + x2(u)

du +
σ1

bt
B1(t) (4.10)

6
2a − σ2

1

2b
+

log K1(t)
bt

+
σ1

(
max06u6t B1(u) − B1(t)

)
bt

+
log x1(0)

bt
+
σ1

bt
B1(t).

As t → ∞ and from the large number theorem and Lemma 4.1,

lim sup
t→∞

1
t

∫ t

0
x1(u)du 6

2a − σ2
1

2b
a.s. (4.11)

From equation (4.7),

d log x2(t) 6
(hx1(t)

β
− c −

σ2
2

2

)
dt−σ2dB2(t).

This and (4.11) yield

lim sup
t→∞

1
t

log(x2(t)) 6
h
β

lim sup
t→∞

1
t

∫ t

0
x1(u)du −

(
c +

σ2
2

2

)
6

h
(
2a − σ2

1

)
2βb

−
(
c +

σ2
2

2

)
< 0,

by condition (4.3). Hence for arbitrary small ζ > 0, there exists tζ such that

P(Ω̄) > 1 − ζ where Ω̄ =
{
ω :

sx2(t, ω)
b(β + x2(t, ω))

6 ζ for t > tζ
}
.
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On the other hand, (4.8) yields

1
x1(t)

> exp
(
− σ1B1(t)

)[ 1
x1(0)

exp
(
−

(
a −

1
2
σ2

1

)
t
)

+ b exp
(
σ1 min

06u6t
B1(u)

) ∫ t

0
exp

(
−

(
a −

σ2
1

2

)
(t − u)

)
du

]
> exp

(
σ1

(
min
06u6t

B1(u) − B1(t)
))[ 1

x1(0)
exp

(
−

(
a −

1
2
σ2

1

)
t
)

+
2b

(
1 − exp

(
− (a − σ2

1
2 )t

))
2a − σ2

1

]
.

Then

log x1(t)
t

6 −
log K1(t)

t
−
σ1

(
min06u6t B1(u) − B1(t)

)
t

.

Hence we obtain from (4.10) that

1
t

∫ t

0
x1(u)du >

2a − σ2
1

2b
+

log K1(t)
bt

+
σ1

(
min06u6t B1(u) − B1(t)

)
bt

+
log x1(0)

bt

−
s
bt

∫ t

0

x2(u)
β + x2(u)

du +
σ1

bt
B1(t). (4.12)

For any ω ∈ Ω̄, (4.12) together with Lemma 4.1 indicates

lim inf
t→∞

1
t

∫ t

0
x1(u)du >

2a − σ2
1

2b
− ζ.

This and (4.11) implies

lim
t→∞

1
t

∫ t

0
x1(u)du =

2a − σ2
1

2b
a.s.

Remark 4.3. The parametric restriction for model (1.2) to die out is immediately
obtained by setting σ1 = σ2 = 0 in condition (4.3). That is, under condition
0 < a < bβc

h , the solution of model (1.2) obeys limt→∞
1
t

∫ t

0
x̄1(u)du = a

b and the
consumers tend to extinction ultimately.

13



Theorem 4.2(a) suggests that both species in model (1.3) will die out if 2a <
σ2

1. That is, large white noise intensity σ2
1 can cause the population extinction

of both species. In the real life, this may happen when a serious epidemic or
severe weather occurs. Notice that this case is not considered by model (1.2).
Additionally, from Remark 4.3, the deterministic model (1.2) will die out if a <
bβc
h . In the contrast, due to the existence of white noises, Theorem 4.2(b) points

out that model (1.3) tends to extinction even for some a > bβc
h (but need to obey

2a < φ). In the next section, we examine how the population system behaves
when 2a gets even larger.

5. Stationary distribution

In this section, we give the conditions for the solution of SDE model (1.3)
having a unique stationary distribution. Let Px0,t denote the probability measure
induced by x(t) with initial value x(0) = x0, that is

Px0,t(F) = P(x(t) ∈ F|x(0) = x0) = Px0(x(t) ∈ F), F ∈ B(R2
+),

where B(R2
+) is the σ-algebra of all the Borel sets F ⊆ R2

+. If there is a probability
measure µ(·) on the measurable space (R2

+,B(R2
+)) such that

Px0,t(·)→ µ(·) in distribution for any x0 ∈ R
2
+,

we then say that the SDE model (1.3) has a stationary distribution µ(·) [27, 30, 31].
To show the existence of a stationary distribution, let us first cite a known result
from Khasminskii [30, pp. 107-109, Theorem 4.1] as a lemma.

Lemma 5.1. The SDE model (1.3) has a unique stationary distribution if there is
a bounded open set G of R2

+ such that supx0∈Q−G Ex0(τG) < ∞ for every compact
subset Q of R2

+ such that G ⊂ Q where τG = inf{t > 0 : x(t) ∈ G}.

In the original Khasminskii theorem, there is one more condition that

inf
x∈G

λmin
(
diag(σ2

1x2
1, σ

2
2x2

2)
)
> 0 for x ∈ R2

+,

which is obvious and hence there is no point to state.

Theorem 5.2. If

2a
(
1 −

σ2
2

2h
−

c
h

)
> φ, (5.1)

where φ is denoted in (4.4), then for any initial value x0 ∈ R
2
+, model (1.3) has a

unique stationary distribution.

14



Proof. We define a C2−function V : R2
+ → R+:

V(x) = MV1(x) + V2(x) + e,

where

V1(x) = log(β + x1) − log(x1) +
l
h

x2 −
a + bβ

h
log x2, V2(x) = x1 +

s
h

x2,

and e, l and M are three constants. e = −min(MV1(x) + V2(x)) to keep the non-
negativity of V(x),

l =
(hs
cβ

+
(a + bβ) f

c

)∨ (a + bβ)h
4 fβ2 (5.2)

and M is to be defined later. First compute

LV1 =

(
x1

β + x1
− 1

)(
a − bx1 −

sx2

β + x2

)
+

1
2

(
1
x2

1

−
1

(β + x1)2

)
σ2

1x2
1

+

(
lx2

h
−

a + bβ
h

)(
hx1

β + x2
− c − f x2

)
+

a + bβ
2h

σ2
2

6
ax1

β + x1
−

bx2
1

β + x1
+ bx1 −

a + bβ
β + x2

x1 − a +
sx2

β + x2
+
σ2

1

2
+

lx1x2

β + x2

−
clx2

h
−

f lx2
2

h
+

(a + bβ)c
h

+
(a + bβ) f

h
x2 +

a + bβ
2h

σ2
2

6
ax1

β + x1
+

bβx1

β + x1
−

a + bβ
β + x2

x1 − a +
σ2

1

2
+

a + bβ
h

c +
a + bβ

2h
σ2

2

+

(
s
β

+
(a + bβ) f

h
−

cl
h

)
x2 −

f l
h

x2
2 +

lx1x2

β + x2

= (a + bβ)x1
x2 − x1

(β + x1)(β + x2)
− λ +

(
s
β

+
(a + bβ) f

h
−

cl
h

)
x2 −

f l
h

x2
2 +

lx1x2

β + x2

6
a + bβ
β2 (x1x2 − x2

1) − λ +

(
s
β

+
(a + bβ) f

h
−

cl
h

)
x2 −

f l
h

x2
2 +

lx1x2

β + x2
,

where λ = a − σ2
1

2 −
a+bβ

h c − a+bβ
2h σ2

2 > 0 from condition (5.1). By the Young
inequality and (5.2),

LV1 6 −λ +

(
s
β

+
(a + bβ) f

h
−

cl
h

)
x2 +

(
a + bβ

4β2 −
f l
h

)
x2

2 +
lx1x2

β + x2
6 −λ +

lx1x2

β + x2
.
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Then compute

LV2 = ax1 − bx2
1 −

sc
h

x2 −
s f
h

x2
2 6 ax1 − bx2

1 −
s f
h

x2
2.

Hence

LV(x) 6 M
(
− λ +

lx1x2

β + x2

)
+ ax1 − bx2

1 −
s f
h

x2
2,

where M satisfies Mλ > a2/(4b) + 2. Now we are aimed to show

LV(x) 6 −1 for all x ∈ R2
+ −G := Gc. (5.3)

As if this holds, let x ∈ Gc be arbitrary and τG be the stopping time as defined in
Lemma 5.1. From (5.3), we have

0 6 V(x0) − Ex0(t ∧ τG ∧ τk), ∀t > 0.

Letting k → ∞ and then t → ∞, we have

Ex0(τG) 6 V(x0), ∀x0 ∈ Gc

as required. To show that (5.3) actually holds, we define

Gc = Gc
1 ∪Gc

2 ∪Gc
3 ∪Gc

4,

where

Gc
1 = {x|x1 ∈ (0, ε1]}; Gc

2 =
{
x
∣∣∣∣x1 ∈

(
0,

1
ε1

]
, x2 ∈ (0, ε2]

}
;

Gc
3 =

{
x
∣∣∣∣x1 ∈

[ 1
ε1
,+∞

)}
; Gc

4 =
{
x
∣∣∣∣x2 ∈

[ 1
ε2
,+∞

)}
with two constants ε1, ε2 ∈ (0, 1) satisfying

ε2
1 6

1
M2l2

∧ b
2(N1 + 1)

, ε2
2 6

s f
2h(N2 + 1)

and ε2 6
βε1

Ml
, (5.4)

where the constants N1 and N2 will be determined later. We then show that in any
subset of Gc, (5.3) holds. From (5.4),
(a) if x ∈ Gc

1,

LV(x) 6 −Mλ + Mlx1 + ax1 − bx2
1 −

s f
h

x2
2 6 Mlε1 − 2 6 −1;
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(b) if x ∈ Gc
2,

LV(x) 6 −Mλ +
Mlx1x2

β
+ ax1 − bx2

1 −
s f
h

x2
2 6

Mlε2

βε1
− 2 6 −1;

(c) if x ∈ Gc
3,

LV(x) 6 −Mλ + (Ml + a)x1 −
bx2

1

2
−

bx2
1

2
−

s f x2
2

h
.

Note that the polynomial −Mλ + (Ml + a)x1 −
bx2

1
2 −

s f x2
2

h has an upper bound, say
N1 . Hence

LV(x) 6 N1 −
b

2ε2
1

6 −1;

(d) if x ∈ Gc
4,

LV(x) 6 −Mλ + (Ml + a)x1 − bx2
1 −

s f x2
2

2h
−

s f x2
2

2h
.

Note that the polynomial −Mλ+ (Ml + a)x1 − bx2
1 −

s f x2
2

2h is again bounded, say by
N2, we have

LV(x) 6 N2 −
s f

2hε2
2

6 −1.

In all,
LV(x) 6 −1 for all x ∈ Gc.

Recall that Theorem 4.2 considers the dynamical behaviours of model (1.3)
when 0 < 2a < σ2

1 and σ2
1 < 2a < φ. Next Theorem 5.2 shows that system (1.3)

has a stationary distribution when 2a > φ

1−σ2
2/(2h)−c/h . However we have not been

able to prove the case when

φ < 2a <
φ

1 − σ2
2/(2h) − c/h

. (5.5)

Example 6.4 provides an illustration of it.
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6. Examples and computer simulations

We first give examples for SDE system (1.3) to die out.

Example 6.1. We perform a computer simulation of 10000 iterations of model
(1.3) with initial value x(0) = (1.0, 0.1)T using the Euler-Maruyama (EM) method
[28, 32] with stepsize ∆ = 0.01 and the system parameters given by

a = 1, b = 0.1, s = 6, β = 5, h = 0.9, c = 2, f = 0.5, σ1 = 1.5 and σ2 = 1.3.
(6.1)

It is easy to verify that these system parameters satisfy condition (4.2). By Theo-
rem 4.2(a), x1(t) and x2(t) will die out as t → ∞ with probability 1. The computer
simulations shown in Figure 1(a)(b) support these results.

Example 6.2. We keep the system parameters the same as in Example 6.1 but
let σ1 = 0.7 instead. Obviously the system parameters obey condition (4.3). By
Theorem 4.2(b),

lim
t→∞

1
t

∫ t

0
x1(u)du =

2a − σ2
1

2b
= 7.55

and x2(t) will become extinct as t → ∞ with probability 1. From Figure 1(c)(d),
the prey abundance fluctuates around the level 7.55 while the consumer s die out.
This is consistent with the result s in Theorem 4.2(b).

In Example 6.1 and 6.2, Remark 4.3 suggests that the solution of the deter-
ministic model (1.2) has the property that limt→∞

1
t

∫ t

0
x̄1(u)du = a

b = 10 and the
consumers tend to zero almost surely. Moreover, the situation where both species
die out ultimately arised in model (1.3) does not happen in model (1.2). Figure
1(a)(b) support these results clearly. Then we study the case where the SDE sys-
tem (1.3) has a stationary distribution.

Example 6.3. We keep the system parameters the same as in Example 6.1 but let
h = 4, σ1 = 0.1 and σ2 = 0.2. It is obvious that this group of parameters satisfies
condition (5.1). From Theorem 5.2, both prey and predator populations have a
stationary distribution. The ergodic property enables us to obtain the approximate
probability distribution for the stationary distribution by computer simulation of
a single sample path of a solution to model (1.3). Therefore the histogram of the
10000 iterations shown in Figure 2(b)(d) can be regarded as approximate p.d.f.s
of the stationary distribution. On the other hand, as the parameters obey the
condition a > bβc

h , there exists a positive equilibrium point Ē∗(x̄∗1, x̄
∗
2) of model

(1.2). This is clearly shown in Figure 2(a)(c).
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Example 6.4. We keep the system parameters the same as in Example 6.3 but let
c = 3, so that condition (5.5) is fulfilled. Figure 3(a)(c) indicates a stationary
distribution of both species. If this is true, the histogram of the 10000 iterations
shown in Figure 3(b)(d) can be regarded as approximate p.d.f.s of the stationary
distribution.

7. Discussion

In this paper, the two-dimensional foraging arena model in presence of envi-
ronmental perturbation is considered. After studying the existence and unique-
ness of a positive solution to model (1.3), the long-time dynamical behaviours
are generated. In order to investigate the effects of the environmental noises on
the population dynamics, it is worth comparing the stochastic model (1.3) with
the deterministic one (1.2). Firstly, the deterministic model (1.2) has two non-
negative trivial equilibrium points Ē0 = (0, 0) and Ē1 = ( a

b , 0). Also under the
condition a > bβc

h , there exists a positive equilibrium point Ē∗(x̄∗1, x̄
∗
2) which is also

globally asymptotically stable. However, the stochastic model (1.3) only has one
trivial equilibrium point E0 = (0, 0). Secondly, recall that both species of model
(1.3) will die out ultimately if 2a < σ2

1. In the real life, it may happen when a
serious disease or severe weather occurs. However this situation does not happen
in model (1.2). Figure 1(a)(b) shows this difference clearly. This suggests that the
stochastic system is a more realistic model to describe the world than the deter-
ministic one. Furthermore, recall that the deterministic model (1.2) will die out, in
the sense that the prey population remains persistent while the consumers become
extinct ultimately, provided that a < bβc

h . In the contrast, the stochastic model
(1.3) goes to extinction even for some a > bβc

h (but need to obey 2a < φ) due to the
presence of white noises. Hence we conclude that the presence of environmental
noises brings a difference to the population dynamics.

Furthermore, we have shown the existence of a unique stationary distribution un-
der condition (5.1). However, the dynamics of model (1.3) under (5.5) remain
an open problem, though the computer simulation in Example 6.4 indicates a sta-
tionary distribution of both species. In the stochastic prey-predator model with
Beddington-DeAngelis response [26], more restrictive conditions were produced
to have a stationary distribution. These conditions were found based on the pos-
itive equilibrium of the corresponding deterministic system. From the model pa-
rameters point of view, however, it is not clear what cases have not been consid-
ered and hence need further investigation.
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Figure 1: Computer simulations of the paths (a) x1(t) and (b) x2(t) of 10000 iterations of SDE
model (1.3) using the EM scheme with stepsize ∆ = 0.01 and initial value x0 = (1.0, 0.1)T and
the corresponding ODE paths (model (1.2)) with the system parameters provided by (6.1). Given
the system parameters as in (6.1) except that σ1 = 0.7, we get the computer simulation of paths
(c) x1(t) and (d) x2(t) of 10000 iterations using the EM method with stepsize ∆ = 0.01 and initial
value x0 = (1.0, 0.1)T and the corresponding ODE paths.
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Figure 2: Computer simulation of the paths (a) x1(t) and (c) x2(t) of 10000 iterations of SDE
model (1.3) using the EM technique with stepsize ∆ = 0.01 and initial values x0 = (1.0, 0.1)T

and the corresponding ODE paths (model (1.2)) with the parameters provided by (6.1) except that
h = 4, σ1 = 0.1 and σ2 = 0.2, followed by the histograms of the SDE paths (b) x1(t) and (d) x2(t).
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Figure 3: Computer simulation of the paths (a) x1(t) and (c) x2(t) of 10000 iterations of SDE
model (1.3) using the EM technique with stepsize ∆ = 0.01 and initial values x0 = (1.0, 0.1)T

and the corresponding ODE paths (model (1.2)) with the parameters the same as in Example 6.3
except that c = 3, followed by the histograms of the SDE paths (b) x1(t) and (d) x2(t).
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For the population system having a stationary distribution, the ergodic formula
enables us to obtain the approximate probability distribution by computer simu-
lation of a single sample path of a solution to the SDE model, although the mean
value and variance have not been explicitly computed like in [29, 31]. In this pa-
per, model (1.3) considers the noise perturbation on the intrinsic growth rate of
prey and the density-dependent death rate of consumers. However stochastically
perturbating other parameters such as the capturing rate of predators and quadratic
mortality rates of both species is also an interesting topic and will be investigated
in the future.
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