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Abstract 17 

Earthquake ground motions are strongly affected by the upper tens of meters of the Earth’s crust and 18 

consequently local site effects need to be included in any ground-motion prediction. It is increasingly 19 

common in ground motion prediction equations (GMPEs) to account for possible non-linear behavior 20 

of near-surface materials (soil). These non-linear site terms adjust observations made on soft soil sites 21 

to the ground motion expected on bedrock and hence allow these abundant soil records to be used 22 

within the regression analysis for the derivation of empirical GMPEs. These nonlinear site terms also 23 

allow rapid predictions of the expected ground motions on soil rather than requiring a site response 24 

analysis to be conducted. In this study we compare the signature on observed peak ground 25 

acceleration as a function of a strain proxy of non-linear soil behavior within four large strong-motion 26 

databases to the predicted signature from four recent GMPEs, three of which explicitly include non-27 

linear site terms. We find that observed non-linearity in the databases, interpreted in terms of strain-28 

stress relationships and reduction of shear modulus, is limited but that even this limited effect is 29 

underestimated by the non-linear site terms of the considered GMPEs, which suggests that predictions 30 

from these GMPEs could be biased for soft soil sites but also on bedrock. Some of this mismatch 31 

could be explained by the use of the average shear-wave velocity in the top 30m (Vs30) to characterize 32 

sites as well as errors in these values. 33 

 34 

  35 
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Introduction 36 

 37 

Ground motion prediction equations (GMPEs) for active crustal regions are generally developed 38 

based on regression analysis of databases of observed strong ground motions (e.g. Douglas and 39 

Edwards, 2016). GMPEs are used in seismic hazard analysis to specify the level of ground motion 40 

expected given variables such as magnitude, distance and basic local site information. Site effects 41 

and their non-linear response are usually considered to be a key element of seismic hazard analysis. 42 

It is widely accepted that non-consolidated sediments tend to behave in a non-linear manner (e.g., 43 

Field et al., 1997; Bonilla et al., 2005). The non-linear response of superficial soil layers is 44 

characterized by a reduction in the high-frequency amplification, related to an increase of damping, 45 

and the shifting of the resonance frequency to lower frequencies, due to a reduction of the shear 46 

modulus, G (e.g., Assimaki et al., 2008; Bonilla et al., 2005; Régnier et al., 2013).  47 

 48 

Terms associated with non-linear response of soils have recently been introduced into GMPEs (e.g., 49 

Abrahamson et al., 2014; Boore et al., 2014; Akkar et al., 2014). Uncertainties related to site effects 50 

make a significant contribution to the total uncertainties of these equations, and therefore to seismic 51 

hazard studies (Bommer and Abrahamson, 2006; Rodriguez-Marek et al., 2011). In particular, the use 52 

of in situ geophysical surveys to characterize the elastic properties and laboratory tests to assess the 53 

non-linear behavior parameters may result in estimation bias, affecting the GMPEs (e.g., Cabas et al., 54 

2017). This bias may be due to differences between in situ and laboratory conditions, the presence of 55 

superficial layers with a significant effect (Régnier et al., 2013) or even three-dimensional geometric 56 

effects that cannot be replicated in the laboratory (e.g., Frankel et al., 2002; Assimaki et al., 2008; 57 

Sleep, 2010). In addition, the strong-motion data affected by strong soil non-linearity appeared to be 58 

insufficient in the international databases for completely empirical non-linear soil terms, which 59 

demands the use of modelling to develop such terms (e.g., Akkar et al., 2014, Zhao et al., 2015). 60 

  61 
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Thanks to recent efforts to install dense strong-motion networks and characterize local site conditions 62 

at these stations, it is now possible to interpret non-linearity in situ by analyzing the recorded data. 63 

The variation of G has thus been obtained from borehole data (Frankel, 1999) by measuring the 64 

velocity variation as a function of shear deformation by intercorrelation (e.g., Rubinstein and Beroza, 65 

2005) and by seismic interferometry (Sawazaki et al., 2009; Chandra et al 2015, 2016; Guéguen, 66 

2016). This shear strain can be calculated using a deformation proxy linking the medium’s shear-67 

wave velocity Vs to the maximum particle velocity, which is generally equivalent to the peak ground 68 

velocity, PGV as PGV/Vs (Rathje et al. 2004; Idriss, 2011). Furthermore, the peak ground acceleration 69 

(PGA) at the top of the soil column is a proxy of shear stress and the PGA versus PGV/Vs, and even 70 

PGA versus PGV/Vs30 relationships can be associated with a stress-strain curve, i.e. an in situ test 71 

comparable with laboratory tests to reproduce non-linear effects (Chandra et al., 2015, 2016).  72 

 73 

The purpose of this study is, therefore, to characterize the non-linear parameters, interpreted in terms 74 

of strain-stress relationships and reduction of shear modulus, using the international databases from 75 

which the GMPEs are derived. These parameters will be presented in the first part. In the second part, 76 

we will present the data used in this study, taken from four international databases. A final section 77 

presents a comparison of the data interpreted as strain-stress relationships, with the non-linear soil 78 

terms present in a selection of GMPEs.  79 

 80 

In situ stress and strain proxies  81 

 82 

In the linear elastic domain, the relationship between shear strain and stress is directly proportional 83 

to 𝐺𝑚𝑎𝑥, i.e. 84 

 85 

𝜏 = 𝐺𝑚𝑎𝑥  𝛾          (1) 86 

 87 
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where 𝜏 is the shear stress, 𝛾 is the shear deformation and 𝐺𝑚𝑎𝑥 is the elastic shear modulus, i.e. the 88 

value under slight deformation. In the nonlinear domain, soil behavior is traditionally modelled by 89 

the following hyperbolic nonlinear model (Ishihara, 1996): 90 

 91 

𝜏 =
𝐺𝑚𝑎𝑥 𝛾

1+𝛾/𝛾𝑟
            (2) 92 

 93 

with 𝛾𝑟  being the reference deformation and defined as 𝐺𝑚𝑎𝑥/𝜏𝑚𝑎𝑥 , where 𝜏𝑚𝑎𝑥  is the maximum 94 

strength of the material. Assuming the propagation of a unidirectional wave in an infinitely uniformly 95 

elastic medium, the shear strain is considered according to the following equation (Newmark, 1968): 96 

 97 

𝛾 = 𝑉𝑚𝑎𝑥/𝛽           (3) 98 

 99 

where 𝑉𝑚𝑎𝑥 is the maximum particle velocity and 𝛽 the apparent velocity of the shear waves, i.e., 100 

𝛽 = √𝐺𝑚𝑎𝑥/𝜌 where 𝜌 is density. Considering maximum horizontal acceleration proportional to the 101 

shear stress (𝜏) and the strain according to Eq. 3, Chandra et al. (2015, 2016) used data from a vertical 102 

array to evaluate the variation of 𝛽 (and therefore of 𝐺) according to the strain calculated between 103 

two sensors during seismic loading. They thus derived an in situ model of the nonlinear behavior of 104 

soil based on an interpretation of the experimental data in terms of strain-stress values, equivalent to 105 

the hyperbolic model (Eq. 2). On the basis of Eq. 3, Idriss (2011) suggested considering 𝑃𝐺𝑉/𝑉𝑠30 106 

as the average strain over the first 30m, where nonlinearity is mainly expected to occur, 𝑃𝐺𝑉 being 107 

comparable to 𝑉𝑚𝑎𝑥 in Eq.3. Finally, by considering the shear stress proportional to acceleration and 108 

𝑃𝐺𝐴  (i.e., 𝜏 = 𝑃𝐺𝐴 × ℎ × 𝜌 , with h the equivalent depth), Chandra et al. (2016) confirmed the 109 

possibility of distinguishing the average behavior of different site classes (classed according to Vs30) 110 

according to a strain proxy, i.e. 𝑃𝐺𝐴 = 𝑓(𝑃𝐺𝑉/𝑉𝑠30), using data from the Japanese networks KNET 111 

and KiK-net.  112 

 113 
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From Eq. 1, we thus obtain the in situ stress-strain relationship under elastic deformation, as follows: 114 

 115 

𝑃𝐺𝐴 = 𝐺𝑚𝑎𝑥. 𝑃𝐺𝑉/𝑉𝑠30/ℎ/𝜌        (4) 116 

 117 

i.e., the maximum shear stress proxy is proportional to 𝑃𝐺𝐴 and the shear strain proxy to 𝑃𝐺𝑉/𝑉𝑠30, 118 

i.e. 𝐺  is proportional to 𝑃𝐺𝐴/(𝑃𝐺𝑉/𝑉𝑠30) . We can then obtain an experimental in situ curve 119 

characterizing the nonlinear behavior by the reduction of modulus 𝐺  according to the following 120 

equation: 121 

 122 

𝐺

𝐺𝑚𝑎𝑥
=

𝑃𝐺𝐴

𝑃𝐺𝑉/𝑉𝑠30
 / (

𝑃𝐺𝐴

𝑃𝐺𝑉/𝑉𝑠30
)

𝑚𝑎𝑥
          (5) 123 

 124 

where (
𝑃𝐺𝐴

𝑃𝐺𝑉/𝑉𝑠30
)

𝑚𝑎𝑥
  is computed for PGV/Vs30 < 10-5% corresponding to the linear elastic 125 

deformation limit (Vucetic, 1994; Johnson and Jia, 2005). Using in situ data, we can then explore the 126 

nonlinearity in strong-motion databases, evaluated using the shear strain proxy (Eq. 3) and the shear 127 

modulus reduction (Eq. 5). In our case, the nonlinearity is associated with the reduction of modulus 128 

G, and this reduction can be predicted or calculated using GMPEs (Eq. 5).  129 

 130 

Database description 131 

 132 

Four databases were used to test the nonlinear parameters in the data, only taking into account the 133 

parameters required for Eq. 5 as well as earthquake magnitude: the intensity measures considered 134 

were PGA and PGV and the site parameter was the Vs30. Data processing and information describing 135 

the source of these data are described in the original papers and the flat files. 136 

 137 

- NGA-West2 flat file provided by Pacific Earthquake Engineering Research Center (Ancheta 138 

et al., 2014). The file contains 21,540 ground motion records, recorded during shallow crustal 139 
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earthquakes in active tectonic regions worldwide. Two types of Vs30 values are distinguished 140 

in this database, estimated or direct measurement, which will be discussed later. 141 

 142 

- K-NET and KiK-net Japanese network databases (Okada et al., 2004), characterized by two 143 

different types of installations (Aoi et al., 2004). One of the advantages of the Japanese 144 

networks is the homogeneity of the metadata, characterizing the earthquakes (e.g. magnitude 145 

and locations) and the local site conditions. For K-NET, measurements were taken up to a 146 

depth of 20m, and Vs30 was then estimated using KiK-net velocity surveys that go deeper 147 

(Boore et al., 2011). For KiK-net, Vs30 was calculated directly from velocity profiles going 148 

from 100 up to 2008 m. For this study, K-NET records having a PGA larger than 10 cm/s2 149 

were collected between 1996 and end of 2016, irrespective of distance or magnitude. We use 150 

the KiK-net data processed by Regnier et al. (2013), consisting the records between 1996 and 151 

2009, with magnitudes higher than 3 and a hypocentral depths and epicentral distances less 152 

than 150 km. We also added data from the mainshock and aftershocks of the Mw 9.0 Tohoku 153 

2011 earthquake. Finally, we completed this database with records having PGAs larger than 154 

100 cm/s2 up to the end of 2016. Data processing is described in Régnier et al. (2013) and 155 

Laurendeau et al. (2013). We used a total of 178,556 records from KiK-net and 26,895 from 156 

K-NET. 157 

 158 

- ESM (Engineering Strong-Motion) database (Luzi et al., 2016) containing data from the 159 

European networks was the final source of data. ESM was developed as part of the European 160 

NERA project, and was designed to provide end users with data from moderate and strong 161 

earthquakes in the European and Mediterranean region. The data has been quality-checked 162 

and uniformly processed, and relevant parameters, from 1969 to the present day. The 2017 163 

flat-file was produced for the EPOS project and provided directly by the ESM facility. The 164 

ESM flat-file contains a total of 3,434 records.  165 
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 166 

The distribution of the data used in this study according to PGA and strain proxy (Eq. 4) is shown in 167 

Fig. 1 for the different databases separately. The ESM and NGA-West2 databases contain the lowest 168 

strain proxies. The ranges of PGA and PGV/Vs30 are broader for NGA-West2, with many values above 169 

1 m/s2 for PGA and 0.1% for the strain proxy. A large number of strain proxies are below 10-4 %, i.e. 170 

below the linear cyclic deformation threshold (Vucetic, 1994) determined from laboratory tests. 171 

Between the linear (10-4 %) and volumetric (10-2 %) strain thresholds (Vucetic, 1994), the soil 172 

displays nonlinear elastic behavior with negligible permanent deformation. Above 10-2 %, the soil 173 

shows hysteretic nonlinear behavior with permanent deformation. Considering the data from the four 174 

databases, some must therefore contain nonlinear processes according to the soil models based on 175 

laboratory tests. The best-fit (linear) equations are similar, with similar slopes for three databases 176 

(ESM, KiK-Net and NGA-West2). It is also interesting to note that the coefficient of correlation R2 177 

for these three databases are quite high (>0.5) and suggest that these three databases are comparable 178 

and will all reproduce the equivalent strain-stress relationships. For the KNET data, however, R2 is 179 

quite low (0.139) in the log-log representation, which suggests a poor prediction of the data by simple 180 

linear regression, suggesting an additional physical reason that we speculate is the presence of soil 181 

nonlinearities in the data. The nonlinearities in KNET data was also reported by Chandra et al. (2016), 182 

when comparing KiK-Net and KNET, who conclude that the KNET data shows the highest 183 

nonlinearity. Assuming higher nonlinearity in the KNET data, it is interesting to observe that these 184 

nonlinearities are for lower values of PGA, suggesting the inefficiency of PGA for the prediction of 185 

soil nonlinearity.  186 

 187 

 188 

Nonlinear characterization 189 

 190 
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The nonlinearity observed in the databases selected for this study was assessed using Eq. 5. In our 191 

case, (𝑃𝐺𝐴/
𝑃𝐺𝑉

𝑉𝑠30
)

𝑚𝑎𝑥
was considered as the average of the values lower than 10-5 %. For KNET and 192 

the lowest values of Vs30, because of more data showing nonlinearity, the smallest values already 193 

contain nonlinearities and the plot is biased at low strain proxies. Since nonlinearity is highly 194 

dependent on site conditions, we separated the data according to Vs30, into three categories: [100-195 

300]m/s, [400-600]m/s and [800-1,200]m/s, i.e. the approximate conditions C, B and A of Eurocode 196 

8, respectively, in order to compare soils with a priori different nonlinear behavior. Fig. 2 shows the 197 

nonlinearity representation for the four databases. Means and standard deviations are indicated for 198 

different strain range values using a logarithmic scale (in %): [<10-6], [10-6 - 3.5 10-6], [3.5 10-6 - 1.2 199 

10-5], [1.2 10-5 - 4.3 10-5], [4.3 10-5 - 1.5 10-4], [1.5 10-4 - 5.3 10-4], [5.3 10-4 - 1.9 10-3], [1.9 10-3 -  6.6 200 

10-3], [6.6 10-3 - 2.3 10-2], [2.3 10-2 – 8.1 10-2], [8.1 10-2 - 2.8 10-1] and [2.8 10-1 - 1].  201 

 202 

We can see that, in spite of the large amount of data from various sources, nonlinearity characterized 203 

by the G/Gmax reduction, is barely visible compared to the 95% and 90% reduction values of G/Gmax 204 

in Figures 2a and 2b. This raises questions on whether nonlinearity can be incorporated empirically 205 

into GMPEs, particularly as its first effect is to reduce ground motion by increasing the energy 206 

dissipation. We also observe a slight dependency on magnitude. As expected, the decrease of G/Gmax 207 

is greatest for the largest magnitudes, but for a given strain proxy, the range of magnitude values and 208 

G/Gmax values is broad, regardless of Vs30.  209 

 210 

For the lowest Vs30 values, nonlinearity characterized by the variation in G/Gmax makes a significant 211 

appearance at a strain proxy threshold of approximately 5 10-4 % for the Japanese data and 10-3  % in 212 

ESM and NGA-West2, with reduction of G/Gmax larger than 90%. For the intermediary Vs30 values, 213 

nonlinearity appears at around 10-3 % while for the highest Vs30 values, a G reduction is visible from 214 

5 10-3 % to 10-2 % for Japanese and other databases, respectively,  i.e. nonlinear effects may also 215 

appear in stiff soils. However, care must be taken when classifying sites on the basis of Vs30, as certain 216 
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recent studies have demonstrated visible nonlinear effects for sites with a Vs30 greater than 800m/s 217 

but with a thin surface layer sensitive to nonlinearity (Bonilla et al., 2011; Régnier et al., 2013).  218 

 219 

 220 

Integrating non-linearity in the GMPEs 221 

 222 

Several GMPEs include site terms accounting for soil nonlinearity. We selected four recent GMPEs: 223 

Akkar et al. (2014), Boore et al., (2014) and Abrahamson et al. (2014) that include nonlinear site 224 

terms and Bindi et al. (2014) as reference with linear site terms. These four GMPEs provide 225 

predictions of PGA and PGV as a function of magnitude and source-to-site distance, and for different 226 

site conditions. Fig. 3 shows PGA predictions as a function of the strain proxy PGV/Vs30. The 227 

predictions are for magnitudes between 4 and 8 (0.5 intervals) and 50 distances logarithmically spaced 228 

between 0.1 and 300km. This unusual manner of representing ground-motion predictions as a 229 

function of strain proxy, enables visualization of how nonlinearity, interpreted as the reduction of G 230 

with respect to the strain proxy, is integrated in the GMPEs. It should be noted that the regression 231 

analysis used to derive each GMPE was conducted independently for PGA and PGV with different 232 

nonlinear site terms assumed for each. Also many scenarios where large PGAs and PGVs occur (M>7 233 

and R<20km), and consequently there is a high chance of soil nonlinearity, are poorly sampled in the 234 

strong-motion databases, especially at soft soil sites. Therefore, the predictions from the GMPEs are 235 

more uncertain for these scenarios and depend strongly on the functional form adopted by the GMPE 236 

developer rather than being strongly constrained by the data. 237 

 238 

As expected, nonlinearity is more present for soft soils (Vs30=100m/s) than for stiff soils 239 

(Vs30=1,000m/s), with an equivalent stress (i.e., PGA) - strain (i.e. PGV/Vs30) relationship that changes 240 

as deformation increases. The differences with the linear Bindi et al. (2014) GMPE are larger for soft 241 

site conditions.  242 
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 243 

We observe that the three GMPEs of Akkar et al. (2014), Boore et al. (2014) and Abrahamson et al. 244 

(2014) integrate nonlinearity differently and that using a GMPE with a linear site term (e.g. Bindi et 245 

al., 2014) may introduce a significant bias in terms of stress-strain proxies compared to previous 246 

prediction models for soft soils (Vs30=100 m/s or 200m/s). The curvature of the prediction increasing 247 

with strain proxy characterizes the nonlinearity accounted for by the GMPEs. Abrahamson et al. 248 

(2014) characterizes nonlinearity more strongly for soft (Vs30=100m/s) and intermediate soils 249 

(Vs30=200m/s) than Boore et al. (2014) and Akkar et al. (2014). The differences between nonlinear 250 

models challenges the way in which GMPEs consider nonlinear effects, leading to PGAs that are 251 

significantly different for the same magnitude-distance pairs. For example, compared to Bindi et al. 252 

(2014), the curvature of Boore et al. (2014) and Akkar et al. (2014) is not significant and the 253 

nonlinearity is considered as reducing the ground motion for equivalent strain values. These models 254 

principally use results taken from numerical modelling. This dispersion shows the high epistemic 255 

uncertainty in predicted ground motions, considering strain proxy and the G reduction, for soft soils 256 

undergoing high deformations. Nonlinear site terms in GMPEs are often introduced so that observed 257 

ground motions from soft soil sites can be reliably used, by removal of the site effects, to derive 258 

models to assess ground motions on bedrock. The ground motions implied by seismic hazard 259 

assessment using these GMPEs evaluated for bedrock conditions are subsequently used to select rock 260 

strong-motion records for input to site response analysis.  261 

 262 

Figure 4 compares the predictions of the proxies of G/Gmax according to the strain proxies from the 263 

four GMPEs considered in this study with the average values taken from the databases for three site 264 

classes (the class Vs30<100m/s is not considered because of insufficient data). 265 

 266 

Several observations can be made from Fig. 4.  267 

 268 
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(1) Firstly, as expected, nonlinearity is more obvious for soils 100<Vs30<300m/s, characterized by 269 

larger shear strain proxy, which confirms that the PGA versus PGV/Vs30 relationship is an efficient 270 

proxy to characterize the nonlinear in situ behavior of soil. These proxies and the scattering of the 271 

relationships could be reduced by integrating the occurrence time of the maximum values of 272 

acceleration, velocity and displacement (deformation) that may not occur at the same time, as 273 

suggested by Chandra et al. (2016) and Guéguen (2016). 274 

 275 

(2) Based on the G/Gmax reduction factor (with respect to the 95 and 90% thresholds), the ESM data 276 

seems to indicate less nonlinearity for soft soils than the other databases, particularly compared with 277 

the Japanese sites, which we know show clear nonlinear behavior (Régnier et al., 2013). However, 278 

this observation could be modulated according to the larger dispersion of the ESM data. The KNET 279 

stations show more marked nonlinear behavior than the KiK-net stations, which is in agreement with 280 

observations already reported by other authors (Aoi et al., 2004; Chandra et al., 2016) who concluded 281 

on a more pronounced nonlinear behavior for KNET than for KiK-net data, as a consequence of soil 282 

profiles beneath their stations.    283 

 284 

(3) Compared with soil behavior based on laboratory tests and characterized by a traditional 𝐺 − 𝛾  285 

curve, it appears that nonlinearity is limited, in spite of the large spread of data in international 286 

databases in terms of magnitude and distance, with the modulus 𝐺/𝐺𝑚𝑎𝑥 reduction only reaching 30% 287 

in the worst case for the sites most sensitive to nonlinearity (100<Vs30<300m/s). This observation 288 

suggests that nonlinearity effects are rare in the global databases used herein. Since the databases 289 

used in this study represent a significant proportion of strong-motion data ever recorded, this 290 

observation makes us wonder whether large (>1 %) strains could be expected during earthquakes. It 291 

also raises the question of considering nonlinearity, using modelling techniques or laboratory results, 292 

to define seismic demand, since site response may be underestimated compared to the observation. 293 

Perus and Fajfar (2014) proposed site factors between ground motions on sites characterized by low 294 
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Vs30 and those on rock sites that overestimate the nonlinear effects in the predicting ground motion. 295 

In Perus and Fajfar (2014) few data are used and their conclusions are based on predicted values of 296 

PGA or Sa, and consequently, they recommend a careful consideration of their results since strong-297 

motion data enable a better consideration of nonlinearity. In our study, and based on the variation of 298 

𝐺/𝐺𝑚𝑎𝑥 , we observe a small effect of nonlinearities in predictions and observations, even for 299 

Vs30<300m/s, in contrast to Perus and Fajfar (2014). Chandra et al (2016) also suggested the limited 300 

effect of nonlinearities in the Japanese databases, with average accelerations on soil sites comparable 301 

to rock sites values, even for PGA>0.2g. In our study, even if GMPEs underestimate the nonlinear 302 

effects, they are very comparable to the nonlinearity contained in the database.  303 

 304 

 (4) The 𝐺/𝐺𝑚𝑎𝑥 versus 𝑃𝐺𝑉/𝑉𝑠30 relationship is comparable for the four databases, independently 305 

of the magnitude-distance relationship. Using the terminology of Luco and Cornell (2007) for an 306 

intensity measure of ground motion, this proxy is “efficient” for nonlinearity characterization. Fig. 5 307 

shows shear strain proxy as a function of magnitude. Fig. 5 reveals that magnitude does not control 308 

the appearance of nonlinearity, if the latter is characterized according to shear strain proxy, 309 

confirming the representativeness of magnitude-distance criteria for predicting nonlinearity. 310 

 311 

(5) The predictions of soil nonlinearity from the GMPEs are similar overall: underestimating the G 312 

reduction compared with the data. They are generally based on simulation techniques and do not 313 

represent the nonlinearity that can be observed in the databases. It is also interesting to observe that 314 

Bindi et al (2014) shows an increase in the curvature for the largest strains. This suggests that this 315 

GMPE implicitly includes some soil nonlinearity in its predictions, due to the underlying data, despite 316 

using linear site terms, or that various GMPE terms (such as those related to the site amplification) 317 

are not fully independent. This point could be confirmed by numerical simulation or more specific 318 

analysis of this database.     319 

 320 
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(6) For the 800<Vs30<1,200m/s class, the data from NGA-West2 display more non-linear behavior 321 

than those of the other databases. It is important to remember that certain Vs30 values are possibly 322 

underestimated or not measured in the NGA-West2 database. Fig. 6 shows the reduction in G for 323 

NGA-West2, distinguishing between the sites with measured Vs30 and the sites with estimated Vs30. 324 

A readjustment of the data to the GMPE predictions is observed for all site conditions, but particularly 325 

for stiff soil sites (800<Vs30<1,200m/s). This leads us to conclude that certain Vs30 estimates are not 326 

correct in NGA-West2 meaning that some sites are incorrectly classified here. 327 

 328 

This random 10% variation of the Vs30 values for the 800<Vs30<1,200m/s class enables observation 329 

of the strong sensitivity of the nonlinearity to this parameter. We can, therefore, conclude that the 330 

consideration of nonlinearity requires detailed and precise characterization of site conditions, already 331 

mentioned for the prediction of ground motion, but all the more important if we intend to include 332 

nonlinear site terms in the equations.   333 

 334 

Conclusions 335 

In this project, we analyzed strong-motion data from four large databases worldwide. These data are 336 

often used by researchers to derive GMPEs, which are used to estimate earthquake ground motions 337 

for a given magnitude and source-to-site distance. Although these equations are useful for prediction 338 

of ground motions on rock, they are less efficient for prediction on soil, particularly for Vs30<300m/s, 339 

which reflects the sparsity of the data for this range of Vs30 (Ktenidou et al., 2018). Indeed, such soils 340 

may display a nonlinear response due to their low resistance and a strong incident motion, as is the 341 

case for sites close to the seismic source or with strong amplification. To take such behavior into 342 

account, GMPEs have been modified to include the shear modulus reduction according to strain proxy. 343 

Description of the soil’s nonlinear behavior used for numerical modeling is based on a few parameters, 344 

mainly obtained by laboratory tests, which do not represent the natural variability of soils and which 345 

neglect the propagation effects of seismic waves in the medium. 346 
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We found the characterization of Vs30 to be essential to good prediction of the non-linear response. 347 

Soil nonlinearity, interpreted in terms of G reduction for given strain proxy values, exists and is 348 

stronger than that predicted by the GMPEs. However, unlike in the geotechnical models based on 349 

laboratory tests, the shear deformation observed in the international databases remains low, limited 350 

to a shear modulus reduction of around 30% for the softest soils. The comparison between 351 

geotechnical model and in-situ observation could be compared through numerical modeling in further 352 

studies. In addition, reduction in G with increasing strain proxy in stiff soils was also observed, which 353 

may be due to thin superficial layers that cause nonlinearity as already supported by Régnier et al. 354 

(2013) for Japanese data.  355 
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Figure  507 

 508 

 509 

Figure 1 – Data distribution, according to the deformation estimated by PGV/Vs30 for the four 510 

databases used. Strain proxy is given as a percentage (see text for explanations). Best-fit linear 511 

equations and coefficients of determination R2 are given for all databases (lines). 512 
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 514 

 515 

 516 

Figure 2 – Modulus G variation according to the strain proxy calculated by Eq. 3 and 5, for three site 517 

classes. The red symbols correspond to the average (+/- standard deviation) per strain proxy range 518 



 24 

(see text). The color scale corresponds to magnitude. Horizontal dashed lines correspond to 100%, 519 

95% and 90% of the values of G/Gmax. a. ESM and NGA, b: K-NET and KiKNet. 520 

 521 

  522 



 25 

 523 

Figure 3 – Predicted PGA as a function of the predicted deformation. Each dot corresponds to a 524 

magnitude-distance pair for magnitudes between 4 and 8 (interval=0.5) and 50 distances between 0.1 525 

and 300km. a) Boore et al. (2014) and Akkar et al. (2014). b) Abrahamson et al. (2014) and Bindi et 526 

al. (2014).  527 
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 529 

Figure 4 – Comparison of predictions of nonlinearity characterized by the proxy 𝐺/𝐺𝑚𝑎𝑥 (Eq. 5) as 530 

a function of the strain proxy (𝑃𝐺𝑉/𝑉𝑠30) according to four GMPEs (AB2014: Abrahamson et al., 531 

2014; AK2014: Akkar et al., 2014; BI2014: Bindi et al., 2014; BO2014: Boore et al., 2014) on average 532 

values from the four databases for three site classes, for strain proxies > 10-4 %. Thin horizontal 533 

dashed lines correspond to 100%, 95% and 90% of the G/Gmax values. Bold dashed lines are standard 534 

G-γ curves for clay (PI=15%), sand and rock-like soil from Zhao et al. (2015). 535 
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 537 

Figure 5 – Soil shear deformation (𝑃𝐺𝑉/𝑉𝑠30) as a function of earthquake magnitude. The color scale 538 

indicates Vs30. 539 
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 541 

 542 

Figure 6 – Same as Fig. 4 for NGA-West2 only, distinguishing measured Vs30 values. For 543 

800<Vs30<1,200m/s sites, the Vs30 values are also modified randomly by -10%.  544 
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