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ABSTRACT

The vertical centre of gravity (VCG) is paramount in assessing intact and damage stability being the
baseline for any condition of loading. It is well known that the Classical method used to calculate
the VCG is limited by assuming an unchanged metacentre position and may produce error prone
results. An alternative method, namely the Polar method, will be presented in this paper. Possible
implications inherent in the Classical method on stability performance and safety will be assessed
utilising the attained index A. The study clearly highlights the accuracy and flexibility of the Polar
method and demonstrates the importance of correct VCG calculation as even minor errors in the
order of millimetres may translate into extensive weights and moments compromising stability and

safety.
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1. INTRODUCTION

The centre of gravity of a vessel and
specifically its vertical centre of gravity (VCG)
is paramount for assessing intact and damage
stability performance, being the baseline for
any condition of loading. It is also affecting
other important aspects such as vessel motion
behaviour through the rolling period, hence
linked to the new second generation intact
stability criteria (IMO, 2016). The VCG is
utilised in most intact and damage stability
legislation through enforcing requirements to
the GZ righting curve. It can therefore also be
regarded as a safety baseline.

It is a well-known fact that the so called
Classical method, in which the VCG is
calculated following inclining experiments, has
its limitations on performance in terms of
applied heel angle magnitude, applied loading
condition and accuracy for certain hull forms.
This is due to the assumption made of
unchanged metacentre position when the vessel
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is heeled. As
assumptions

a result of the limiting

in the Classical calculation method, more
accurate and flexible calculation methods have
been proposed. A detailed study on such
methods has been presented by Karolius &
Vassalos (2018a), highlighting  possible
limitations inherent in the Classical method
whilst demonstrating due flexibility and higher
accuracy through the use of the new methods.

A second study by Karolius & Vassalos
(2008b) has also been presented, but with
higher focus on design implications in terms of
stability and cargo carrying capacity. In this
paper, focus will be on the Polar method. The
method derivation will be outlined and its
accuracy and superiority over the Classical
method will be highlighted through a technical
inclining experiment utilising a completely
box-shaped vessel, enabling first principle
calculations. The paper will further assess
possible implications on stability performance
and subsequent safety resulting from incorrect
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VCG calculations using the Classical method
based on the two vessels showing highest
errors from the initial study by Karolius &
Vassalos (2018a).

Assessment of  possible stability
implications is achieved by identifying the
ensuing false safety resulting from calculating
incorrect VCG using the Classical method,
hence impact on the attained index A as set out
in SOLAS Reg. 1I-1/7-8 (IMO, 2009). By
performing calculations for both actual
lightweight VCG and calculated lightweight
VCG from the technical inclining experiment,
the false safety can be identified, highlighting
the importance in achieving a correct VCG
value following the inclining experiment for a
safe vessel design.

2. BACKGROUND

2.1 The inclining experiment

Before vessel stability in any condition of
loading can be assessed, the initial lightweight
condition needs to be identified using the
inclining experiment. All other loading
conditions are created using the lightweight
condition as a basis, applying loads in terms of
cargo, crew, consumables and other equipment,
and checked against given stability criteria. As
such, it can be considered to be the main
stability reference and measure of loading
capacity for a vessel. Any errors in determining
the lightweight particulars will be a
consequential error on all other loading
conditions that are to be assessed against
relevant intact and damage stability criteria.

SOLAS Reg. 1I-1/5 (IMO, 2009) requires
every passenger ship, regardless of size, and
every cargo ship above 24 meters in length, to
be inclined upon its completion or following
any design alterations affecting stability. High-
speed and light-craft have similar requirements
found in the HSC Code Reg. 1I/2.7 (IMO,
2000), and in Torremolinos Reg. I1I/9 (IMO,
1977 as amended), for fishing vessels. Even
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smaller recreational craft above 6 meters in
length have equivalent requirements in ISO
standard 12217-2 (ISO, 2013).

Passenger vessels are further required by
SOLAS to be inclined every 5 years if
lightweight surveys identify a weight change
above a given threshold limit. Evolution of the
lightweight is very common, as most vessels
are refurbished and converted through their
operating-life. The inclining experiment report
is subject for approval by flag administration
and class and comprise approval of the vessel's
lightweight particulars which is needed for the
purpose of stability approval and its control.
The approval establishes the stability baseline
setting limiting constraints on the vessels

loading conditions, thus ensuring safe
operations.
2.2 Classical method assumptions

The wvalidity of the Classical method is
based on the assumption of unchanged position
of the metacentre when the vessel is heeled.
This is illustrated in Figure 1.
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Figure 1. Assumption of unchanged metacentre position.

The position of the metacentre can be
represented by the metacentre-radius (BM)
given by (1):

BM =X
v

(1
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were Iyy = second moment of the waterplane
area, and V = displaced volume.

The vessel displaced volume is constant
during the incline and the change in the
position of the metacentre is, therefore,
proportional to the change in the second
moment of the waterplane area and,
consequently, the waterplane area itself. A
more realistic movement of the metacentre
with increased waterplane area is illustrated in
Figure 2. The assumption in the Classical
method, however, relates to smaller heel angles,
and may hold to an acceptable level for more
traditional hull forms. In an attempt to ensure
the correct application of the Classical method,
various requirements have been set out in the
2008 IS Code Part B Ch. 8 and Annex I (IMO,
2008).
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Figure 2. More realistic movement of metacentre
position.

Most vessels have today various design
features that may result in higher change in the
waterplane area than should be accepted even
for smaller heel angles. This is the main reason
for the Classical method being subjected to
scrutiny and debate. Such design features may
include:

e Chine lines and knuckles

e Large fore- and aft flare
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e Misc. appendages
Large change in trim during heel

Other unconventional hull forms

The reason for the assumption in the
Classical method is to utilise a simplified
trigonometric relationship as illustrated in
Figure 3, which facilitates a formula for VCG
to be derived using (2-7). The assumption
further enables the use of upright hydrostatics
in the calculation of GM for every weight shift.

GoG
tan(p) = ﬁ (2)
_ GoGgp
GOMO - tan(q)) (3)
d
GoGy == 4)
wd
GM = GoMo = o (5)
tan(p) = E (6)
VCG = KM — GM (7)

were w = inclining weight, d = movement
distance, A = displacement, r pendulum
reading, and L = pendulum length. Remaining
parameters are explained using figure 3.
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Figure 3. Simplified trigonometric relationship for
deriving the Classical formula for GM.
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2.3  Implications on stability

The waterplane area may increase or
decrease depending on heel magnitude and
which specific design features are emerged or
submerged during the incline. This can be
addressed as two specific cases:

Case 1: Increase in waterplane area:

BM, < BM,, (8)
GM, < GM,, )
VCG, > VCG, (10)
Case 2: Decrease in waterplane area:

BM, > BM,, (11)
GM, > GM,, (12)
VCGy < VCG, (13)

By using the Classical method, Case 1 will
overestimate vessel stability, thus producing a
lower VCG value than is the actual case, while
Case 2 will underestimate the vessel stability
leading to a higher VCG than is the actual case.
Moreover, the VCG is utilised in most intact
and damage stability legislation through
enforcing requirements on the GZ righting
curve. The GZ curve is represented by (14) and
it is clear that any error in VCG will lead to
subsequent errors in the GZ curve and hence
incorrect assessment against relevant stability
criteria.

GZ(p) = KN(¢) —VCG sin(¢p) (14)

Another way to illustrate possible
implications on stability, a traditional VCG
stability limit curve can be used as shown in
Figure 4.
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Figure 4. Stability limit curve.

The Ilimit curve serves as the safe
operational envelope for a vessel and
represents the operational conditions for which
the relevant intact and damage stability
requirements are fulfilled. The black curve
represents the limit curve prepared using the
lightweight VCG, as obtained from the
Classical method. For the sake of argument, an
error of 1% underestimation in VCG is
assumed. The actual curve is then represented
by the stapled line as the underestimation of the
lightweight VCG has resulted in a more lenient
operational limit. This clearly shows that a
vessel may be operating in an unsafe area if the
lightweight VCG is underestimated, presenting
false safety to the operators.

3. THE POLAR METHOD

The Polar method was presented in the
study by Karolius & Vassalos (2018a), and is
derived utilising the line through point (X, y)
represented in polar coordinates, i.e. polar line
(PL), illustrated in Figure 5. The representation
in polar coordinates is seen in (17) and is
derived using (15) and (16).

X

a=y+tan((p) (15)
z = a-sin(p) (16)
z= (y + tarf((p)) sin(¢)
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x sin(¢p)

= ysin(p) + tante)

= x cos(¢p) + y sin(p)

z = x cos(@) + ysin(p) (17)

If corrected for actual KN and HZ values
for each weight shift using (18), the line will
pass through the point (x, y) for any arbitrary
weight shift from the neutral position, i.e.
Inclining weights in initial position. Further,
knowing that the x-coordinate is equal to TCG,
and the y-coordinate equal to VCG as
represented by (19) and (20) respectively,
equation (21) is obtained.

z=KN—HZ (18)
x =TCG (19)
y =VCG (20)
KN — HZ = TCG cos(¢) + VCG sin(p)  (21)

Using equation (21) and solving for VCG
and TCG, we get equations (22) and (23).

TCG cos(p)—KN+HZ

VCG = Sin(o)

(22)

-VCG sin(p)+KN—-HZ

TCG = c0s(@)

(23)

The method takes advantage of the fact that
both VCG and TCG need to be located on the
PL line in the initial condition and to be kept
constant in this position for each individual
weight shift, i.e. the initial VCGo and TCGy are
kept constant on this line, while the overall
system TCG is shifted a distance GoG; for each
shift i as represented by (24) and (25).

TCG, = TCG; (24)

VCG, = VCG; (25)

There are, as a result, two equations to
derive the two unknown parameters and by
using (22) and (23), and following some
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deduction, (24) results in a solution for VCG
given by (26) and (25) in a solution for TCG
given by (27) in their most general form:

_ (BN;—HZ;) cos(po)—(KNo—HZo) cos(¢;)
cos(@o) sin(¢p;)—sin(@g) cos(@;)

VCG
(26)

_ (KN;—HZ;)sin(@o)—(KNo—HZy) sin(¢,)

TCG cos(@;) sin(gpg)—sin(¢@;) cos(gg)

27)

The equations can further be simplified
using the trigonometric relations in (28) and
(29) and knowing that the heeling arm in the
neutral position HZo needs to be zero, this
results in (30) and (31).

cos(go) sin(g;) — sin(gy) cos(e;) = sin(p; — ) (28)

cos(;) sin(@y) — sin(g;) cos(p,) = sin(g, — ¢;) (29)

(KN;—HZ;) cos(po)—(KNy) cos(¢;)

VCG =

sin(g,~¢, )
(30)
TCG = (KN;—HZ;) sin(@o)—(KNp) sin(¢p;)

Sin(‘/’o_‘/’i)
(1)
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Figure 5. Main parameters of the Polar method.

The Polar method can in theory be used to
calculate VCG directly for any arbitrary shift
from the neutral position, but to account for
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other sources of errors, it is recommended to
utilise a least square linear regression similar to
that of the Classical method, by plotting the
denominator against the numerator and
calculating the regression slope.

4. VALIDITY ASSESSMENT

4.1 Approach

For assessing the mathematical validity and
accuracy of the Classical and Polar calculation
methods, a technical inclining experiment has
been performed using a completely box shaped
vessel, enabling first principles calculations.
The main particulars of the box shaped vessel
are seen in table 1, and the lightweight
particulars of the vessel are seen in table 2.

Table 1. Main particulars of box shaped vessel.

B D T
(m] [m] [m]

Lgp

(m]

Vessel type

Box-shape 100 40 40 10

Table 2. Lightweight particulars of box shaped vessel.

p A LCG TCG VCG
ara. [tonnes] [m] [m] [m]
Val. 392400 50.00 0.00 12.00

The technical inclining experiment has
been performed using small heel angles of 4° in
line with the IMO requirements and larger heel
angles of 10° to clearly show the limitation of
the Classical method when it comes to larger
heel angles. Both calculation methods have
been applied using a least squares linear
regression, and 8 weight shifts.

4.2  Result

The result from the technical inclining
experiment is presented in table 3. It is clear
that the Classical method is highly dependent
on the heel angle magnitude, and will produce
result with increasing errors with increasing
heel angle. This finding is in line with the
earlier studies by Karolius & Vassalos (2008a-

b). It is further shown that the Polar method
produce exact results with no errors compared
to the actual VCG value.

Table 3. Validity assessment results.
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Classical Polar

Heel [°] 4 10 4 10
VCGealculaed [m]  11.97  11.84  12.00 12.00
VCGactual [m] 12.00 12.00 12.00 12.00
Error [%] 021 134 0.0 0.00
Error [mm] 2536 161.29 0.00  0.00
5. STABILITY AND SAFETY

ASSESMENT
5.1 Approach

For most vessels, it is the damage stability
requirements that is governing and limits the
operational envelope. For the sake of
illustrating possible implications on stability,
the probabilistic damage stability requirements
in accordance with SOLAS Reg. 11I-1/7-8 (IMO,
2009) have been utilised. The attained index A
for the operational VCG and the corrected
VCG have been calculated, making it possible
to gauge the impact of incorrect VCG
calculation using (32).
Risk=1-A (32)

Knowing the ensuing risk, this allows
obtaining a measure of false safety inherent in
the vessel as a result of the inaccurate VCG
calculated using the Classical method

5.2 Test vessels

The test vessels used in the following for
assessing possible implications on stability
performance comprise one RoPax and one
Container vessel. These are the two vessels
identified in the study by Karolius & Vassalos
(2018a) to have highest underestimated VCG
values corresponding to Case 1 explained in
Section 2.3 above. The vessels main particulars
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are presented in table 4, and the corrected VCG
values are presented in table 5.

Table 4. Test vessels utilised in the study.

Vessel ¢ Lgp B D Cp
essel type
[m] [m] [m] [m]

RoPax 195.3 25.8 14.8 0.79
Cont. vessel 320.00 48.20 27.20 0.76
Table 5. Corrected VCG values.

VCG Correction VCGcorr
Vessel

[m] [mm] [m]
RoPax 13.171 41.478 13.213
Cont. vessel 17.228 60.813 17.288
5.3 Results

Table 6 presents the false safety inherent in
the vessel as a result of the inaccurate VCG
calculated using the Classical method. For both
vessels, an error in safety estimation of around
3% is seen due to the error in VCG. The table
further presents the difference in number of
capsize cases and it is seen that the RoPax
vessel has 6 additional capsize cases not
accounted for due to the error in VCG. This
corresponds to a 7.5% error in estimated
capsize cases. The Container vessel has 37
additional capsize cases, corresponding to a 4%
error in estimation.

Table 6. Underestimated VCG translated to
overestimated probabilistic damage stability
performance, i.¢. false safety.
Vessel LW case A Risk=  Capsize
1-A cases

= VCG [m] 0.725 0.275 74

S VCGeor[m] 0717 0283 80

~ Difference [%]  1.11 2.83 7.50
<~ VCG[m] 0711 0289 896
2 2 VCGeor[m] 0.702 0298 933
= 7 Difference [%] 128 3.02 3.6
6. CONCLUDING REMARKS

As can be seen from the technical inclining
experiment, the Classical method is highly
dependent on heel angle magnitude and may
produce unacceptable errors that could affect
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stability performance. The additional measures
imposed by IMO are unnecessary when
applying the Polar method, as no reference is
made to the metacentre in the equation. The
Polar method produce accurate results for any
floating position, in terms of draught, heel
magnitude and initial heel as they utilise actual
KN values corresponding to each floating
position. This reduces the possibility of making
mistakes and can therefore be considered more
reliable and flexible than the Classical method.

As the Classical calculation method was
developed in the late 17th century (Hoste, 1693)
when detailed software models were not
available, the limiting assumptions makes
sense as it enables upright hydrostatics to be
utilised. Today, however, the strife is towards
higher accuracy and there exists a range of

tools for this purpose, making such
simplifications and requisite assumptions
obsolete.

The results further highlight the importance
of achieving correct VCG value following the
inclining experiment for a safe vessel design,
as even minor errors in the order of millimetres
may translate into extensive weights and
moments compromising safety. The most
common argument for maintaining the
Classical method is that the errors are small
and insignificant in comparison with other
sources of errors, but the validity of this
argument can be questioned.

Considering the results from this study, the
industry should be more critical when applying
the Classical method and it may even be time
to replace it with better and more flexible
calculation methods. It is at least important for
the industry to know that there are other more
reliable alternatives to the Classical method
and should be accounted for in the regulations
and guidelines in use today.
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