Locating temporal functional dynamics of visual short-term memory binding using graph Modular Dirichlet Energy

Smith, Keith and Ricaud, Benjamin and Shahid, Nauman and Rhodes, Stephen and Starr, John M. and Ibáñez, Agustin and Parra, Mario A. and Escudero, Javier and Vandergheynst, Pierre (2017) Locating temporal functional dynamics of visual short-term memory binding using graph Modular Dirichlet Energy. Scientific Reports, 7. pp. 1-12. ISSN 2045-2322

[thumbnail of Smith-etal-SR2017-Locating-temporal-functional-dynamics-of-visual-short-term]
Text (Smith-etal-SR2017-Locating-temporal-functional-dynamics-of-visual-short-term)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (636kB)| Preview


    Visual short-term memory binding tasks are a promising early marker for Alzheimer's disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task's transient physiological underpinnings by contrasting shape only (Shape) and shape colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

    ORCID iDs

    Smith, Keith, Ricaud, Benjamin, Shahid, Nauman, Rhodes, Stephen, Starr, John M., Ibáñez, Agustin, Parra, Mario A. ORCID logoORCID: https://orcid.org/0000-0002-2412-648X, Escudero, Javier and Vandergheynst, Pierre;