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The oscillatory rarefied gas flow in a three-dimensional (3D) rectangular cavity, which is frequently
encountered in micro-electro-mechanical systems, is investigated on the basis of the gas kinetic
theory. The effects of the cavity aspect ratio, the cavity depth ratio, and the oscillation frequency
of the driving lid on flow characteristics and damping force are systematically studied using the
discrete unified gas-kinetic scheme over a broad range of gas rarefactions. For the highly rarefied
flow, when the lid oscillates at a low frequency, as a consequence of the strong rarefaction effect,
the damping force on the lid in a 3D cavity could even be smaller than that of a corresponding
2D one (i.e., the depth in the lateral direction approaching infinity). This finding contradicts our
intuitive understanding that the damping force is expected to be amplified due to the presence of
the lateral walls. Meanwhile, when the lid oscillation frequency becomes sufficiently high, due to
the effect of gas anti-resonance, the damping force on the oscillating lid will increase again as
the depth reduces for the highly rarefied flow. In addition, the gas resonance and anti-resonance
found inside the 2D cavity also appear in 3D ones, and the anti-resonance and resonance frequen-
cies as a function of the cavity aspect ratio are nearly the same. However, the presence of the
lateral walls will suppress their formation: the smaller the depth, the weaker the intensity of the
(anti-)resonance. These findings can help to design the structure of the micro-electro-mechanical
devices. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5052253

I. INTRODUCTION

Oscillatory gas flows are frequently encountered in
micro-electro-mechanical systems (MEMS),1 including the
inertial sensors and resonators, the actuators, and the micro-
accelerometers. With the miniaturization of the device struc-
ture, the characteristic dimension is reduced to the micro- and
nano-scales, in which the surface-area-to-volume ratio is large
and the gas flow is generally rarefied. Therefore, surface effects
such as the damping force exerted on the oscillating parts by
the rarefied gas should be carefully considered in the design
of micro-devices with moving parts.2

When the mean free path (or collision frequency) of gas
molecules is comparable or even larger (smaller) than the char-
acteristic flow length (oscillation frequency), the traditional
Navier-Stokes equations fail, due to the gas rarefaction, which
not only causes velocity slip and temperature jump at solid
surfaces, but also invalidates the linear constitutive relations
for stress and heat flux. The degree of gas rarefaction is nor-
mally characterized by the Knudsen number, defined as the
ratio of the gas mean free path to the characteristic length.
Alternatively, it can also be defined as the ratio of the oscilla-
tion frequency and the collision frequency of gas molecules.
Due to micro-/nano-scale dimension of MEMS devices, most
of them operate in the slip (10−3 . Kn . 0.1) and early tran-
sition regimes (0.1 . Kn . 1).3,4 Instead of the Navier-Stokes
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equations, the gas kinetic model should be adopted for rarefied
flow analysis.5,6

To date, gas damping in MEMS devices has been inves-
tigated using the Boltzmann equation and its kinetic model
equations.6 Specifically, the one-dimensional (1D) oscillatory
flow has been extensively studied over a wide range of Knud-
sen numbers, where analytical solutions are obtained in the
limit of near continuum regime (Kn . 0.1)3,7 and free molec-
ular regime (Kn & 10),5,7,8 while in the transition regime
(0.1 . Kn . 10), the problem is numerically solved using
the direct simulation Monte Carlo (DSMC) method3,8–13

and the discrete velocity method (DVM).4,5,7,14–18 For multi-
dimensional flows such as the oscillatory gas flow inside a
two-dimensional (2D) cavity,17,19,20 it is difficult to derive the
analytical solution; thus, the flow in all the regimes needs
to be solved numerically. However, the DSMC method and
DVM are computationally expensive for flows near the hydro-
dynamic regime.21 This is due to the well-known intrinsic
limitation that the computational time step and spatial mesh
size are required to be smaller than the local mean collision
time and the mean free path of gas molecules, respectively,
if the free streaming and collisions of gas molecules are dealt
with separately.22 Particularly, the DSMC is too costly for low-
speed flows typically found in MEMS devices. As a result,
previous investigations on the oscillatory rarefied gas flows
have mainly been restricted in the transition and free molec-
ular regimes. In addition, despite the three dimensional (3D)
nature of flow in the MEMS devices, a number of simplified
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analytical models have often been used to evaluate damping
which are typically based on the 1D Couette flow or Stokes
flow.23 For an optimal design of oscillatory MEMS devices,
we need an improved understanding of gas dynamics and
its effect on damping, which is the main motivation of this
study.

In this work, for the first time, the oscillatory rarefied but
low-speed gas flow inside a 3D rectangular cavity is inves-
tigated on the basis of the Bhatnagar-Gross-Krook (BGK)
equation.24 In addition to gas rarefaction, the influences on gas
dynamics and damping force from various oscillation frequen-
cies, aspect ratios, and depth ratios in the lateral direction of a
3D cavity are investigated using the discrete unified gas-kinetic
scheme (DUGKS) that handles the streaming and collision
simultaneously.25,26 The remainder of the paper is organized
as follows. We introduce the formulation of the problem as
well as the gas-kinetic BGK equation in Sec. II. Computa-
tional details are described in Sec. III. The numerical results
of the flow field and damping force are presented, compared,
and discussed in Sec. IV, which is followed by the conclusions
in Sec. V.

II. PROBLEM FORMULATION

We consider a rarefied gas flow in a 3D rectangular cavity
driven by a lid at y = |OH | = H, where O is the origin of the
coordinate, as illustrated in Fig. 1. The lid oscillates harmoni-
cally in the z-direction with a frequency ω. The time-varying
velocity of the oscillating lid Uz is given as

Uz(t) = W0 cos(ωt), (1)

where W0 is the amplitude of the oscillating velocity and t is
the time. The other walls at x = 0, x = |OD| = D, z = 0,
z = |OA| = A, and y = 0 are fixed, and all the walls are
isothermal with a temperature T4.

The problem considered is characterized by the cavity
aspect ratio Ar , the cavity depth ratio Dr , the Strouhal num-
ber St, and the Knudsen number Kn, which are, respectively,
defined as

Ar =
A
H

, Dr =
D
H

, St =
ωH
vm

, Kn =
λ

H
, (2)

FIG. 1. Schematic of the oscillatory flow in a 3D rectangular cavity, where
O is the origin of the coordinate.

where vm =
√

2RTw is the most probable molecular velocity
with R being the specific gas constant. The molecular mean
free path λ is related to the gas shear viscosity µ as

λ =
µ(T = Tw)

p

√
πRTw

2
, (3)

where p = ρRT4 is the pressure and ρ is the density. Note that
the amplitude of the oscillating velocity satisfies W0 � 3m so
that the temperature perturbation is sufficiently small and the
flow inside the cavity can be considered as being isothermal.
The BGK equation is therefore adopted to describe the flow
response. In the absence of external force, it takes the form
of24

∂f
∂t

+ ξ · ∇f = −
1
τ

[
f − f eq] , (4)

where f (x, ξ , t) is the velocity distribution function of gas
molecules at the position x = (x, y, z) and the time t, with
ξ = (ξx, ξy, ξz) being the molecular velocity. The collision
time τ in Eq. (4) is evaluated from the viscosity µ and the
pressure by τ = µ/p. The Maxwellian equilibrium distribution
function f eq is given as

f eq =
ρ

(2πRT )3/2
exp

(
−

c2

2RT

)
, (5)

where c = ξ −U is the peculiar velocity and U =
(
Ux, Uy, Uz

)
is the macroscopic flow velocity. The conservative variables
W ≡ (ρ, ρU, ρE)T are calculated from the velocity moments
of the velocity distribution function, W = ∫ ψf dξ , where

ψ =
(
1, ξ , 1

2 ξ
2
)T

. Note that for an ideal gas, the temperature

is related to the total energy as ρE = 1
2 ρU2 + 3

2 ρRT .
The damping force, which is the amplitude of average

shear stress acting on the oscillating lid, is an important
parameter in the design of MEMS devices. In this work, the
average shear stress exerted on the oscillating lid is defined
as

P̄yz(y = H) =
1
A

∫ A

0
Pyz(y = H, z)dz, (6)

where Pyz is the depth-average shear stress,

Pyz(y = H, z) =
1
D

∫ D

0
Pyz(x, y = H, z)dx, (7)

with the shear stress Pyz being calculated as

Pyz =

∫
(ξy − Uy)(ξz − Uz)fdξxdξydξz. (8)

Note that the component of average shear stress along the
x-axis on the oscillating lid, which is about one order of
magnitude smaller than P̄yz(y = H), is neglected in this
study.

III. NUMERICAL METHOD

The DUGKS is used to solve the BGK equation,25 which
has been successfully applied to study the linear and nonlinear
oscillatory gas flows inside a 2D rectangular cavity20 covering
all the flow regimes. The details of the DUGKS for the BGK
model can be found in Guo et al.25

In order to accurately approximate the moments of veloc-
ity distribution function, the continuous molecular velocity
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space
(
ξx, ξy, ξz ∈ (−∞, +∞)

)
should be properly discretized

according to the degree of gas rarefaction. The discretization is
associated with a certain quadrature rule to compute the veloc-
ity integrals. In the present simulations, the Gauss-Hermit
quadratures with 8 points and 16 points are applied in each
velocity direction for Kn = 0.01 and Kn = 0.1, respectively,
while the continuous molecular velocity space is truncated
within [−4

√
2RTw , 4

√
2RTw] and discretized by the trape-

zoidal rule with 32 non-uniform grid points in each velocity
direction when Kn = 1.27,28 In terms of the spatial discretiza-
tion, a set of non-uniform meshes with Nx × Ny × N z grid
points are adopted in the x, y, and z directions, respectively,
and the mesh resolution is gradually refined from the cavity
center to the wall boundaries. The location of each control
volume center (xi, yj, zk) is generated by xi = (ζ i + ζ i+1)/2,
yj = (ζ j + ζ j+1)/2, zk = (ζ k + ζ k+1)/2, 0 ≤ i < Nx, 0 ≤ j < Ny,
0 ≤ k < N z, where ζ i is defined as

ζi =
1
2

+
tanh[a(i/N − 0.5)]

tanh(a/2)
, i = 0, 1, 2, . . . , Nx,y,z − 1. (9)

Note that the constant a determines the mesh distribution: the
larger the a, the smaller the mesh size near the walls. Here
a in the x, y, and z directions is set to be 2.5, 3.5, and 3.5,
respectively. In all the numerical simulations, the height of
the cavity is fixed at H = 1. 48 points for Kn = 0.01, and
36 points for Kn = 0.1 and 1 are used per unit length in each
direction. Independence of the results on the discretizations
of the molecular velocity space and spatial space has been
confirmed for these given conditions. Note that the results for
Kn > 1 will not be presented here as they are very close to the
results of Kn = 1, which is similarly reported in our previous
work on a 2D cavity.17,20

The computational time step in the DUGKS is solely
determined by the Courant-Friedrichs-Lewy (CFL) condi-
tion,25 ∆t = η∆xmin/ξmax, where η is the CFL number, ∆xmin

is the minimum mesh size, and ξmax is the maximum discrete
molecular speed. Note that the DUGKS has distinguished per-
formance in robustness.29 For instance, when Kn = 0.1, St = 2,
Ar = 1, and Dr = 1, the change in the amplitude of average
shear stress (6) on the oscillating lid is less than 0.05%
when the CFL number varies from 0.01 to 0.8. Therefore, a
relatively large CFL number can be used to reduce the compu-
tational time. In all the simulations, the CFL number η ≈ 0.5
is set to satisfy n∆t = π, n ∈ Z+.

The model accuracy of the DUGKS has been exhaus-
tively demonstrated.21,29,30 In particular, the DUGKS for the
oscillatory rarefied flow has been successfully used in our pre-
vious study,20 where the results were validated by the solution
of the Boltzmann equation using fast spectral method.17 In
addition, the DUGKS simulation of the 3D lid-driven rarefied
cavity flow has also been verified by the DSMC data.31 It is
worthy to emphasize that the primary reason for adopting the
DUGKS is that different from the traditional DVM, the grid
size in the DUGKS is not necessary to be smaller than the
mean free path in the near hydrodynamic regime, which allows
the DUGKS to use much fewer grid points than the tradi-
tional DVM in describing the slip and continuum flows.21,32,33

For example, when Kn = 0.01, Ar = 1, and Dr = 1, for
St = 0, 2, and 20, with 48 mesh points per unit height, the

maximum change in the amplitude of average shear stress
on the oscillating lid is less than 0.2%, when compared to
the results of 96 mesh points. With 48 grid points, the aver-
age mesh size is about twice of the mean free path of gas
molecules.

IV. RESULTS AND DISCUSSION

Numerical simulations covering a wide range of the Knud-
sen numbers, the Strouhal numbers, and the aspect and depth
ratios of the cavity are performed by the DUGKS, with the
diffuse boundary condition for gas-wall interactions.20 Note
that when the depth ratio Dr approaches infinity, the 3D cavity
is degenerated to 2D ones. Therefore, in this study, the effect
of the cavity depth in the lateral direction is of particular inter-
est, and the results on the corresponding 2D cavity are also
included to show the 3D effect.

A. Flow characteristics

The flow characteristics inside the cavity is investigated
under two typical Knudsen numbers of Kn = 0.1 and 1 and
two typical Strouhal numbers of St = 1 and 3. We are only
interested in the results that have already reached the periodic
“steady-state,” that is, the solution at the next oscillation period
will be exactly the same as the previous one. The results for the
steady lid-driven cavity flow, i.e., St = 0, are also included for
comparison. The dimension of the cavity is set as Ar = Dr = 1
unless otherwise stated. Since the velocity amplitude of the
oscillation is far smaller than the sound speed, the flow field
inside the cavity is symmetrical along the cross sections of
x = 0.5D and z = 0.5A. Therefore, flow properties in one-
quarter (

[
0, D

2

]
× [0,H] ×

[
0, A

2

]
) of the cavity are taken into

account. Note that the x-component velocity Ux is not provided
here as its value is about one order of magnitude smaller than
the other two components.

Figure 2 shows the z-component velocity Uz inside one-
quarter of the cavity, while Uz in the rest of the cavity can be
obtained as

Uz(x, y, z) = Uz(D − x, y, z),

x × y × z ∈ [
D
2

,D] × [0,H] × [0,
A
2

],
(10a)

Uz(x, y, z) = Uz(D − x, y,A − z),

x × y × z ∈ [
D
2

,D] × [0,H] × [
A
2

,A],
(10b)

Uz(x, y, z) = Uz(x, y,A − z),

x × y × z ∈ [0,
D
2

] × [0,H] × [
A
2

,A].
(10c)

Strong movement of the flow can mainly be seen near the
oscillating plane; specifically, the maximum Uz occurs in the
center of the oscillating plate. Bearing in mind that when
Dr → ∞, the contourlines on the cross sections perpendic-
ular to the y-axis should be a set of lines parallel to the
x-axis. As the depth ratio decreases, the role of the lat-
eral wall will be enhanced. As a result, when a finite depth
ratio (e.g., Dr = 1) is applied, Uz on the oscillating lid
gradually decreases from the center to the lateral boundary,
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FIG. 2. Contours of the flow velocity Uz when Kn = 0.1 (top row) and Kn = 1 (bottom row), with St = 0, 1, and 3 (from left to right column). Here Ar = Dr = 1
and ωt/2π = 0. Note that due to symmetry, only one-quarter of the cavity is shown.

due to the friction from the lateral wall of x = 0; see Fig. 2. In
addition, contourlines of Uz on the oscillating lid for Kn = 1
is more flattened than those of Kn = 0.1, due to the weaker
resistance from the walls for a larger Kn. That is to say, the
effect of 3D structure is more visible for a smaller Kn. The
velocity Uz on the oscillating lid for Kn = 0.1 is larger than
that of Kn = 1, because of the smaller slip velocity (differ-
ence between the wall speed and the gas flow velocity) for a
smaller Kn.

The velocity Uy, which is perpendicular to the oscillating
lid, is presented in Fig. 3. Similarly, for the other three parts

of the cavity, Uy can be computed as

Uy(x, y, z) = Uy(D − x, y, z),

x × y × z ∈ [
D
2

,D] × [0,H] × [0,
A
2

],
(11a)

Uy(x, y, z) = −Uy(D − x, y,A − z),

x × y × z ∈ [
D
2

,D] × [0,H] × [
A
2

,A],
(11b)

Uy(x, y, z) = −Uy(x, y,A − z),

x × y × z ∈ [0,
D
2

] × [0,H] × [
A
2

,A].
(11c)

FIG. 3. Contours of the flow velocity Uy in one-quarter of the cavity when Kn = 0.1 (top row) and Kn = 1 (bottom row), with St = 0, 1, and 3 (from left to right
column). Here Ar = Dr = 1, and ωt/2π = 0.
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For all the Strouhal numbers, the maximum Uy emerges at the
joint corner of planes at y = H and z = 0. As St increases,
the region in which the gas flow is disturbed by the moving
lid is squeezed toward the joint corner, and when Kn = 0.1
and St = 3, the negative Uy appears. In addition, due to the
presence of lateral walls, Uy is decreased from the bulk region
to the boundaries along the x axis. Finally, as expected, the
variation of Uy inside the cavity is much smaller than that
of Uz.

Figure 4 shows the evolution of gas flow velocity magni-

tude (
√

U2
x + U2

y + U2
z ) inside one-quarter of the cavity during

the first half oscillation period for Kn = 0.1 and St = 3,
with Ar = Dr = 1. The distribution of the velocity magni-
tude in the next half period is the same. When ωt = 0 and
Uz = W0, the maximum velocity magnitude is located near
the oscillating lid; see Fig. 4(a). As the velocity of the lid
is reduced to

√
2W0/2 at ωt = 0.25π, the perturbation from

the oscillating lid has penetrated into the deep cavity. When
Uz = 0 at ωt = 0.5π, the flow velocity at the oscillating
lid falls back to zero, but the maximum magnitude appears
away from the driven lid. When the oscillating velocity is
Uz = −

√
2W0/2 at ωt = 0.75π, the intense movement is back

to the oscillating lid. Nevertheless, the strong flow motion
always occurs near the oscillating plane during the whole
period.

B. Damping force on the oscillating plane
1. The shear stress on the oscillating plane

The shear stress Pyz exerted on the oscillating lid as cal-
culated by Eq. (8) is depicted in Fig. 5, where Ar = 1, Dr = 1,
and ωt/2π = 0. The results are similar for other aspect and
depth ratios. In the limit of the depth ratio approaching infin-
ity, the flow pattern inside the cavity is approximately two
dimensional; hence, the contourlines should be parallel to the
x-axis. For a finite depth ratio, however, due to the presence of
the lateral walls, |Pyz | is expected to be enhanced. It is the case
for Kn = 0.1 with St = 1 and 3, as shown in Figs. 5(a) and 5(b),
respectively, where |Pyz | is increased from the bulk region to
the lateral walls along the x-axis. However, for Kn = 1, the sit-
uation is reversed: when St = 1 [see Fig. 5(c)], |Pyz | declines
from the bulk region to the lateral wall. Interestingly, when
St increases to 3, the |Pyz | becomes larger again toward the
lateral wall [see Fig. 5(d)], which is the same as the case of Kn
= 0.1. The reason responsible to this intriguing phenomenon
will be discussed in detail in the Sec. IV B 3. In addition, the
variation of Pyz on the oscillating lid when Kn = 0.1 is about
three times of that for Kn = 1.

2. The depth average shear stress

The absolute value of depth-average shear stress |Pyz | on
the oscillating plane along the z-axis is shown in Fig. 6 for

FIG. 4. Evolution of the velocity magnitude in one-quarter of the cavity for Kn = 0.1, St = 3, and Ar = Dr = 1: (a) ωt = 0; (b) ωt = 0.25π; (c) ωt = 0.5π; and
(d) ωt = 0.75π.
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FIG. 5. Contour of the shear stress Pyz on the oscillating plane y = H for (a) Kn = 0.1, St = 1; (b) Kn = 0.1, St = 3; (c) Kn = 1, St = 1; and (d) Kn = 1, St = 3,
where Ar = Dr = 1 and ωt/2π = 0. The half of plane y = H is presented due to the symmetry along the cross section x = 0.5.

FIG. 6. The absolute value of the depth-average shear stress |Pyz |, as defined in Eq. (7), on the oscillating lid when (a) Kn = 0.1, St = 1; (b) Kn = 0.1, St = 3; (c)
Kn = 1, St = 1; and (d) Kn = 1, St = 3, with different Dr . Here Ar = 1 and ωt/2π = 0.
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Ar = 1 with different Dr . The results for Dr =∞, at which the
3D cavity degenerates to 2D, are also included for comparison.
At both the side walls, |Pyz | reaches the maximum and then
reduces to the minimum in the middle of the cavity along
the z-axis. As the depth ratio increases, |Pyz | decreases and
eventually approaches the value when Dr = ∞. However, this
is not the case for Kn = 1 and St = 1 [see Fig. 6(c)], where
|Pyz | increases with the depth ratio. This is a consequence of
the two competing effects of Kn and St on |Pyz |, as shown in
Fig. 5.

3. The damping force on the oscillating plane

In this section, we consider the damping force, i.e., the
amplitude of average shear stress on the oscillating plane. First,
we try to analyze the behavior of damping force in the limit
of ω→∞. In this case, binary collisions of gas molecules are
negligible7 because the oscillation frequencyω is much larger
than the mean collision frequency. As a consequence, Eq. (4)
is degenerated to the collisionless Boltzmann equation,

∂f
∂t

+ ξx
∂f
∂x

+ ξy
∂f
∂y

+ ξz
∂f
∂z
= 0. (12)

In addition, due to small amplitude of the oscillating velocity,
all the flow properties oscillate around their equilibrium values
with the same frequency ω as the oscillation lid. Thus, the
velocity distribution function can be expressed as

f (x, y, z, t, ξ) = f eq +<
[
exp(iωt)f ′(x, y, z, ξ)

]
W0, (13)

where the equation for f ′ is independent of time,

iStf ′ + ξx
∂f ′

∂x
+ ξy

∂f ′

∂y
+ ξz

∂f ′

∂z
= 0. (14)

Integrating (14) with respect to x and z on the oscillating plane,
one can obtain

iStg + ξy
∂g
∂y
= ξx

f ′(x = 0) − f ′(x = D)
D

+ ξz
f ′(z = 0) − f ′(x = A)

A
, (15)

where g = ∫
D

0 ∫
A

0 f ′dxdz/DA is the average velocity distribu-
tion function. As stated above, for this linear oscillation, the
distribution functions on the oscillating plane are symmetric
along the centerlines so that the right-hand side of (15) can
be neglected. Hence together with the diffuse boundary con-
dition,20 the analytical solution of the amplitude of average
shear stress on the oscillating lid can be easily obtained,17

which is equal to 1/
√
π ≈ 0.564. From this analysis, we can

also learn that the amplitude of average shear stress in the
high oscillating frequency limit is independent of the aspect
and depth ratios of the cavity, which will be numerically
verified below.

Figure 7 depicts the damping force |P̄yz | on the oscillat-
ing lid as a function of the Strouhal number, where the depth
ratio Dr = 0.5. The results are presented at three typical Knud-
sen numbers, i.e., Kn = 0.01, 0.1, and 1. It is observed that
the change in |P̄yz | with respect to St for a finite depth ratio
possesses a similar behavior to that when Dr = ∞.17,20 First,
|P̄yz | on the oscillating lid increases as the aspect ratio Ar

becomes smaller. Second, |P̄yz | changes non-monotonically
with respect to St. Finally, the variation of |P̄yz | for Kn = 0.01
is more complicated than those at larger Knudsen num-
bers. When Kn = 0.01, |P̄yz | will not approach the limit of
1/
√
π but increases with St at moderately high frequencies

(St < 50).
However, the lateral walls could have a manifest impact

on the damping force exerted on the oscillating plate. Figure 8
shows |P̄yz | as a function of St for two typical Knudsen num-
bers, Kn = 0.1 and 1, with different values of Dr . When
Kn = 0.1 and Dr = 0.25, as St increases, |P̄yz | first declines
to a local minimum at St ≈ 2.5 and then grows toward the
limiting value of 1/

√
π at the high frequency; see Fig. 8(a).

However, when Dr = ∞, an additional local maximum |P̄yz |

emerges at St ≈ 1.17,20 As the depth ratio is decreased to
Dr = 0.5, such a local peak disappears. That is to say, the pres-
ence of lateral walls could suppress the formation of the local
maximum of |P̄yz |. On the other hand, we note that the value
of the minimum damping force increases with decreasing Dr .

FIG. 7. The amplitude of average shear
stress on the oscillating lid as a function
of St for (a) Kn = 0.01, (b) Kn = 0.1, and
(c) Kn = 1, with Dr = 0.5 and Ar = 0.5,
1, and 2.
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FIG. 8. The amplitude of average shear
stress on the oscillating lid as a func-
tion of St for (a) Kn = 0.1 and (b)
Kn = 1, with Ar = 1 and Dr = 0.25, 0.5, 1,
and∞.

In fact, the local maximum and minimum of |P̄yz | are
due to the gas resonance and anti-resonance, respectively,
which will be discussed later. From Fig. 8, we can also
find that irrespective of the depth ratio, all |P̄yz | approach
the limit of 1/

√
π when the oscillation frequency is suffi-

ciently high, which agrees well with the above theoretical
analysis. In addition, the depth ratio seems to have limited
effect on the critical Strouhal number (at which the local
minimum occurs), which will be theoretically analyzed in
Subsection IV C.

Furthermore, when Kn = 0.1, as Dr increases, |P̄yz | gen-
erally declines toward the value in the limit of Dr = ∞. For
Kn = 1 and St . 2, however, the situation is reversed: an
increase in Dr enlarges |P̄yz | on the oscillating lid, which con-
tradicts the intuitive understanding that the presence of the
lateral walls is expected to increase the damping force on the
oscillating lid. For St & 2, an increase in Dr will again lead
to a reduction in |P̄yz | on the oscillating lid. These observa-
tions are consistent with the findings presented in Figs. 6(c)
and 6(d) for Kn = 1 with St = 1 and St = 3, respectively. Note
that the results of Kn < 0.1 and Kn > 1 are similar to those of
Kn = 0.1 and Kn = 1, respectively.

We can explain these as follows. We first consider the case
of St = 0. It is well-recognized that the shear stress is produced
from the cumulation of the hydrodynamic and the rarefied
effects. When the Knudsen number is sufficiently small, e.g.,
Kn � 1, the intermolecular collisions are rather frequent so
that the hydrodynamic part is dominant and the shear stress
satisfies the Newton’s constitutive law; that is to say, the value
of shear stress on the oscillating lid is merely determined by
the difference of the velocities between the oscillating lid and
the flow fluid at the oscillating lid, which is expected to be
enlarged due to the presence of the lateral walls. Therefore,
for the near continuum flows, the shear stress should increase
with decreasing the depth ratio. On the other hand, when
Kn � 1, binary collisions of the molecules can be neglected
such that the shear stress on the oscillating lid is mainly deter-
mined by the direct collision of the gas molecules with the lid
surface per unit time. The presence of the lateral walls could
interrupt the travel path of gas molecules, which will there-
fore reduce the probability of gas molecules colliding with the
oscillating lid. Consequently, for the highly rarefied flows, the
shear stress on the oscillating lid is expected to decrease with
the reduction in the depth ratio. However, as the oscillation
frequency increases, the gas anti-resonance emerges, which
will increase the damping force on the lid with the reduction
in the depth ratio.

C. Scaling law for resonance and anti-resonance
frequencies and aspect ratio

The local drop and rise of the damping force in Figs. 7
and 8 can be interpreted qualitatively by the theory of gas anti-
resonance and resonance, respectively. For the free molecular
flow, the molecules leaving the oscillating lid y = H with the
most probable velocity vm

(
=
√

2RTw
)

nearly parallel to the
oscillating lid, hitting the wall of z = A, then being reflected
and hitting the wall of z = 0, and finally returning to the
point from which they left, should have traveled a distance
of about 2A; say vmδt ≈ 2A, where δt is the traveling time.
Therefore, if

δt =
2nπ
ω

or
(2n − 1)π

ω
, n ∈ Z+, (16)

molecules leaving and hitting the top lid should have the same
(or opposite) phases.

When the velocity distribution functions for molecules
leaving and coming back to the oscillating lid are in phase,
the velocity Uz near the oscillating lid reaches a maximum.
Meanwhile, the average shear stress given by Eq. (6) is min-
imum since the molecules leaving and coming back to the
lid have opposite y-component molecular velocities. The anti-
resonance and resonance refer to the states where the shear
stress exerted on the oscillating lid is minimum and maxi-
mum, respectively. Equation (16), together with Eq. (2), give
the resonance number Str and anti-resonance Strouhal number
Sta as

Str ≈
(2n − 1)π

2Ar
, n ∈ Z+ (17)

and
Sta ≈

nπ
Ar

, n ∈ Z+. (18)

Therefore, the dominant resonance Strouhal number Str ≈
π/2Ar and the anti-resonance Strouhal number Sta ≈ π/Ar can
be obtained by setting n = 1 in Eqs. (17) and (18). Addi-
tionally, Eqs. (17) and (18) suggest that the resonance and
anti-resonance Strouhal numbers are independent of the depth
ratio, which coincides with the observation from Fig. 8.

It should be noted that these analyses are for the free
molecular flow. As the Knudsen number decreases, binary
collisions of molecules become more frequent such that free
transport of the gas molecules becomes less likely. There-
fore, the real traveling time is larger than 2A/vm, and the
obtained Sta should be smaller than the theoretical value as
given by Eq. (18). Furthermore, the flow inside the cavity
requires sufficient kinetic energy to oscillate with the lid. As
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FIG. 9. The resonance (anti-resonance)
Strouhal number Str (Sta), at which the
average amplitude of shear stress at the
oscillating lid is maximum (minimum),
as a linear function of the inverse aspect
ratio 1/Ar for (a) Kn = 0.1 and 1 and (b)
Kn = 0.01, when Dr is set to be 0.5. The
results of 2D in the limit of Dr = ∞ are
also included for comparison.20

a consequence, resonance is only observed in the flows with
small Knudsen numbers, instead of highly rarefied flows, see
Fig. 7(a), where the oscillation quickly decays due to the large
dissipation.

Depending on the inverse aspect ratio, the linear scaling
laws for the anti-resonance Strouhal number with Dr = 0.5
are presented in Fig. 9(a) for Kn = 0.1 and 1 and Fig. 9(b) for
Kn = 0.01. The same conclusions can be drawn for other values
of Dr . We find that the fitting scaling laws for Kn = 1 are in
good agreement with the theoretical value of π/Ar , while for
Kn = 0.1 and 0.01, as analyzed above, the obtained value is
smaller than the theoretical one, and the discrepancy becomes
more pronounced as the Knudsen number reduces.

The scaling laws for anti-resonance in a 2D cavity,20 i.e.,
Dr =∞, are also included in Fig. 9. The relative errors between
the 2D and 3D solutions are depicted in Fig. 10, which quan-
tifies the effect of the 3D structure (i.e., the lateral walls) on
the damping. We can see that the reduction in Kn leads to
a larger relative difference for a given Ar . For example, the
relative differences for Kn = 1, 0.1, and 0.01 are about 3%,
10%, and 18%, respectively. This is due to the fact that for
a given dimension of the cavity, the lateral walls will pro-
duce a larger resistance force for the flow with a smaller Kn.
In addition, we also notice that for all Kn, an increase in Ar

amplifies the relative difference between the 2D and 3D cav-
ity results. This is because that with the given Kn and Dr , a
larger Ar results in a longer travel time δt, see Eq. (16), dur-
ing which the transport molecules will be more likely affected

FIG. 10. The relative error E% for Sta or Str between the 2D (Dr = ∞) and
3D (Dr = 0.5) simulations as a function of the inverse aspect ratio 1/Ar . Here
E = 100‖St(3D)/St(2D) − 1‖.

by the lateral walls, thus leading to a greater impact of the
lateral walls on the gas anti-resonance, as well as the gas
resonance.

The gas resonance appears at Kn = 0.01. The linear
scaling law for the resonance Strouhal number with respect
to the inverse aspect ratio with Dr = 0.5 is presented in
Fig. 9(b), which is in reasonable agreement with the theoretical
result given by Eq. (17). Similar to that for the anti-resonance,
the relative difference between 2D and 3D cavities increases
with Ar ; see Fig. 10. In addition, for a relatively large Ar , the
relative difference for Str is even larger than that for Sta, which
indicates that the lateral walls produce a more significant effect
on the gas resonance than on the gas anti-resonance. However,
the situation is reversed when a small Ar is applied.

V. CONCLUSIONS

We have investigated the oscillatory rarefied gas flow in
a 3D rectangular cavity. For small Knudsen number, as the
depth ratio reduces, the damping force on the oscillating plane
grows as expected. However, due to the strong rarefaction
effect, this is reversed for a large Knudsen number with a low
lid oscillation frequency, that is, the damping force in a 3D
oscillatory cavity can even be smaller than that of the corre-
sponding 2D cavity (i.e., the depth in the lateral direction of the
cavity approaches infinity). Meanwhile, when the oscillation
frequency is sufficiently high due to the gas anti-resonance,
the damping force can increase again with reduction of the
cavity depth for the highly rarefied flow.

One of the features of oscillatory flow is that the damping
force exerted on the oscillating lid has local dips and peaks
when the oscillation frequency changes. This is due to the anti-
resonance and resonance of rarefied gas flows, respectively. It
is found that the lateral walls on a 3D cavity suppress the
formulation of gas resonance and anti-resonance. Depending
on the inverse aspect ratio of the cavity, the linear scaling laws
for the anti-resonance and resonance frequencies are obtained
from the near hydrodynamic to highly rarefied flows, which
are in reasonable agreement with the theoretical values. In
addition, the obtained scaling laws are also compared with
the solutions of 2D cases, which suggests that reducing the
Knudsen number and increasing the aspect ratio of the cavity
will enhance the 3D effect on formation of gas resonance and
anti-resonance.

Our findings can help to improve design and operation
of the micro-electro-mechanical devices. For example, the
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resonant damping is identified as a major consideration for
the device design and operation to prevent structural damage.
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