
1 INTRODUCTION  

Modern ships are complex systems and their design 
comprise of a range of design variables and con-
straints. However, there are two main aspects that 
could be considered most critical in ship design, 
namely the cargo carrying capacity and the level of 
safety. The cargo carrying capacity is a measure of 
payload that can safely be carried in excess of the 
vessels lightweight, while safety is highly linked to 
the ability of the vessel to remain afloat and upright 
in any condition of loading including damaged con-
dition. As such, these are closely linked parameters 
and will clearly affect one another.  

Buoyancy and weight are the two key parameters 
governing both stability and carrying capacity of the 
vessel due to their well-known interplay in terms of 
flotation, heeling and righting moments. Buoyancy 
is solely dependent on the underwater hull shape, 
and is today easily assessed using modern software 
tools that replicate the hull shape with great accura-
cy. The vessel’s design lightweight, however, is 
more difficult to assess in any detail and is only 
roughly calculated through the design process. It is 
not until the vessel is close to completion that it can 
be identified more accurately by performing the 
classic inclining experiment.  

It is a well-known fact that the so called Classical 
method, in which the vertical centre of gravity 
(VCG) is calculated following inclining experi-
ments, has its limitations on performance in terms of 

applied heel angle magnitude, applied loading condi-
tion and accuracy for certain hull forms. This is due 
to the assumption made of unchanged metacentre 
position when the vessel is heeled. In an attempt to 
ensure the correct application of the Classical meth-
od, various requirements have been set out in the 
2008 IS Code Part B Ch. 8 and Annex I (IMO, 
2008).  

Recently, as a result of the limiting assumptions in 
the Classical calculation method, more accurate and 
flexible calculation methods have been proposed. A 
detailed study on such methods has been presented 
by Karolius & Vassalos (2018), highlighting possi-
ble dangers inherent in the Classical method whilst 
demonstrating due flexibility and higher accuracy 
through the use of the new methods. In this paper, 
higher focus will be placed on design implications in 
terms of stability and cargo carrying capacity.  

The test undertaken in the aforementioned study, 
enabled establishment of an error potential for each 
method using a purely technical software-simulated 
inclining experiment. Using the established error po-
tential, a corrected operational VCG could be calcu-
lated from actual inclining VCG values, which were 
evaluated against the loading conditions for each 
vessel to see if the stability margins had been com-
promised. Only the two calculation methods show-
ing highest accuracy and flexibility are addressed in 
the following; namely the Generalised method, and 
the Polar method. This paper will in addition utilize 
the vessel identified in the study as having highest 
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error potential in the operational VCG values to 
show how this may affect the stability and loading 
capacity, and highlight the importance in achieving 
correct VCG value following the inclining experi-
ment for a safe and optimal vessel design. 

 
2 DESIGN IMPLICATIONS 

2.1 Wrongful assumptions in the Classical method 

To assess possible implications on stability and car-
rying capacity the, the limitations of the Classical 
method need first to be reviewed. The Classical 
method validity is based on the assumption that the 
position of the metacentre is unchanged when the 
vessel is heeled, as illustrated in Figure 1. 

 

 
 
Figure 1. Assumption of unchanged metacentre position. 
 
The position of the metacentre can be represented by 
the metacentre-radius (BM) given by the well-
known relationship (1) between the transverse sec-
ond-moment of the waterplane area IXX and the ves-
sel displaced volume (): 

 
��                 (1) 

 
As the vessel displaced volume is constant during 
the incline, the change in the metacentre position is 
proportional to the change in the second moment of 
the waterplane area and consequently the waterplane 
area itself. For any heel angle, there will be a change 
in the waterplane area, which is crucial in obtaining 
a righting lever arm and subsequent righting mo-
ment, as it is directly related to the movement of the 
buoyancy position. This is highlighted by the fact 
that only a completely circular hull-shape will have 
unchanged waterplane area but also unchanged 
buoyancy position when heeled. A more realistic 
movement of the metacenter with increased water-
plane area is illustrated in Figure 2. 

 
 
Figure 2. More realistic movement of metacentre position. 

 
The assumption in the Classical method, however, 
relates to smaller heel angles, which in more tradi-
tional vessel designs may hold to a satisfactory level. 
This is also the main reason for the IMO require-
ments set out in the 2008 IS Code, setting require-
ments in terms of heel angle magnitude, initial heel 
angle and loading condition used to ensure a mini-
mal change in waterplane area.  

There is further a misconception in the industry 
that the assumptions hold for completely wall-sided 
vessels, and this appears to have given rise to the so-
called “wall-sided” assumption in relation to the in-
clining experiment. This is not the case, as even a 
completely box-shaped vessel will experience 
change in the waterplane area when heeled and a 
subsequent movement of the metacenter as is illus-
trated in Figure 3. 
 

 
 
Figure 3. Actual movement of metacentre for box-shaped ves-
sel, 0-45° heel. 

 
 



 
The movement of the metacentre shown in Figure 3 
is for extensive heel angles ranging from 0° to 45° 
heel for a box-shaped vessel with length and breadth 
of 100 and 50 meters respectively. If smaller heel 
angles, in the range of 0°-4° are considered in line 
with the maximum allowed heel in accordance with 
the IMO requirements, a significant smaller move-
ment can be seen, as illustrated in Figure 4 repre-
sented by an increase in KM of 0.3% in this specific 
case. 
 

 
 
Figure 4. Actual movement for box-shaped vessel, 0°-4° heel. 
 
The main reason for the assumptions in the Classical 
method is to utilise a simplified trigonometric rela-
tionship as illustrated in Figure 5. This facilitate a 
formula for VCG to be derived as shown next. 
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where w = inclining weight, d = movement distance, 
∆ = displacement, r = pendulum reading, and L = 
pendulum length. Remaining parameters are ex-
plained by Figure 5. 
 
 

 

  
Figure 5. Simplified trigonometric relationship for deriving the 
Classical formula for GM. 
 
The assumption of unchanged waterplane area fur-
ther enables the use of upright hydrostatics in the 
calculation for GM for every weight shift. As a sim-
plified trigonometric relationship is used, it is clear 
that the rise in KM of 0.3% mentioned earlier is not 
the actual increase inherent in the formula. The in-
crease in question is rather found at the intersection 
with the centerline, which results in an increase in 
KM of 0.1%. Based on this, it may be argued that 
the assumptions may be considered valid for a com-
pletely box-shaped vessel and may well be the rea-
son for the emergence of the wall-sided assumption 
in relation with the inclining experiment. 

It is important, however, to note than no vessel is 
completely box-shaped, nor circular and it is rather a 
combination of the two, with various design features 
that may result in much higher change in the water-
plane area than should be accepted even for smaller 
heel angles. This is the main reason for the Classical 
method being subjected to scrutiny and debate. Such 
design features may include: 
 

• Chine lines and knuckles 
• Large fore- and aft flare 
• Misc. appendages 
• Large change in trim during heel 
• Other unconventional hull forms 

 
As the Classical calculation method was developed 
in the late 17th century (Hoste, 1693) when detailed 
software models were not available, the limiting as-
sumptions makes sense as it enables upright hydro-
statics to be utilised. Today, however, the strife is 
towards higher accuracy and there exists a range of 
tools for this purpose, making such simplifications 
and requisite assumptions obsolete. 
 



2.2 Implications on stability and cargo carrying 
capacity 

In the aforementioned examples, a clear increase in 
the KMT is seen as a result of an increase in the wa-
terplane area. In reality the waterplane area may 
both increase or decrease depending on heel magni-
tude and which specific design features are emerged 
or submerged. As a general rule the following is 
true: 
 
Case 1: Increase in waterplane area: 
 

                (7) 
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Case 2: Decrease in waterplane area: 
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It is clear that Case 1 above will by using the Classi-
cal method, overestimate vessel stability, thus pro-
ducing a lower VCG value than is the actual case, 
while Case 2 will underestimate the vessel stability 
leading to a higher VCG than is the actual case. Cas-
es 1 and 2 therefore translates directly into possible 
implications for stability and cargo carrying capacity 
respectively. These are explained in the following. 
 

2.2.1 Stability 
 
The VCG of a vessel is the parameter of highest im-
portance in assessing intact and damage stability, 
this being the baseline for any condition of loading. 
It is also governing in other important aspects such 
as vessel motion behaviour through its effect on roll-
ing period and hence the new second generation in-
tact stability criteria. The VCG is utilised in most in-
tact and damage stability requirements through en-
forcing requirements on the GZ righting curve. The 
GZ curve is represented by (13) and it is clear that 
any error in VCG will lead to subsequent errors in 
the GZ-curve, and therefore also incorrect assess-
ment against relevant stability criteria. 
 

        (13) 
 
From the formula above, it is clear that over- and 
underestimation of the VCG will result in under- and 
overestimation in the GZ-curve respectively.  

For most vessels, it is the damage stability require-
ments that is governing and limiting the operational 
envelope. Using the probabilistic damage stability 
and the attained index A as a basis, it is possible to 
gauge the impact using (14). This approach is uti-
lised and presented in section 7.3 to highlight impli-
cations in stability. 
 

                (14) 
 

2.2.2 Cargo carrying capacity 
 
A vessel’s cargo carrying capacity is limited by vol-
umetric constraints, but also by its safety require-
ments, especially those related to intact and damage 
stability. To best illustrate this, a traditional VCG 
stability limit curve can be used as shown in Figure 
6. 
 

 
 
Figure 6. Underestimation of stability limit curve and subse-
quent reduction in operational envelope. 
 
The limit curve serves as the safe operational enve-
lope for a vessel and represents the operational con-
ditions for which the relevant intact and damage sta-
bility requirements are fulfilled. The black curve 
represents the limit curve prepared using the light-
weight VCG, as obtained from the Classical meth-
od. For the sake of argument, an error of 1% overes-
timation in VCG is assumed. The actual curve is 
then represented by the stapled line as the overesti-
mation of the lightweight VCG has resulted in a 
more stringent operational limit.  

It is clear that more restrictions will be imposed to 
the operational envelope if the VCG is overestimat-
ed. Another way to illustrate the implications in car-
go carrying capacity is to translate the overestimated 
VCG into potential reduction in cargo carrying ca-
pacity. This is the cargo that could have been carried 
if the VCG were calculated correctly. As most ves-
sels have a maximum summer draught decided by 
load-line and strength requirements, the additional 
draught would have to be maintained whilst ballast-
water with a lower VCG can be exchanged by addi-



tional cargo with a higher VCG. This approach is 
utilised and presented in section 7.4 to highlight im-
plications in cargo carrying capacity. 

3 ASSESSMENT OF CALCULATION 
METHODS 

The study assessing the various calculation methods 
comprises two parts. Firstly, identifying the potential 
errors inherent in each method. This is achieved us-
ing a purely technical, software-simulated inclining 
experiment using a stability model with known 
lightweight parameters. Each calculation method is 
then used in an attempt to replicate the actual VCG 
values, given as known input parameters to the soft-
ware. An error potential is then developed using the 
percentage difference in actual and calculated VCG 
values using (14). The various methods are applied 
for 2, 4 and 10 degrees of maximum inclining heel 
angles. 
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Secondly, by calculating the error potential using an 
identical floating position and heel magnitude as was 
used in actual inclining experiments for the particu-
lar test vessels as approved by the administration, 
the ensuing error is assumed to be present in the op-
erational VCG values of the test vessels. The opera-
tional VCG values for each test vessel can therefore 
be corrected for either over- or underestimation us-
ing the error potential and to assess whether the ves-
sels stability or loading capacity are affected. 

4 UNCERTAINTY AND ERRORS 

The inclining experiment is subject to a range of 
sources of uncertainties and errors originating from 
external influences such as wind, waves, current and 
human measurement errors. This paper focuses only 
on the error originating from the choice of calcula-
tion method. Other sources of uncertainty and errors 
have been reviewed and discussed in many publica-
tions, such as Shakshober & Montgomery (1967) 
and Woodward et al. (2016).  

For more detailed information on the range of un-
certainties related to the inclining experiment, the 
above mentioned publications are recommended but 
in order to highlight the most common sources of 
uncertainty, Figure 7 has been borrowed from 
Woodward et al. (2016). The figure shows the vari-
ous sources of component uncertainty contribution 
in the vertical centre of gravity for various inclining 
experiment parameters for five case-study vessels.  
 

The figure clearly indicates that the highest contribu-
tion is originating from the heel angle and draught, 
in terms of uncertainties related to pendula and 
draught marks. 

 

 
 
Figure 7. Component uncertainty contribution for various in-
clining experiment parameters. Reprinted by permission from 
Woodward (2016, fig. 2). 

5 CALCULATION METHODS 

The Classical method has already been reviewed in 
section 2.1. In this section, the alternative methods 
will be covered. Among these, there were two meth-
ods that showed highest accuracy and flexibility 
from the aforementioned study; namely the General-
ised and the Polar method, both described in the fol-
lowing. 

5.1 The Generalised method 

The Generalised method was initially proposed by 
R.J. Dunworth (2013) and further expanded by 
Dunworth (2014, 2015) and Smith, Dunworth & 
Helmore (2016). The method utilizes the fact that in 
equilibrium position for each weight shift, the ves-
sel’s righting arm GZ and heeling arm HZ must be 
equal. Using the trigonometric relationships, as illus-
trated in Figure 8, the following can be derived: 
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Figure 8. Main parameters for the Generalised method. Adopt-
ed from Dunworth (2014). 
 
From the above, it is apparent that this method does 
not make any reference to the metacentre in the cal-
culations and should, therefore, not be influenced by 
any change in the waterplane area during the weight 
shifts, as is the case for the Classical method. To 
this end, actual KN values are needed from a stabil-
ity software model, corresponding to equilibrium 
floating position for each weight shift. The heeling 
angle is determined from pendulum deflection read-
ings similar to the Classical method.  

For each shift VCG ∙ sin(φ) is calculated using 
equation (16) and plotted against sin(φ). The final 
value of VCG can be directly calculated as the re-
gression slope using a least squares fit similar to the 
Classical method. Dunworth (2013) further suggests 
an alternative method for calculating the TCG off-
set, by plotting the calculated HZ values correspond-
ing to each weight shift against the heeling angle. 
The TCG offset for the whole system comprising 
ship and inclining weights are then found at the y-
axis intercept, i.e. HZ for φ = 0. The curve fitting is 
suggested to be obtained using a 3rd order polynomi-
al fit. 

5.2 The Polar method 

The Polar method was presented in the study by Ka-
rolius & Vassalos (2018), and is derived utilising the 
line PL illustrated in Figure 9. This line can be rep-
resented in polar coordinates using (18), and if cor-
rected for actual KN and HZ values for each weight 
shift using (19), the line will pass through the point 
(x, y) for any arbitrary weight shift from the neutral 
position, which results in (20). Knowing that the x-
coordinate is equal to TCG, and the y-coordinate 
equal to VCG, equation (21) is obtained. 

 
 

 

           (18) 
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    (21) 
 
This method takes advantage of the fact that both 
VCG and TCG need to be located on the PL line in 
the initial condition and to be kept constant in this 
position for each individual weight shift, i.e. the ini-
tial VCG0 and TCG0 are kept constant on this line, 
while the overall system TCG is shifted a distance 
G0Gi for each shift i as represented by (22) and (23). 
 

                 (22) 
 

                (23) 
 

 
 
Figure 9. Main parameters from the Polar method. 
 
There are, as a result, two equations to derive the 
two unknown parameters and by using (21) and fol-
lowing some deduction, (22) results in a solution for 
VCG given by (24), and (23) in a solution for TCG 
given by (25) in their most general form: 
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The equations can further be simplified using the 
trigonometric relations in (26) and (27) and knowing 
that the heeling arm resulting from weight move-
ment in the neutral position HZ0 needs to be zero, 
this results in (28) and (29). 
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The Polar method can in theory be used to calculate 
VCG directly for any arbitrary shift from the neutral 
position, but to account for other sources of error 
and uncertainty as was discussed in Section 4, it is 
recommended to utilize a least squares linear regres-
sion also for the Polar method by plotting the de-
nominator against the numerator. 

6 TEST VESSELS 

The test vessels used in the study comprise 9 vessels 
of various type, size and hull form in an attempt to 
account for the ship specific problematic design fea-
tures, such as knuckles, large flare angles, sharp 
chine lines. More conventional wall-sided hull forms 
have been included as well for comparison. The ves-
sels main particulars are presented in table 1. 
 
Table 1. Test vessel particulars 

 

Vessel type          
LBP  B  D  CB 

[m]  [m]  [m]  [m] 

Fishing vessel 40.20  12.00  7.50  0.73 
Yacht 36.60  7.70  4.20  0.54 
RoPax 195.30  25.80  14.80  0.79 
Bulk carrier 223.50  32.30  20.20  0.92 
Passenger vessel 320.20  41.40  11.60  0.74 
Naval I 54.10  10.60  5.00  0.65 
Naval II 71.00  12.00  6.20  0.58 
Container vessel 320.00  48.20  27.20  0.76 
Supply vessel 76.80  19.50  7.75  0.69 
 
Despite covering the problematic design features, 
the chosen designs are still fairly conventional and it 
is clear that much larger errors would be evident for 
even more unusual hull shapes, especially for ves-
sels under 24 m in length or of higher novelty such 
as high-speed or leisure craft. Line plans of the test 
vessels can be seen in Figure 10. 
 

 
 
Figure 10. Lines plan of test vessels. 

7 RESULTS 

In the following section, only a summary of the re-
sults obtained in the study is presented to highlight 
the errors obtained. For more comprehensive result, 
including results for various initial heel angles, ref-
erence is made to Karolius & Vassalos (2018). In 
order to compare the methods against each other, the 
results from the software simulated inclining exper-
iment are represented by the absolute value of the er-
ror potentials, irrespectively of over-, or underesti-
mation. The errors have then been used to correct 
the operational VCG values for the vessels and are 
presented in section 7.2. Finally, sections 7.3 and 7.4 
illustrates how the worst case may translate to stabil-
ity and capacity implications. 

7.1 Software simulated inclining experiment 

In the following, results obtained for each method 
are presented together for comparison. In the pre-
sented result, initial heel of 0 degrees was used, i.e. 
vessel upright in neutral position. From Figure 11, it 
is clear that all methods produce accurate results, 
with the highest error below 0.5%, obtained by the 
Classical method for the Naval II vessel. In Figure 
12, maximum heel angle of 4 degrees is presented.     

The results still show good accuracy for all meth-
ods but the error using the Classical method is now 
increased to 1.5% for the Naval II vessel. In Figure 
13, maximum heel angle of 10 degrees is presented. 
As expected, the results show much lower accuracy 
for the Classical method, with a maximum error 
above 6% for the Naval II vessel. The other methods 
still show high accuracy, with only an error of below 
0.02%. 

 
 

 



 
 

 
 
Figure 11. Percentage error for , 2 degrees maximum heel 
angle and 0 degrees initial heel angle. 

 

 
 
Figure 12. Percentage error for VCG, 4 degrees maximum heel 
angle and 0 degrees initial heel angle. 
 
To summarize, Figure 14 presents the error potential 
averaged over all vessel types for all methods for the 
various inclining heel angles. It is clearly shown that 
the Classical method is highly dependent on the in-
clining heel angles compared to the other methods, 
and produces results with increasing errors. 
 
 
 
 
 

 
 

 
 
Figure 13. Percentage error for VCG, 10 degrees maximum 
heel angle and 0 degrees initial heel angle. 
 

 
 
Figure 14. Error potential averaged over vessel types for vari-
ous heel angles and methods. 

7.2 Actual inclining experiment corrections 

Corrected operational VCG values are presented in 
Table 2. It is clear that there are potential errors in 
the operational VCG values as a result of using the 
Classical method. The highest error is obtained for 
the RoPax, Naval II and Container vessel, with 41, 
22 and 61 mm errors respectively. The VCG of the 
Naval II vessel is overestimated, while the VCG for 
the RoPax and Container vessels are underestimated. 
As the container vessel shows the highest error, this 
has been used for illustrating possible design impli-
cations. 

 
 
 
 
 



 
Table 2. Corrected  values obtained using error potentials 
for the Classical method. 
 

Vessel type          
VCG  Correction  VCGcorr 

[m]  [mm]  [m] 

Fishing vessel 5.753  0.373  5.754 
Yacht 3.747  4.207  3.752 
RoPax 13.171  41.478  13.213 
Bulk carrier 11.632  2.789  11.634 
Passenger vessel 22.221  -3.084  22.218 
Naval I 4.500  8.605  4.509 
Naval II 4.934  -21.705  4.912 
Container vessel 17.228  60.813  17.288 
Supply vessel 7.592  7.897  7.600 

7.3 Error implication on stability 

The container vessel in question should comply with 
the probabilistic damage stability requirements in 
accordance with SOLAS Reg. II-1/7-8 (IMO, 2009), 
and for the sake of illustrating possible implications 
on stability, the attained index A for the operational 
VCG and the corrected VCG have been calculated. 
Knowing that 1-A can be regarded as a representa-
tion of the ensuing risk, this allows obtaining a 
measure of false safety inherent in the vessel as a re-
sult of the inaccurate VCG calculated using the 
Classical method as is seen in Table 3. 
 
Table 3. Underestimated VCG translated to overestimated 
probabilistic damage stability performance, i.e. false safety.   
 
Lightweight case         A Risk = 1-A Capsize cases 
VCG 0.711 0.289 896 
VCGcorr 0.702 0.298 933 
Difference [%] 1.28 3.02 3.96 
 
It is seen that an error in safety estimation of 3% is 
seen due to the error in VCG. The table further pre-
sents the difference in number of capsize cases and it 
is seen that the vessel actually has 37 additional cap-
size cases not accounted for due to the error in VCG. 

7.4 Error implication on carrying capacity 

Despite having an underestimated VCG as presented 
in the former sections, the Container vessel will be 
utilised in order to examine what the error of 61 mm 
in lightship VCG yields in terms of lost cargo carry-
ing capacity if, for the sake of argument, this were 
an overestimated error. As highlighted in section 
2.2.2, a vessel draught is often restricted by its maxi-
mum summer draught governed by load-line-, and 
strength requirements. As such, the draught and sub-
sequent displacement needs to be maintained, while 
ballast-water can be replaced with cargo until the 
maximum permissible VCG is achieved.  

For simplicity, the ballast water is subtracted from 
the global ballast VCG, while the additional cargo is 
added to the global container load VCG. The added 
cargo and reduced ballast is presented in table 4. 
This difference, if considering an average weight of 
12 tonnes per TEU, corresponds to over 11 TEU’s. 
 
Table 4. Overestimated VCG translated to underestimated car-
go carrying capacity, maintained draught.   

 

Lightweight case         
Cargo  BW  

Draug
ht 

 

[t]  [t]  [m]  

VCG 103716 9530.6 15.25  
VCGcorr 103851 9395.6 15.25  
Difference  135 135 0.00  
 
If the vessel had available margins in terms of 
draught it may be possible to keep the ballast whilst 
adding cargo until the maximum permissible VCG is 
achieved. This results in a quite extensive loss in 
cargo carrying capacity as is seen in table 5. Again, 
this difference, if considering an average weight of 
12 tonnes per TEU, corresponds to over 56 TEU’s. 
 
Table 5. Overestimated VCG translated to underestimated car-
go carrying capacity, increased draught.   

 

Lightweight case         
Cargo  BW  Draught  

[t]  [t]  [m]  

VCG 103716 9530.6 15.25  
VCGcorr 104399 9530.6 15.30  
Difference  683 0 0.05  

8 CONCLUDING REMARKS 

As can be seen in the results from the software 
simulated inclining experiment, the Classical meth-
od is highly dependent on heel angle magnitude and 
may produce unacceptable errors that could affect 
important design parameters such as cargo carrying 
capacity and stability. This is highlighted by the cor-
rected VCG values presented in the actual inclining 
experiment corrections seen in table 2. It is im-
portant to highlight that all test vessels have been 
approved by class, and that IMO requirements have 
been adhered to. If for some reason the requirements 
in terms of heel magnitude, initial heel angle and 
loading condition were not followed, significant 
higher error would be expected. This also applies to 
the vessel designs. There exist numerous and more 
unconventional designs that would produce increas-
ingly higher errors.  

The additional measures imposed by IMO are un-
necessary when applying the alternative methods, as 
they do not make reference to the metacentre in the 
equations. They produce very accurate results for 



any floating position, in terms of draught, heel mag-
nitude and initial heel as they utilise actual KN val-
ues corresponding to each floating position. This re-
duces the possibility of making mistakes and they 
can therefore be considered to be more reliable and 
flexible than the Classical method.  

The results further highlight the importance of 
achieving correct VCG value following the inclining 
experiment for a safe and optimal vessel design, as 
even minor errors in the order of millimeters may 
translate into extensive weights and moments com-
promising both stability/safety and cargo carrying 
capacity. The most common argument for maintain-
ing the Classical method is that the errors are small 
and insignificant in comparison with the random er-
rors mentioned in section 4, but the validity of this 
argument can be questioned.  

As designers, it is our responsible to reduce errors 
that may compromise or undermine safety to the 
lowest possible degree, especially when the means 
to do so are available. Considering the results from 
this study, the industry should be more critical when 
applying the Classical method and it may even be 
time to replace it with better and more flexible cal-
culation methods. It is at least important for the in-
dustry to know that there are other more reliable al-
ternatives to the Classical method and should be 
accounted for in the regulations and guidelines in 
use today. 
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