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Abstract

Peridynamics (PD) is a novel continuum mechanics theory established by Stewart Silling in 2000 [1]. The roots of

PD can be traced back to the early works of Gabrio Piola according to dell'Isola et al. [2]. PD has been attractive to

researchers as it is a nonlocal formulation in an integral form; unlike the local differential form of classical continuum

mechanics. Although the method is still in its infancy, the literature on PD is fairly rich and extensive. The prolific

growth in PD applications has led to a tremendous number of contributions in various disciplines. This manuscript

aims to provide a concise description of the peridynamic theory together with a review of its major applications and

related studies in different fields to date. Moreover, we succinctly highlight some lines of research that are yet to be

investigated.
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1. Introduction

The analysis of material behavior due to various types of loading and boundary conditions may be carried out

at different length scales. At the nanoscale, often Molecular Dynamics (MD) is used to analyze the behavior of

atoms and molecules. However, simulation time, integration algorithms and the required computational power are

limiting factors to the method’s capabilities. On the other hand, at the macroscale, the behavior of a body is usually

analyzed using the Classical Continuum Mechanics (CCM) formalism. In CCM, a body is assumed to be a continuum

surrounded within its boundary for which the balance laws must be satisfied locally. Traction t on the surface of a

material point can be expressed as t = σ·n whereσ is a stress tensor and n represents the unit normal of the surface cut

the traction is acting on. Local conservation of linear and angular momentum can be expressed as ρ(x) ü(x, t) = divσ+

b(x, t) and σ = σt, respectively, where ρ, ü and b correspond to the density, acceleration and body force associated

with the material point x, respectively. For the past two centuries, these balance equations have been successfully used
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to solve many problems in solid mechanics. Despite the fact that these equations are well established, they encounter

difficulties when discontinuities such as cracks are present within the body since mathematically, the divergence term

yields singular values. Various approaches such as Linear Elastic Fracture Mechanics (LEFM) [3, 4] and Cohesive

Zone Model (CZM) [5, 6] have been proposed to overcome these issues. The cohesive zone model dates back to the

seminal works of Barenblatt [5, 7] and Dudgale [6] and has subsequently been extended in [8–11] among others.

Figure 1: Comparison of MD, CCM and PD. MD (left) analyzes the interactions between discrete entities, i.e., atoms and molecules. These local
interactions are governed by the cutoff radius δ. On the other hand, CCM (center) and PD (right) are formulations defined over a continuum body
B. The latter is subdivided into points with a finite volume. In CCM, the state of a point is only influenced by its immediate neighbors. However,
in PD, a material point x interacts with other material points within a neighborhood Hx delimited by the horizon δ. PD is similar to CCM in the
sense that it is still a continuum formulation and also, is similar to MD in the sense that it is nonlocal and borrows certain notions of MD such as
the cutoff radius δ or interactions between points.

PD belongs to the class of nonlocal continuum mechanics formulations. Etymologically the term “peridynamics”

is derived from two Greek words περί (“perı́-” around) and δύναµη (“dýnami” force). In PD, a continuum is subdi-

vided into material points occupying volume in space. The core of the peridynamic formulation is that the behavior of

each material point is governed by its interaction with other material points located within its neighborhood. In other

words, the peridynamic theory is about the interaction forces between material points within a given neighborhood.

In contrast to CCM, the governing equation of PD is an integro-differential equation which makes it suitable for prob-

lems involving discontinuities in the body. Figure 1 highlights the similarities and dissimilarities among MD, CCM

and PD schematically.

There are other continuum formulations such as nonlocal elasticity and strain-gradient theories. Although both

are nonlocal formulations, nonlocal elasticity and PD are fundamentally different. Eringen’s nonlocal elasticity theory

assumes that the stress state at a point depends on the strain state at that point as well as the strain states of all the

points within the body [12]. Moreover, the balance of linear momentum is expressed in terms of the divergence of the

stress tensor as in the CCM formulation. In contrast, PD precludes spatial derivatives and does not explicitly involve

stress and strain. Figure 2 shows that there has been an increasing interest in PD as a novel continuum mechanics

formulation.
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The main purpose of this paper is to expound the peridynamic theory to researchers of various backgrounds. The

main differences between the classical continuum mechanics formulation and the peridynamic theory are highlighted,

an overview of the related contributions and applications of PD is presented and the challenges and new perspectives

in the development of PD are discussed. Though the peridynamic theory has been formally established by Silling

in 2000 [1], dell'Isola et al. [2] claim that Gabrio Piola is the pioneer of higher-gradient and nonlocal continuum

models, including PD. They showed that the fundamental ideas behind PD were already presented in Piola’s works,

who derived nonlocal continuum theories and higher-gradient formulations by means of the virtual work principle.

dell'Isola and coworkers indicated that Piola’s works have remained obscure and have been overlooked despite of their

potentials. On the other hand, there are strong connections yet differences between the peridynamic theory and particle

systems [13, 14]. As pointed out by Fried [13], “The starting point of peridynamic theory is a continuum level field

equation imposing linear-momentum balance with the essential difference being that the conventional term involving

the divergence of the stress is replaced by a nonlocal term in which an integral operator is applied to the displacement

field. This operator determines not only the range over which material points interact but also the nature of allowed

interactions. Peridynamic theory therefore mixes kinematics, kinetics and constitutive equations from the outset. It

seems likely that the conceptual basis for particle mechanics can be adapted to provide an alternative formulation of

peridynamic theory in which these ingredients are treated separately”.
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Figure 2: Number of citations of [1] per year versus year from its birth (2000) till today. The fitted curve is an exponential function and the points
represent the data obtained from SCOPUS.

It is worth mentioning that various continuum models in relation to PD have been developed such as a 1D elastic

continuum model with long-range forces [15], modified beam and plate equations [16, 17], coupling of local and non-

local continuum formulations [18, 19] and atomistic-continuum models [20]. Murdoch [21] attempted to clarify the
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misconceptions regarding the notions of particles and long-range forces in the peridynamic theory in [1] from an atom-

istic perspective. In a related work, Drapaca and Sivaloganathan [22] introduced a new nonlocal continuum model

based on fractional derivatives, which encompasses both classical continuum mechanics and nonlocal formulations

such as PD.
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Figure 3: Extent of peridynamic theory to date. Section 3 elaborates on each field together with a review of the topic and important contributions.

This manuscript is organized as follows. Section 2 elaborates on the fundamentals of peridynamics in terms of its

governing equation and balance laws. Section 3 discusses related contributions and various applications of PD to a

plethora of problems as found in the literature to date, gathered in Fig. 3. Section 4 concludes this work and provides

further outlook indicating potential research trends regarding PD. Eventually, a brief guideline for the numerical

implementation of PD is given in the Appendix.

2. Fundamentals of peridynamics

The peridynamic formulation is based on the interactions within the neighborhood Hx with the distance δ of a

material point at x as shown in Fig. 1. There are two main categories of peridynamic formulation as bond-based PD

and state-based PD. The latter is further divided into two types of ordinary state-based PD and non-ordinary state-

based PD. Obviously, all these variants must satisfy the conservation laws. Throughout this section, the fundamentals

of PD are introduced with focus on mechanical problems. More sophisticated and coupled problems can be formulated
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in a similar fashion.

2.1. Bond-based PD

The peridynamic equation can be understood as an integral expression of the linear momentum balance in CCM.

The equation of motion of a material point in an elastic material can be expressed as

ρ(x) ü(x, t) =

∫
Hx

f (u′ − u, x′ − x) dV ′ + b(x, t) , (1)

where f (u′ − u, x′ − x) is a pairwise force density vector function and u is the displacement of the material point at

x. The term “bond” refers to the interaction between the material points at x and x′. The bond-based PD relies on the

assumption of pairwise interactions in which the force density vectors exerted by the material points on one another

are equal in magnitude and parallel to the relative position vector in the deformed state. The integral equation (1) is

always valid regardless of discontinuities. It can be seen that in Eq. (1), the divergence of the stress tensor in the local

form is replaced by the integral of the force density over the neighborhood Hx thereby f contains all the constitutive

properties of the material. For instance, for a linear elastic isotropic solid f can be expressed as

f (u′ − u, x′ − x) = cs
y′ − y
|y′ − y|

, (2)

where y = x + u is the position of the material point in the deformed configuration, c denotes the bond constant and s

is the bond stretch defined as

s =
|y′ − y| − |x′ − x|

|x′ − x|
. (3)

The bond constant c is the peridynamic material parameter and can be expressed in terms of the material constants of

CCM. These relations can be established by considering a common parameter used in both approaches. For instance,

for a linear isotropic material, the bond constant reads

c =
12E
πδ4 , (4)

where δ is the horizon and E is the elastic modulus in CCM. Note that there is only one peridynamic parameter used

in the original (bond-based PD) formulation as opposed to two independent Lamé parameters of CCM for isotropic

material behavior. In other words, it is not possible to freely define a Poisson’s ratio since the peridynamic formu-

lation automatically captures a constant Poisson’s ratio of 0.33 for two-dimensional and 0.25 for three-dimensional
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problems, see the original work of Poisson [23] and the more recent study [24], among others. The constraints on

material parameters for the bond-based PD are derived in [25].

2.2. State-based PD

The original bond-based peridynamic formulation suffers from a limitation on material constants since it assumes

that the peridynamic forces between two material points are of equal magnitude and opposite directions. This issue has

been addressed by means of a generalized formulation referred to as state-based PD [26]. The core of the formulation

is a mathematical object called state which, to some extent, operates like a mapping. State is basically an array which

stores information about a parameter of peridynamic bonds associated with a particular material point. For instance,

a force state stores the PD forces pertaining to a bond. State-based PD is such that the response of a material point

depends on the deformation of all the material points within its horizon. Based on these new assumptions, the equation

of motion of a material point can be written as

ρ(x) ü(x, t) =

∫
Hx

{T(x, t)〈x′ − x〉 − T(x′, t)〈x − x′〉} dV ′ + b(x, t) , (5)

where T〈·〉 represents the force state.

The state-based PD can be further categorized into ordinary or non-ordinary state-based PD. Let M denote a vector

state such that M〈x− x′〉 is a unit vector pointing from the deformed position of x toward the deformed position of x′.

If a material has a property such that for any deformation there exists a scalar state t such that T = t M, the material

is called ordinary and non-ordinary otherwise, see Fig. 4. In the ordinary state-based PD formulation, although the

peridynamic forces between two material points can have different magnitudes, their directions are assumed to be

along the bond direction. For instance, for a linear elastic isotropic material, the force state is given by

T(x, t)〈x′ − x〉 =

(
2adδ
|x′ − x|

θ(x, t) + bs
)

y′ − y
|y′ − y|

, (6)

where a, b and d are peridynamic parameters and θ(x, t) is the peridynamic dilatation term. This assumption can be

disregarded in the non-ordinary state-based PD by allowing peridynamic forces in arbitrary directions. By doing so,

it is essential to explicitly ensure the conservation of angular momentum since it is no longer fulfilled a priori, in

contrast to the bond-based and ordinary state-based formulations. Therefore, for the non-ordinary state-based PD, the

following relationship must hold

∫
Hx

{(y′ − y) × T(x, t)〈x′ − x〉} dV ′ = 0 . (7)

6



bond-based
peridynamics

ordinary
state-based
peridynamics

non-ordinary
state-based
peridynamics

Figure 4: Illustration of the bond-based (left), ordinary state-based (center) and non-ordinary state-based peridynamic formulations (right). The red
and blue points represent two material points, each having its own horizon, represented by the red and blue circle respectively. Each material point
interacts with the ones in its horizon, as shown by the grey dashed lines. The difference between the three formulations lies in the magnitude and
direction of the interaction forces (green arrows) between the materials points. Bond-based PD can be understood as a particular case of ordinary
state-based PD. Similarly, ordinary state-based PD can be understood as a special case of non-ordinary state-based PD.

Furthermore, in what is referred to as the correspondence model [26], the force density vector can be related to

stress as

T(x, t)〈x′ − x〉 = w〈x′ − x〉 P K-1(x′ − x) (8)

with P being the Piola1 stress tensor and K is the shape tensor defined as

K =

∫
Hx

w〈x′ − x〉(X〈x′ − x〉 ⊗ X〈x′ − x〉) dV ′ , (9)

where X is the position state which contains the relative position of material points associated with a particular bond

and the w state contains the influence function information that defines the strength of interactions. The correspon-

1The term Piola stress is adopted instead of the more commonly used first Piola-Kirchhoff stress. Nonetheless, it seems that the term Piola
stress is more appropriate for this stress measure. Recall, P is essentially the Piola transform of the Cauchy stress and ties perfectly to the Piola
identity. Also historically, Kirchhoff (1824–1877) employed this stress measure after Piola (1794–1850), see also the discussion in [27].
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dence material model is such that the peridynamic constitutive model is calibrated to yield the same results as the

classical model for a given homogeneous deformation. More precisely, the two models are correspondent when the

peridynamic and classical strain energy density functions are equal under affine deformations. The deformation gra-

dient F can be approximated in the peridynamic framework as

F =

∫
Hx

w〈x′ − x〉(Y〈x′ − x〉 ⊗ X〈x′ − x〉) dV ′∫
Hx

w〈x′ − x〉(X〈x′ − x〉 ⊗ X〈x′ − x〉) dV ′
, (10)

where Y is the deformation state containing the relative position of material points in the deformed configuration.

As the most general peridynamic formulation, the non-ordinary state-based PD is a practical approach for a variety

of problems. However, as Tupek and Radovitzky [28] demonstrated, the formulation of the nonlocal deformation

gradient tensor allows unphysical deformation modes including material collapse, matter inter-penetration at discon-

tinuities and zero-energy modes. The latter occur as a result of a weak coupling between a material point and its

family [29]. To overcome these limitations, Tupek and Radovitzky [28] proposed an extended constitutive correspon-

dence formulation by defining a nonlocal peridynamic strain tensor based on alternative strain measures. To control

zero-energy modes, Breitenfeld et al. [29] investigated different techniques which consist of adding another term to

Eq. (8). Recently, Silling [30] studied the causes of zero-energy mode instability in a meshfree discretization and

established a general criterion for material stability in PD.

2.3. PD as a paradigm of continuum mechanics

Since the seminal work of Silling [1], the peridynamic formulation has been of great interest among researchers.

Notably, Silling and Lehoucq [31] and Madenci and Oterkus [25] carried out an extensive study of the balance laws,

applications and implementations of the peridynamic formulation. Moreover, Ostoja-Starzewski et al. [32] analyti-

cally showed the restrictions imposed by the second law of thermodynamics on the pairwise forces for the bond-based

PD and the force states for the state-based PD. Recently, Bobaru et al. [33] elaborated on mathematical, numerical and

computational issues of PD, along with applications such as dynamic fracture. Aguiar and Fosdick [34] proposed a

quadratic free energy function for a simple linear elastic peridynamic material model which accounts for bond stretch

and relative bond angles; the model also depends on four material constants, two of which were correlated to elastic

constants from classical elasticity in the limit of small horizon. In addition, the authors indicated that their model

satisfies the angular momentum balance and is a nonordinary material model. Mitchell et al. [35] proposed an im-

proved version of the ordinary state-based peridynamic formulation referred to as position-aware linear solid (PALS)

constitutive model which employs two influence functions in order to address surface effects, i.e., the problems due

to missing bonds in the vicinity of free surfaces thereby the influence functions are determined by means of Lagrange
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multipliers and calibrated at each material point, hence the name “position aware”.

For computational efficiency and improved accuracy, variants of the traditional peridynamic formulations have

been developed. According to Ren et al. [36], the horizons’ radii are kept constant in traditional PD to prevent the

loss of accuracy in the results, due to spurious wave reflections and ghost forces between material points. They intro-

duced the dual-horizon concept [37] in which the discretization of the domain is analogous to that of the FEM or the

finite volume method (dense node distribution in critical regions and coarse distribution elsewhere), thereby reducing

the computational cost. In addition to the constant horizon in the traditional formulation and the dual-horizon PD,

Silling et al. [38] presented a variable horizon in a peridynamic medium with constant bulk properties. They inves-

tigated the anomalies induced by ghost forces and concluded that these irregularities can be minimized by making

the horizon a smoothly-varying function. Recently, Queiruga and Moridis [39] investigated the accuracy and conver-

gence properties of state-based peridynamic laws including deformation gradient-based model [26] and dilation-based

models [40, 41] with different influence functions for 2D static problems. They observed that the convergence of the

dilation state-based models is restricted to specific constant-strain problems and that the deformation gradient model

exhibits a linear convergence rate but is unstable. They also noted that convergence is guaranteed with a cubic influ-

ence function. Ganzenmüller et al. [42] proposed an improvement to the Prototype Microbrittle Model (PMB) model;

a linear-elastic, bond-based peridynamic model with brittle failure. They validated the modified model by analyzing

wave propagation in a bar with nonuniform particle discretization and investigated crack propagation in a patch with

initial crack. Their results were quantitatively in good agreement with the analytical solutions.

The presence of the length scale parameter δ in the peridynamic formulation makes it suitable for analyzing mate-

rial behavior at the microscale as well as the macroscale. Notably, PD has been used to analyze nano-indentation [43]

and failure of graphene sheets [44], nanoscale friction and wear properties of amorphous carbon films [45]. Chowd-

hury et al. [46] developed a 3D state-based micropolar peridynamic model with an additional length scale parameter.

They also derived a 1D homogenized micropolar peridynamic beam model. The authors concluded that the incorpo-

ration of micropolar effects improves the prediction capabilities of the model and that dimensionally-reduced models

significantly reduce computational overhead. Note, when applying a continuum model at the nanoscale, the under-

lying assumptions of field theories no longer hold. Nonetheless, such continuum models can be used as numerical

estimates to approximate the homogenized material response. Obviously, at the nanoscale discrete models such as

molecular dynamics are more appropriate and physically acceptable.

Various studies have attempted to establish the connection between PD and classical elasticity. To correlate CCM

with PD, Lehoucq and Silling [47] established the notion of peridynamic stress tensor, which is not explicitly present

in the PD governing equation. Silling [48] presented a coarsening method for linear elastic peridynamic material
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models. In the proposed approach, the material properties are derived at different length scales. Silling indicated that,

unlike the rescaling approach [49], the coarsening method accounts for material rearrangement at the small scale in

response to the deformation at the large scale. An interesting study was presented by Madenci et al. [50] in which

they introduced a peridynamic differential operator that can recast local differential equations into their nonlocal form.

The authors demonstrated the robustness and capability of the proposed operator by solving challenging differential

equations. Bellido et al. [51] demonstrated that hyperelasticity is the Γ-limit of the peridynamic macroelastic en-

ergy of deformation; the latter being a double integral of the pairwise potential function evaluated over the domain.

Seleson et al. [52] analyzed the connections between nearest-neighbor discretizations of PD equilibrium equations,

by means of nodal-based quadratures, and finite difference discretizations of the classical Navier–Cauchy equation of

static elasticity. They concluded that the PD equations reduce to their classical discrete counterparts under appropriate

choices of quadrature weights. Rahman and Foster [53] developed a statistical mechanics framework for the peridy-

namic theory of solids, which incorporated MD within a PD model. Another topic of interest in the development of

PD models is the investigation of nonlinearities in the peridynamic formulation, as described in [54, 55]. Liu and

Hong [56] derived the micromoduli of discretized peridynamic models in 1D and 3D. An important consideration in

the peridynamic formulation is the handling of boundary conditions, see in particular [57–60].

3. Extent of peridynamics

Since the peridynamic formulation can inherently account for discontinuities in the displacement field, PD has

been predominantly used for the solution of fracture and damage problems. However, its extent is not restricted

to fracture mechanics. This section attempts to present a concise categorization of the PD applications and related

contributions in the literature gathered in Fig. 3. Obviously, some categories may overlap.

3.1. Static problems

PD has been applied to various static and quasistatic problems. For instance, Dayal and Bhattacharya [61] applied

the peridynamic theory to study martensitic phase transformations. They conducted both quasistatic and dynamic

analyses of phase boundaries and observed that for the quasistatic responses, the accuracy of the results is highly

dependent on the choice of numerical method as well as the incremental load step. Huang et al. [62] presented an ex-

tended bond-based peridynamic formulation to investigate the quasistatic response and crack propagation in cantilever

beams. Mikata [63] made a significant contribution by investigating analytical solutions of peristatic and peridynamic

problems for 1D infinite rod. Furthermore, Zaccariotto et al. [64] applied PD for the solution of static equilibrium

problems and static crack propagation problems using an implicit Newton-Raphson method. Also, Buryachenko [65]

used PD to study the properties of peristatic bars of random structure.
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3.2. Multifield problems

To solve complex problems encountered in practice, coupled formulations involving PD have been developed for

the analysis of thermal, chemical, diffusion and electrical problems as well as porous flow. In particular, see the

pioneering work of Gerstle et al. [66] and the more recent work of Oterkus et al. [57] among others.

3.2.1. Heat transfer

The classical heat transfer equations are not applicable to bodies with emerging discontinuities since they involve

temperature gradients. This issue motivated Bobaru and Duangpanya [67] to present a peridynamic formulation for

1D transient heat conduction. They also analyzed the convergence to the classical solution in the limit of vanishing

horizon, which was then extended to multiple dimensions [68]. Also, Oterkus et al. [57] derived a generalized state-

based peridynamic heat transfer model based on the Lagrangian formalism and demonstrated its advantage in handling

discontinuities. To account for the effects of thermal state on the deformation of a body, fully-coupled peridynamic

thermomechanics were presented in [69]. An important study was carried out by Chen et al. [70] in which, by means

of the one-point quadrature, they investigated the effect of the kernel choice on peridynamic solutions for transient

heat and mass diffusion. The authors underlined that the one-point quadrature converges to the classical solution in

the limit of vanishing horizon.

3.2.2. Diffusion

Considering the major issues caused by moisture in different applications, Diyaroglu et al. [71] used a peridynamic

model based on the wetness approach to predict moisture concentration and diffusion. Oterkus et al. [57] derived a

generalized state-based peridynamic thermal diffusion model which can also be adapted to account for concentration.

For various benchmark problems, the results from the model were in good agreement with the analytical solutions.

Furthermore, PD provides a suitable platform to study nonlocal diffusion arising in several disciplines such as biology,

image processing and particle systems, see [72] among others.

3.2.3. Electronics

Device failure due to thermal stresses is a major concern regarding electronic packages. This failure mode stems

from the mismatch of material properties at interfaces as well as the presence of geometric discontinuities. In that

context, the peridynamic formulation has been applied to investigate crack propagation in multi-layer thin-film struc-

tures [73]. Thermomechanical modeling of microelectronic packages has been addressed in [74]. Another crucial

issue regarding electronic components is their potential moisture absorption, leading to degradation whereby the peri-

dynamic wetness approach [71] can be utilized to predict moisture concentration in electronic packages.
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3.2.4. General coupling techniques

In order to accurately simulate coupled processes, various formulations can be merged into a single framework.

In particular, the peridynamic formulation has been coupled with different numerical methods. For instance, PD has

been implemented within a coupling framework to investigate soil dynamics applicable to geomaterials exhibiting

inelastic behavior under high-pressure loads or soil fragmentation due to high strain rates under explosion-induced

shock waves. Since soil is essentially a medium in which various particles such as sand and rocks are assembled, con-

ventional FEMs are not suitable to capture the complex dynamic interactions. To address the technical difficulties in

the simulation of explosion-induced fragmentation, coupled PD-Smoothed Particle Hydrodynamics (SPH) formula-

tions have been developed [75, 76]. PD has also been applied in the context of electrothermomechanics for instance to

model dielectric breakdown in solids [77]. The works of Prakash et al. [78] illustrate the application of electromechan-

ical PD to study composite materials. Specifically, the coupled framework was used to investigate conductivity and

piezoresistivity of carbon nanotube reinforced polymer composites and to carry out damage sensing in nanocomposite

bonded explosive materials. PD-FEM coupling is an approach aimed to take advantage of both methods [79–82]. The

interest in PD can also be understood from the coupling of PD with other formulations like classical elasticity [83],

poroelasticity [41, 84], MD [85, 86], finite point method [87] as well as damage models [88].

3.3. Complex flow problems

The governing equations of transport phenomena are typically convection-diffusion equations. However, in some

natural systems such as porous media, anomalous diffusion occurs. The work of Katiyar et al. [89] presented a state-

based PD formulation to simulate the convective transport of a single-phase flow of a fluid in heterogeneous porous

media. Motivated by the problem of dessication cracking due to the soil’s variable moisture content, Jabakhanji and

Mohtar [90] proposed a peridynamic model for transient moisture flow in unsaturated, heterogeneous and anisotropic

soils.

It is worth mentioning that Silling et al. [91] proposed an Eulerian peridynamic model for compressible fluids. The

bond forces are dependent only on the positions of the material points in the deformed configuration in contrast to the

Lagrangian formulation in the classical PD. The proposed model was used to analyze problems involving very large

deformations. The authors reported that the behavior of soft materials such as gels can be modeled via a framework

combining Lagrangian and Eulerian peridynamic models.

3.4. Multiscale problems

There exists a wide range of phenomena and processes whose characterization requires a simultaneous and con-

sistent modeling at multiple spatial and temporal scales. Multiscale modeling is typically used for the analysis of
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complex materials such as biomaterials, crystalline materials, polymers and composite materials. Various numerical

techniques have been developed to perform multiscale modeling and simulation, amongst them PD is of particular

interest here. Askari et al. [92] demonstrated that PD is a viable multiscale material model, suitable for length scales

ranging from nano-scale to macro-scale. One of the early applications of PD to multiscale modeling is found in [49],

in which adaptive refinement for 1D, later extended to 2D [93], was introduced. It has been shown that the peri-

dynamic horizon δ is essentially a length scale. Bobaru et al. [94] addressed the natural connections between PD

and multiscale modeling. Alali and Lipton [95] developed a two-scale evolution equation based on the peridynamic

formulation to study the dynamics of heterogeneous media.

The determination of material properties across different length scales is often carried out by means of an atomistic-

to-continuum coupling approach. As indicated in [86], the transition from the microscale to the macroscale is chal-

lenging since the coupling must be consistent. In that regard, multiscale computational models were developed based

on an MD-PD coupling [85, 86, 96]. Talebi et al. [97] introduced an open-source, multiscale modeling software for

failure simulation in solids named PERMIX which has an interface to LAMMPS [98]. Besides, Du et al. [99] imple-

mented the two-scale convergence model to study the homogenization of the nonlocal convection-diffusion equation

and the state-based PD for heterogeneous media. Xu et al. [100] developed a two-dimensional multiscale implementa-

tion of finite element discretization of nonlocal models, see also [101]. It is noted that PD has been used for mesoscale

fracture analysis in aggregate materials, specifically in multiphase cementitious composites [102]. Shelke et al. [103]

addressed the multiscale estimation of damage in composite materials by means of a nonlocal elastic kernel. For more

details on application of PD in the context of multiscale modeling, see [104] among others.

3.5. Idealized structures

The behavior of engineering structures under different loadings and constraints can be sufficiently described by

imposing suitable conditions on PDEs of classical continuum mechanics resulting in simple models such as the Euler–

Bernoulli beam equation, Timoshenko beam equation and the thin plate equation. Generally, the numerical simulation

and design of complex engineering structures involve a combination of idealized structural elements such as beams,

bars, shells, plates and membranes. The advancement of the peridynamic theory has brought a new perspective in con-

tinuum mechanics as it recovers the reformulation of established PDEs governing the behavior of idealized structural

elements. The pioneering work by Silling and Bobaru [105] presented the peridynamic equations for membranes and

fibers used to investigate membrane failure and large deformations in fibers. Later, Diyaroglu et al. [106] derived the

PD equations for a Timoshenko beam and Mindlin plate that could account for transverse shear deformations. A peri-

dynamic equation of motion for antiplane shear and torsional deformations in structural elements is presented in [58].
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See [107, 108] for peridynamic models for beams, [109] for thin plates, [110–113] for fiber networks and [114] for

shells, among others.

It is a very challenging task to determine material properties at the microscale and nanoscale, essentially due to

the scale effect. In that context, Celik et al. [115] carried out the mechanical characterization of Nickel nanowires via

experimental procedures and numerical simulations using FEM and PD, to determine their elastic modulus and yield

stress. Also, Reddy et al. [16] presented modified beam and plate theories based on gradient elasticity theories, which

account for size effects and geometric nonlinearity. Moreover, they proposed a discrete PD formulation as an alterna-

tive to the classical PD whereby the advantages of the discrete PD approach were highlighted. An interesting study

by Li et al. [116] presented a peridynamic model for the nonlinear static analysis of truss and tensegrity structures. To

understand the relationship between microstructure and mechanical behavior, Le et al. [117] used a state-based PD to

analyze the stress distribution in round wires under uniaxial tensile load and investigated the effects of defects on the

properties of the wires.

3.6. Constitutive models

Different materials can be categorized based on their constitutive behavior such as elasticity, plasticity and vis-

coelasticity. For the examples of elasticity in PD see the bond-based model proposed by Silling [1], the ordinary

state-based model proposed by Silling et al. [26], the non-ordinary state-based model proposed by Aguiar and Fos-

dick [34] and the higher gradient expansion for linear isotropic peridynamic materials proposed by Silhavy [118],

among others. Foster et al. [119] incorporated a viscoplasticity model within the state-based peridynamic framework.

The first peridynamic crystal plasticity model was implemented by Sun and Sundararaghavan [120]. Besides, Madenci

and Oterkus [59] developed ordinary state-based PD constitutive relations for plastic deformation based on von-Mises

yield criteria with isotropic hardening. Viscoelastic material models have been incorporated within the peridynamic

framework to simulate the response of viscoelastic materials under point loads [121] as well as mechanical and thermal

loads [122].

3.7. Numerical techniques

The governing equations of physical phenomena are often solved numerically, essentially due to the complexities

of the formulations such as strong coupling, nonlinearity and complex geometries. With proper refinement, numerical

methods usually yield approximate solutions with sufficiently high accuracy. For engineering analyses, the finite

element method and meshfree methods are among the most common approaches. This section briefly reviews the

relationship of such numerical techniques with PD.
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3.7.1. Meshfree methods

Even though mesh-based approximation techniques such as FEM are widely used in many applications, there are

cases in which they may not be well suited. These include complex three-dimensional geometries, domains with

discontinuities and transient fluid flow through porous media [41]. It is known that a highly distorted mesh results in

large errors and constant remeshing is impractical. The meshfree methods preclude the use of predefined mesh for

the domain discretization but instead, a set of nodes are scattered over the domain and its boundaries, see [123, 124]

among others. The peridynamic approach bears certain similarities to the meshfree method in the sense that the

domain must be discretized into a set of points and not elements.

Silling and Askari [125] elaborated on the numerical implementation of the PD governing equation namely the

meshfree discretization, the integration procedures and the boundary conditions. The discretized formulation was

then applied to case studies involving dynamic crack growth. Bessa et al. [126] made a significant contribution by

establishing a connection between the original state-based peridynamic formulation with other meshfree methods.

Furthermore, the authors introduced the Reproducing Kernel Particle Method so as to overcome certain limitations

of the original formulation. Regarding the comparison of PD and other meshfree methods, Ganzenmüller et al. [127]

investigated the similarities between the meshfree discretizations of PD and SPH. Yaghoobi and Chopeza [128] pre-

sented a meshfree method based on the non-ordinary state-based PD to analyze fiber reinforced concrete structures.

An interesting study by O' Grady and Foster [129] presented a meshfree implementation of a state-based peridynamic

model to analyze the bending and failure of shells, thereby rotational springs are introduced between pairs of peridy-

namic bonds. Seleson and Littlewood [130] investigated the accuracy and convergence of meshfree static peridynamic

simulations.

3.7.2. Finite element methods

The finite element method is one of the most important numerical methods in computational mechanics. To opti-

mize computational efficiency and accuracy, the concurrent implementation of FEM and PD has been investigated. A

significant contribution by Macek and Silling [131] described the implementation of PD within a FE code, in which

the peridynamic bonds were represented by truss elements. Chen and Gunzburger [132] developed continuous and

discontinuous Galerkin FEM for the peridynamic model, by means of a variational formulation. In order to reduce the

computational cost in peridynamic computations, Wang and Tian [133] proposed a fast Galerkin method with efficient

matrix assembly and storage for a peridynamic model. Later, their proposed model was extended by Liu et al. [134]

to higher-order discretizations and hp adaptivity. Interesting studies were presented by Du et al. [135, 136] in which

an adaptive FEM was developed for nonlocal diffusion equations and peridynamic models by establishing a posteri-

ori error analysis. Tian and Du [137] introduced a nonconforming discontinuous Galerkin FE scheme for nonlocal,
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volumetrically-constrained problems associated with some linear nonlocal diffusion and nonlocal peridynamic opera-

tors.

A potentially useful and practical technique is the integration of PD within an established FE framework, such as

commercial softwares. In that context, Beckmann et al. [138] investigated the damage of a 2D bi-material strip due

to thermal loading by means of an implicit FE implementation of PD in Abaqus R©. It is worth mentioning the work

of Schweitzer and Wu [139], who studied the discretization of the Particle Unity Method, a generalized FEM, with

embedded PD enrichment.

Owing to its relative simplicity, attempts have been made to reformulate FEM to tackle challenging problems such

as fatigue and damage. Reddy and Srinivasa [140] presented displacement-based finite element models for hyperelas-

tic materials. It was demonstrated that the magnitude of the discretized nodal forces can be expressed in terms of the

axial strains along the element edges. The nodal force expressions were then compared with the bond force in PD.

Based on this work, Khodabakhshi et al. [141] introduced a nonlocal framework known as graph-based FE to study

fracture in brittle materials. It was shown that fracture problems can be solved using FEM if the classical formula-

tion is reformulated into truss-like models, thereby preserving the simplicity of the FEM. Recently, Ren et al. [142]

investigated the dynamic fracture process in a 3D elastic solid, based on a discontinuous Galerkin method of the

bond-based PD. Aiming to design a numerical framework for the failure analysis of new corrosion-resistant mate-

rials, De Meo and Oterkus [143] presented FE implementation of a peridynamic pitting corrosion damage model.

Gerstle et al. [144, 145] presented a finite element peridynamic model to analyze the structural behavior of concrete

structures. Very recently, PD modeling of diffusion using FE analysis was discussed in detail by [146] whereby the

accuracy and capability of this approach is demonstrated through several benchmark problems. See [147–156] for

further contributions dealing with PD and finite element techniques.

3.8. Material failure

In order to prevent safety risks and casualties, significant effort is put into the investigation and prediction of fail-

ure. From the perspective of computational simulation, the eXtended Finite Element Method (XFEM) [157, 158] has

been introduced as an extension of the conventional FEM to capture discontinuities. On the other hand, PD inher-

ently provides a suitable framework to predict material failure. Comparisons of PD, XFEM and CZM are presented

in [159].

In the context of PD, failure can be categorized depending on the material characteristics and the type of PD

formulation used. For instance, for brittle materials such as glass or PMMA and if the bond-based peridynamic

formulation is utilized, the failure can depend on a critical stretch parameter. For each step of a peridynamic analysis,

the stretches of all bonds are monitored and if any of these bonds exceeds the critical stretch value, then these bonds get
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broken and their forces reduce to zero such that the associated material points will no longer interact with each other.

The critical stretch parameter has a direct connection to Griffith’s failure criterion [3] based on the critical energy

release rate. According to the peridynamic theory, a crack emerges when the bonds within a certain region are broken.

The local damage state of a material point is quantified as the ratio of the number of broken interactions to the original

number interactions associated with it. A novel energy-based failure criterion was proposed by Foster et al. [160]

for a rate-dependent plastic material model within PD. Material failure is often categorized into damage, fracture and

fatigue discussed in the remainder of this section. Obviously, the three categories are not mutually exclusive. For

instance, low-cycle fatigue can be related to crack propagation and fracture.2

3.8.1. Damage

Considering that experimental tests for damage investigation may not be cost effective, numerical techniques have

been developed to provide qualitative as well as quantitative prediction of structural damage. A crucial process used

to assess the damage state of a structure during its service life is Structural Health Monitoring (SHM). Ibrahim [162]

assessed the recent advances of Structural Life Assessment (SLA) and explained the differences between SLA and

SHM in PD. To accurately simulate the material degradation involving discontinuities, Han et al. [88] introduced an

adaptive coupling of local continuum damage mechanics and PD. PD has been used for damage prediction in different

classes of materials including composite materials [163, 164] and layered heterogeneous materials [165]. Emmrich

and Puhst [166] applied PD to investigate the conditions for the existence and uniqueness of solutions in the case of

damage. Considerable effort has been dedicated to the study of damage due to pitting corrosion; a form of localized

corrosion generally in the form of cavities. De Meo et al. [167] presented for the first time a numerical multiphysics

peridynamic framework for the modeling of adsorbed-hydrogen stress-corrosion cracking, based on the adsorption-

induced decohesion mechanism. More recently, De Meo and Oterkus [143] implemented a PD-based pitting corrosion

damage model in a commercial FE software, see also [168, 169]. Recently, Jiang et al. [170] applied the peridynamic

theory to analyze micro breakage in cemented carbide cutting tool.

3.8.2. Fracture

Peridynamics has proven to be powerful strategy to capture various types of fracture in materials due to its

integro-differential nature with no spatial derivatives. Taking advantage of the peridynamic formulation, Kilic and

Madenci [171] predicted crack growth patterns in quenched glass plates. Ha et al. [172] used a bond-based PD to

characterize dynamic brittle fracture. In a related work, Shi [173] simulated crack propagation in brittle glasses by

2For the sake of completeness and in contrast to “material failure”, one shall not neglect “structural failure” due to geometrical instabilities
such as buckling phenomena. In this regard, Kilic and Madenci [161] investigated the elastic stability of structures by means of PD, in order to
determine buckling characteristics of columns under compression and plates under thermal loads.
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means of a modified Lennard–Jones potential. Liu and Hong [174] used discretized PD and parallel computing to

study brittle and ductile solids. The first study on dynamic fracture using PD has been presented by Silling [175],

for further developments see [138, 176–183] among others. In that context, Shojaei et al. [87] coupled finite point

method to PD in order to study dynamic fracture. Recently, Madenci et al. [184] predicted crack propagation in

isotropic materials under complex loading conditions. Dynamic fracture has also been studied with PD for various

types of structures such as polymers [185], fiber networks [186], concrete structures [187], anisotropic materials [188–

190], functionally graded materials [191], polycrystalline materials [192] as well as geomaterials [62, 193–196]. It is

worth mentioning that Evangelatos and Spanos [197] presented the application of PD to stochastic fracture modeling,

with a novel spatial discretization of the peridynamic equation.

3.8.3. Fatigue

Hu and Madenci [198] presented a fatigue damage model to predict damage in laminates under cyclic loading. The

performed numerical simulations were found to be consistent with the experimental fatigue data. Crack nucleation

and growth was also investigated in [199] using a peridynamic fatigue model. Zhang et al. [190] developed a PD-

based fatigue crack model to analyze fatigue cracking in two-phase composite materials. Their numerical results were

consistent with the experimental data.

3.9. Impact problems

Silling and Askari [200] pioneered the study on impact by means of PD. The numerical code EMU was used to

implement the bond-based PD and solve a set of case studies. Then, using EMU, Demmie and Silling [201] considered

the problem of extreme loadings of structures. Their work was extended by Oterkus et al. [202] by presenting an

impact damage assessment of building components. The peridynamic theory has been used to study impact damage

in composite materials [203], layered glass systems [204, 205] and ceramic materials [206]. Recently, Liu et al. [207]

studied impact damage in a beam with an offset notch. Lee et al. [208] presented a modeling framework for the

interaction of peridynamic domain and conventional finite elements, in order to effectively analyze impact problem

and damage thereof. In a related work, Kosteski et al. [209] introduced the lattice discrete element method to model the

impact test of PMMA specimens. It is noted that Demmie and Ostoja-Starzewski [210] elaborated on a computational

stochastic PD model which was used to study impact loading in geological materials. See also [211–214] for further

contributions on impact and damage using PD.

3.10. Composites

Composite materials are used in several applications due to their high strength-to-weight ratio, fatigue resistance

and damage tolerance among other properties. In order to save time and costs associated with experimental procedure,
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a huge effort is dedicated towards the development of effective computational models for prediction of composites

behavior. Regarding the application of PD in composites, Silling [215] demonstrated that nonlocality arises in a ho-

mogenized microscale model for layered composites when a smoothed displacement field is chosen. Furthermore,

he derived a peridynamic model in which the length scale is dependent on both the geometry and constituent proper-

ties. Buryachenko [216] presented a generalization of the general integral equations of micromechanics using a ther-

moperistatic formulation to obtain the effective properties of composite materials. To study the response of composite

laminates over a wide range of impacting velocities, Sun and Huang [203] presented a PD rate-dependent constitutive

model combining the prototype microelastic brittle (PMB) model and the viscoelastic Kelvin–Voigt model. They also

introduced a new interlayer bond to describe interlayer interactions. Their simulations compared the impact resistance

of composite laminates with that of isotropic plates. Kilic et al. [217] showed that PD is applicable to damage predic-

tion in laminated composites and claimed that homogenization would compromise the failure prediction. In a related

work, Hu et al. [218] proposed a homogenization-based peridynamic model for fiber-reinforced composite laminates.

Their results were in agreement with the analytical data for their benchmark problem. The effectiveness of PD in

terms of damage prediction in composite laminates has also been demonstrated in [164, 188, 198, 219, 220].

Askari et al. [163] made a noteworthy contribution by proposing a hybrid continuum/peridynamic model to ana-

lyze the degradation of laminated composites termed as morphing coupling approach. They indicated that the coupling

occurs at the level of the constitutive model in attempts to mitigate the computational cost due to the nonlocal nature

of PD. Due to their inhomogeneous nature, composite materials exhibit various failure modes such as matrix cracking,

delamination and fiber kinking. Hu et al. [221] proposed a peridynamic model to investigate delamination growth in

composite laminates. Diyaroglu et al. [222] predicted the damage behavior of composites subjected to shock loading.

Sadowski and Pankowski [223] developed peridynamic models to investigate nanoindentation of ceramic composites.

The failure analysis of concrete structures and cementitious composites using PD can be found in [102, 224, 225].

Given the current trends towards nanomaterials, nanocomposites are an innovative class of materials with various

industrial applications. Recently, studies have been conducted to estimate their macroscopic properties using the

peridynamic theory. For instance, Duzzi et al. [226] used the bond-based PD formulation to estimate the effective

Young’s modulus as a function of the filling fraction and observed good agreement of their model with experimental

data. Han et al. [227] proposed a classical continuum model as well as a hybrid local/nonlocal PD-based model to

determine the effective properties of CNT polymer composites using homogenization and concluded that the hybrid

model is more effective in capturing local inhomogeneities. Also, Decklever and Spanos [228] proposed a stochastic

nonlocal model based on Monte Carlo simulation and the bond-based PD formulation to evaluate the properties of

single-walled CNT polymer composites. They reported that their model is computationally efficient in predicting the
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mechanical properties and providing a realistic simulation of quasistatic fracture.

3.11. Biology

The peridynamic theory has been successfully applied to study various problems related to living tissues. Deng

et al. [229] investigated microcrack propagation and healing processes in cortical bone by means of a nonlocal multi-

scale field theory with a generalized form of PD. Taylor et al. [230] used PD to model rupture in biomembranes and

investigated the transition between two types of floral and fractal spontaneous rupture. The work of Perré et al. [231]

addressed the prediction of wood properties based on its cellular structure, by means of meshfree methods and image-

based representation.

An interesting approach was implemented by Lejeune and Linder [232] where the dual-horizon PD framework

was extended to capture biological growth by changing the interaction distance and force law between particles. With

this framework, the authors note that PD is a particularly convenient approach for modeling biological systems on the

cellular scale where each node represents a biological cell. The authors focused on using the framework to capture

multiscale emergent behavior driven by mechanical interactions. Recently, Lejeune and Linder used PD to investigate

the effect of cell division angle on population morphology [233], the buildup of residual stresses in growing monolay-

ers and spheroids [234] and also, the influence of cell shrinkage during cell death on population morphology [235].

Beyond this body of initial studies, which focuses on small populations of growing, proliferating, and dying cells, PD

is a promising tool for modeling biological materials on the subcellular, cellular and histological scales because PD

readily captures nonlocal forces inherent to many biological systems. Furthermore, complex biological phenomena

such as buckling and folding of tissues [236, 237] due to growth are yet to be investigated by PD.

3.12. Geomechanics

Geomaterials are susceptible to crack due to fluid pressure. A type of fracture occurring in oil and gas extraction is

hydraulic fracturing, also known as fracking, where fracture is induced in the rock formation to release natural gas and

oil. Various numerical methods have been developed to study these phenomena, among which of particular interest

here is PD. For instance, Hattori et al. [238] examined various numerical methods, among which PD, to analyze

hydraulic fracking in shale rocks. For further details on hydraulic fracturing in the context of PD, see [41, 239–242]

among others.

Lai et al. [243] derived the U-p peridynamic formulations for fluid-saturated geomaterials and simulated their

fragmentation under impulse loads. The U-p formulations are equations that describe the behavior of saturated ge-

omaterials, expressed in terms of the displacement U and pore fluid pressure p. In the context of renewable en-

ergy exploitation, Feng et al. [244] reviewed enhanced geothermal systems (EGS) and mentioned PD as a means
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of accurately modeling the multi-physics phenomena involved, namely thermal stresses and hydraulic fracture. As

pointed out by Fan and Li [76], several engineering applications require an understanding of the soil response to

blast loads. The problem of soil fragmentation under explosive loads was simulated using a PD/SPH coupling ap-

proach in [75, 76]. Moreover, the peridynamic theory has been implemented to investigate crack behavior in rock

materials [193, 194, 245].

3.13. Wave dispersion

The peridynamic formulation has the interesting property that elastic wave dispersion occurs if long-range forces

are present and that the peridynamic horizon δ influences the amount of dispersion. The wave dispersion characteristic

of PD was reported by Zingales [246] combining the concepts of lattice dynamics, PD and the Kröner–Eringen

nonlocal model to investigate wave propagation in 1D elastic solids, see also [247]. A mathematical study of nonlinear

peridynamic wave equations was presented in [248]. Various numerical techniques [249–251] have been developed

to analyze wave propagation in PD. Silling [252] analyzed the propagation of solitary, nondispersive waves in a

nonlinear peridynamic solid. In a related study, Vogler et al. [253] investigated the effect of the microstructure on the

planar wave propagation in layered, particulate composite and granular materials. To reduce the wave dispersion in

PD, Wildman and Gazonas [254] presented a hybrid method. Also, wave propagation in the context of PD has been

studied in other classes of materials such as graphene [255], carbon nanotube [256] and brittle materials [206].

3.14. Particle systems

The nature of the peridynamic equation (1) is particularly interesting in the sense that its discretized form is, to

some extent, similar to MD. In that regard, Parks et al. [257] incorporated PD within the MD simulator LAMMPS.

The authors pointed out that this approach enhanced the capabilities of the MD code towards performing simulations

at larger time and length scales. Rahman and Foster [53] incorporated Langevin dynamics in the peridynamic for-

mulation through the fluctuation-dissipation principle. The authors stated that this approach resolved the ambiguity

regarding the role of temperature in a peridynamic system. Within the context of statistical mechanics, they showed

that a homogenized peridynamic model satisfies the conservation laws of continuum mechanics (mass, momentum

and energy). Dai et al. [258] elaborated on the similarity between the state-based PD and the reproducing kernel

particle method and applied these techniques to solve dynamic problems in a multiresolution continuum. For further

details on discrete systems and their potential connection to PD see [13, 14, 259], among others.
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4. Concluding remarks

The primary objective of this manuscript is to provide a basic understanding of the peridynamic theory and its main

applications to date. Since its formal establishment, the peridynamic theory has found its way to several disciplines

collected in Fig. 3. Despite its infancy, the method has been successfully applied to various challenging problems.

Given its advantage in handling discontinuities, in contrast to classical continuum mechanics, the peridynamic theory

has been of great interest in the scientific community. Since the inherent nonlocality in PD induces high computational

cost, further development of the method is required to boost its capabilities. Even though PD has been of particular

interest to capture fracture, it has motivated other formulations such as dealing with Large Eddy Simulations [260].

As previously discussed, PD has been applied to simulate flows in porous media and is yet to be extended to turbulent

flow analysis. Recently, Motsch and Tadmor [261] presented a mathematical analysis of self-organized dynamics,

an instance of which is peridynamic elasticity. Fried [13] and Fosdick [14] have elegantly formulated the mechanics

of particle systems which could lead to an alternative PD formulation. Beyond the initial studies in the context of

biological applications, which focus on small populations of growing, proliferating, and dying cells, PD is a promising

tool for modeling biological materials on the subcellular, cellular and histological scales because it readily captures

nonlocal forces inherent to many biological systems.

In summary, this manuscript provides a brief explanation of the peridynamic theory and an extensive account of

the literature on the subject. Due to its integro-differential form, the peridynamic theory proves to be a promising alter-

native to classical continuum mechanics when dealing with discontinuities and nonlocalities. This generic framework

is broadly applicable to improve our understanding of the material behavior with a large variety of applications.

Note, the main objective of this manuscript is to provide a brief overview of the literature on peridynamics to date

and to categorize them respectively. This should not imply that the authors want to necessarily promote peridynamics

nor we believe that peridynamics is an ultimate theory to understand and explain every possible phenomena. On the

contrary, we regard peridynamics as a continuum theory suffering from and taking advantages of most underlying

assumptions of continuum mechanics. One may even claim that possibly peridynamics, as the whole continuum

mechanics, could become obsolete, as discrete Lagrangian models could prove more appropriate and predictive of

material behavior. In our opinion, both discrete and continuum approaches have certain advantages and disadvantages

and perhaps their utility must be separately assessed only based on the problem of interest.

Appendix A. Numerical implementation

A typical solution procedure for PD is described by Madenci and Oterkus [25], among others. The peridynamic

equation is generally solved numerically by means of a meshfree approach. A generic approach for the numerical
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implementation of PD is given in Fig. A.5.

computations, MPI, OpenMP and/or GPU based approaches can be used. Another important aspect of PD is the

application of boundary conditions. Boundary conditions shall be applied to volumes rather than points, lines or

surfaces. Utilization of fictitious regions is a common practical approach. This will also eliminate the possibility of

lack of interactions for the material points close to the surfaces, otherwise these points should be corrected by means

of a surface correction factor.

Specify input parameters

Initialize matrices

Is ADR
involved?

Determine stable step size�t = 1

Generate material points

Determine the material points
inside the horizon & store them

Is there any
pre-existing crack?

Compute the surface correction
factor for each material point

Remove interactions
through crack surfaces

Apply initial conditions

Is ADR
involved?

Compute stable mass matrix

Start time integration

Apply boundary conditions

Compute the total PD in-
teraction forces acting
on each material point

Terminate PD interaction if its
stretch exceeds the critical stretch

Compute the ADR technique
parameters if ADR is involved

Perform time integration to obtain
displacements and velocities

Yes

No

Yes

No

Yes

No

Figure 6: General PD implementation flowchart

Computational PD codes have been developed at Sandia National Laboratories, namely Peridigm [448] and the

parallel MD code LAMMPS [266]. The numerical implementation of PD is described in [61].

28

Figure A.5: General PD implementation flowchart. ADR stands for Adaptive Dynamic Relaxation.

The solution domain is discretized into a finite number of volumes, each represented by a point located at its

center. The peridynamic equation of motion in integral form for elasticity can then be expressed in terms of a finite

summation of the form

ρ(xk) ü(xk, t) =

N∑
j=1

f (u j − uk, x j − xk)V j + b(xk, t) , (A.1)

where N is the number of points inside the horizon of material point k. Correction procedures such as volume and

surface corrections can be applied to address the problems of intersecting regions and surface effects respectively [25].
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As pointed out by Ganzenmüller et al. [42], “Within the context of mesh-free methods, Peridynamics can be

classified as a Total-Lagrangian collocation method with nodal integration.”. Usually, the domain is discretized into

a uniform grid of material points, see also [161]. The idea of adaptive grid refinement was first introduced by Bo-

baru et al. [49] to analyze the response of a 1D peridynamic bar. Henke and Shanbhag [262] investigated irregular

meshes, specifically centroidal Voronoi tessellation, for peridynamic discretization. They observed that careful place-

ment of quadrature points seems to eliminate mesh sensitivity without significant increase in computational cost.

Freimanis and Paeglitis [263] studied δ convergence (material point spacing h is constant but horizon size varies)

and observed that the maximum accuracy is reached when δ = 3h and higher horizon sizes compromise the solution

accuracy.

Peridynamic implementation in commercial finite element software still uses meshfree discretization although

it employs mass point elements to represent the material points and truss or spring elements for peridynamic inter-

actions [131]. This type of implementation also allows utilization of efficient solvers of commercial finite element

software which can significantly reduce the computational time. Computational codes to deal with PD have been

developed at Sandia National Laboratories. In particular, Peridigm [264] and the parallel MD code LAMMPS [98]

shall be mentioned. It is noted that peridynamic equations are intrinsically compatible for parallel programming ap-

plications. The numerical implementation of PD is described in [25] wherein samples codes for numerous benchmark

problems are given as well.

The discretization of the governing equations yields a matrix system. Brothers et al. [265] investigated different

methods for an efficient construction of the tangent stiffness matrix within Peridigm: forward difference, central dif-

ference and automatic differentiation. The tangent stiffness matrix is mainly required for implicit time integration [39]

in dynamic problems. Although explicit integration scheme is more straightforward to implement and requires less

storage, it is only conditionally stable hence mainly suitable for short-duration analysis. For static problems, the

adaptive dynamic relaxation is a common technique which artificially drives the system to reach the steady-state con-

dition by introducing an artificial damping [25, 266]. Kilic and Madenci [161] used a volume integration scheme over

hexagonal subdomains into which Gaussian integration points were placed. Yu et al. [267] proposed a new adaptive

integration method with systematic domain categorization for various geometries. To address the problem of inter-

secting regions (cell neighborhood and neighbor cells) in the standard meshfree approach, Seleson [268] proposed

one-point quadrature algorithms to improve the accuracy of integration of 2D peridynamic models. Gu et al. [269]

used the Galerkin finite element to discretize a microelastic peridynamic material model within a finite bar. To accel-

erate the convergence of the iterative solver, they utilized fast circulant preconditioners.

The application of boundary conditions requires a special treatment in PD. Silling [1] showed that the variational
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formulation of the peridynamic equations does not lead to natural boundary conditions, which are traction boundary

conditions in the classical theory. Therefore, body forces are prescribed through a layer of finite thickness at the

material boundary. On the other hand, displacement and velocity boundary conditions are enforced via a fictitious

boundary layer of depth at least equal to the horizon [25, 131].
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