Robinson, Jeanne and Gibson, Jeremy and Arevalo-Maldonado, Helber Adrian and De Prins, Jurate and Windmill, James (2018) A non-destructive virtual dissection by micro-CT reveals diagnostic characters in the type specimen of Caloptilia stigmatella (Lepidoptera: Gracillariidae). Zootaxa, 4441 (1). pp. 137-150. ISSN 1175-5326 , 10.11646/zootaxa.4441.1.8

This version is available at https://strathprints.strath.ac.uk/65459/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
A non-destructive virtual dissection by micro-CT reveals diagnostic characters in the type specimen of *Caloptilia stigmatella* (Lepidoptera: Gracillariidae)

JEANNE ROBINSON1,5, JEREMY GIBSON2, HELBER ADRIÁN ARÉVALO-MALDONADO3, JURATE DE PRINS4 & JAMES WINDMILL2

1Hunterian Museum, University of Glasgow, G3 8AW, United Kingdom. E-mail: jeanne.robinson@glasgow.ac.uk
2Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1RD, United Kingdom. E-mail: jeremy.gibson@strath.ac.uk
3Museo Entomológico UNAB, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail: jelber2000@gmail.com
4Royal Belgian Institute of Natural Sciences, Brussels, Belgium. E-mail: jurate.deprins@gmail.com
5Corresponding author. E-mail: jeanne.robinson@glasgow.ac.uk

Abstract

Nearly a century ago, wing venation was introduced in gracillariid taxonomy as a means to diagnose closely related genera and species groups. Recent advances in non-destructive virtual micro-dissections suggest promising approaches with which to revisit the relevance of wing venation characters on historic primary type specimens. Many unique type specimens in Gracillariidae and other microlepidoptera groups preserved in museum collections are in poor condition, and over the course of history have suffered loss or damage to their abdomens. Consequently, genitalia morphology is not available for diagnoses and comparisons. In this paper we emphasize the need to include the type species and type specimens into the broader context of taxonomic studies on micro-moths in general and the family Gracillariidae in particular. The genus *Caloptilia* has a world-wide distribution and has been the subject of research for more than 200 years, yet the generic boundaries and groupings within the genus are still unresolved due to the lack of a reliable set of taxonomic characters obtained from the primary types. We describe a method of virtual descaling of the fore- and hindwings using the unset micro-moth type specimen of *Caloptilia stigmatella* Fabricius, 1781, in order to demonstrate that the study of historic and fragile type specimens and diagnoses of their internal morphological characters becomes possible by applying new and non-destructive technology.

Key words: *ampelipennella*, computed tomography, genus-level diagnosis, holotype, nomen nudum, non-destructive dissection, visual method

Introduction

Following the rules of the ICZN (1999), species names are based on actual specimens which are represented by primary types (holotypes, lectotypes, syntypes) deposited in public repositories. The existence of such type specimens and the physical embodiment of the species names increases the precision of available diagnostic characters observed in the type specimens and minimizes identification errors. Genera, being the conventional units, are based on the same principal: every genus-group name is eternally linked to the type species designated by an author (original designation), by a reviser (subsequent designation), or based on monotypy. The conventional generic concept in micro-moths, a typically pragmatic approach based on limited morphological data, must now be reconciled with new molecular and morphological data sets to shed light on the phylogeny and taxonomy of a particular group (e.g., Mutanen et al. 2010; Kawahara et al. 2011, 2017; Regier et al. 2013). The search for conventional generic concepts in the family Gracillariidae and particularly revising the species-rich genus *Caloptilia* Hübner, 1825 by the community of taxonomists aims to focus on long-term taxonomic solutions and seeks to group species into meaningful sets. In this sense the application of advanced imaging-computed technology may play a useful role as a tool efficiently mediating between different hypotheses (e.g., Kitching & Simonsen 2014; Leubner et al. 2017).
One of the morphological datasets that delimits genera within Gracillariidae is wing venation (Ely, 1918). The generic stability of this character set and its application to define the known genera and to describe new ones has been demonstrated by Vári (1961) and Kuznetzov (1981). However, the majority of the genera of Gracillariidae were erected without taking wing venation into account, and this information has not been corroborated with the type specimens. The traditional study of wing venation, which includes physical descaling the wings, is highly invasive. It is not applicable for unspread specimens because the risk of destroying such specimens is too high (Zimmerman 1978). For this reason we looked for a technique that allows taxonomists to examine wing venation characters while keeping valuable type specimens intact.

Micro-computed tomography (µ-CT) has been shown to be a useful tool in the study of insect morphology. It has been used successfully for virtual dissections of the genitalia of macrolepidoptera. Such visualizations have allowed individual components of complex structures to be observed in isolation with minimal interference from other components without physically separating them, proving much less destructive than real dissection (Simonsen & Kitching 2014; Saito et al. 2017). The use of µ-CT has been advocated for taxonomic studies where a researcher needs to compare already dissected specimens with types to determine their identity. Simonsen & Kitching (2014) highlight the particular value of this approach for invaluable legacy collections (e.g. the Linnaean and Fabricius collections). Hence, we decided to apply this technique to study the holotype of Caloptilia stigmatella (Fabricius, 1781).

Caloptilia is the third largest genus in the family Gracillariidae after Phyllonorycter Hübner, 1822 and Acrocercops Wallengren, 1881, and it has a global distribution (De Prins et al. 2015; De Prins & De Prins 2018). The leaf-mining moth C. stigmatella (Accession number: GLAHM 137070) was described by Fabricius in 1781 from an English specimen in the collection of Thomas Pattison Yeats (Stainton 1864). It has been in William Hunter’s insect collection since Yeats died in 1782 (Hancock 2015) and is kept at the Hunterian Museum, University of Glasgow. In addition to being the type specimen of the species, it is also the type species for the genus Caloptilia (Vári 1961; Kumata 1982; De Prins & De Prins 2005, 2018). The specimen is generally in good condition but is not ideal for morphological examination as it is mounted with its wings closed and at some point in history its abdomen has been lost.

The purpose of the present paper is: (1) to examine this valuable Fabrician specimen by virtual descaling using the µ-CT scanning technique; and (2) to evaluate this non-destructive methodology for revealing the diagnostic characters of taxonomic significance in fragile, historically important specimens.

Taxonomic data acquisition

Historical designation of Tinea stigmatella as the type species of the genus Caloptilia

The original description of the Caloptilia by Hübner in 1825 as “Verein, Coitus I” in the group of moths “Bemercte, Signatae” indicates that the main diagnostic character is the colouration of the forewings: “Mit hellen Zeichen auf den Schwingen, in färbigen Grunde.” This feature of colourful forewings marked by different signs distinguishes Caloptilia sensu Hübner from other micromoths with dull greyish-brownish forewings mainly under the name Tinea. Hübner (1825) listed two species under the Coitus I [the category in present understanding refers to a genus]:

C. ampelipennella is a nomen nudum [fails to conform to Article 12.1 of the ICZN]. Tinea upupaepennella Hübner, 1796, with the type locality of Augsburg, Germany, became the type species of the genus Caloptilia Hübner, 1825 by subsequent designation by Fletcher (1929). However, Tinea upupaepennella
Hübner, 1796 became a junior subjective synonym of *Tinea stigmatella* Fabricius, 1781, synonymized by Haworth (1828: 529). Fabricius was the first to present a description of this species, as *Tinea stigmatella* in 1781, based on a specimen that was collected in England, United Kingdom. The description conforms to ICZN Article 12, and agrees with the principle of typification. The specimen was re-examined, and we found that the characters fully correspond with the description of Fabricius (Figs 1, 2). The accompanying documentation and labels stating the identity and the taxonomic status of the specimen were provided. The species-group name *Caloptilia stigmatella* comprises ten synonymic nominal species-group names (Table 1). The re-verification of the full synonymy of *C. stigmatella* (Table 1) based on the re-study of type specimens of each species-group name is outside the scope of the present paper.

FIGURE 1. Original material. The original description of *Tinea stigmatella* by Fabricius (1781). The description is under the number 34.

FIGURE 2. Original material. 2. Type specimen of *Tinea stigmatella* (Fabricius, 1781) GLAHM:137070 kept at the Hunterian, University of Glasgow. The handwritten number 34 on the label matches the number in original description by Fabricius.
TABLE 1. Synonymy and taxonomic acts of the *Caloptilia stigmatella*.

<table>
<thead>
<tr>
<th>Species-group name</th>
<th>Type locality</th>
<th>Taxonomic act</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Phalaena] [Tinea] cruciella Goeze, 1783</td>
<td>[Germany]</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781</td>
</tr>
<tr>
<td>T.[inea] equestris de Fourcroy, 1785</td>
<td>[France], Paris</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781</td>
</tr>
<tr>
<td>Tinea triangulella Panzer, 1794</td>
<td>[Germany], Dresden</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Duponchel (1838–1840: 602)</td>
</tr>
<tr>
<td>G.[racillaria] purpurea Haworth, 1828</td>
<td>[United Kingdom], London</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Stainton (1849: 22)</td>
</tr>
<tr>
<td>G.[racillaria] ochracea Haworth, 1828</td>
<td>[United Kingdom], London</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Stainton (1849: 22)</td>
</tr>
<tr>
<td>G.[racillaria] trigona Haworth, 1828</td>
<td>[Germany], Dresden</td>
<td>An unjustified emendation of Tinea triangulella Panzer, 1799, nec Tinea trigonella Linnaeus, 1758 and a junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Stainton (1849: 22)</td>
</tr>
<tr>
<td>Tinea (Pl.[utella]) triangolosella; Pl. triangulosella Costa, 1836</td>
<td>[Italy], Naples</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Heydenreich (1851: 90).</td>
</tr>
<tr>
<td>Gracillaria purpuriella Chambers, 1872</td>
<td>[United States], [Kentucky]</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781, synonymized by Chambers (1879: 74)</td>
</tr>
<tr>
<td>G.[racilaria] consimilella Frey & Boll, 1876</td>
<td>[United States], Texas, Dallas</td>
<td>A junior subjective synonym of Tinea stigmatella Fabricius, 1781</td>
</tr>
</tbody>
</table>

Taxonomic value of the type specimen *Caloptilia stigmatella*

The specimen collected in England and described by Fabricius as *Tinea stigmatella* from the Thomas Pattinson Yeats collection became a reference not only for the species-group name *stigmatella* (Table 1), but also for one of the most speciose genera in leaf-mining micro moths. *Caloptilia* contains 474 species-group names of which 323 species are valid (De Prins & De Prins 2018). This is why the discovery of this specimen in the Hunterian Museum, University of Glasgow is so significant. The wide distribution of the species (Table 2), and more than 53 host-plant species recorded for *C. stigmatella* (De Prins & De Prins 2018), the slight variability in morphological characters of wing venation and male genitalia, and six molecular haplotypes (BOLD 2018) all suggest that the nominal taxon *C. stigmatella* might comprise a complex of species-group taxa.

Although the objective of the present paper is not to delimit *C. stigmatella* as a species-group taxon, characters of wing venation observed in the holotype will allow us to match and diagnose the holotype with other specimens of different populations in which variability and different character states are found, such as the coalescence of R₄ and R₅, M₂ and M₃. Slight variation in venation concerns whether the bases of R₄ and R₅ distal to the discoidal cell are connate or separate, or whether the bases of M₁ and M₂ distal to the discoidal cell are short stalked or connate. This slight variation still needs to be evaluated in order to define whether it represents intra- or inter-specific variation (Albrecht & Kaila 1997). Also, the delineation of the genus *Caloptilia* is not solved yet and currently is under investigation (Arévalo-Maldonado in prep.). There were attempts in the course of history to group *Caloptilia*-like species and to diagnose the genus *Caloptilia*, especially with the morphologically very similar genus *Gracillaria* Haworth, 1828 (De Prins 1985), which is the type genus of the family.

In the present paper we attempt to fine-tune the diagnosis of the genus *Caloptilia*, referring to the direct evidence—the primary type specimen [holotype] examined and described by Fabricius 237 years ago.
<table>
<thead>
<tr>
<th>Country</th>
<th>Reference of the first record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palaearctic</td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>Kuznetzov, V. I. 1981: 182</td>
</tr>
<tr>
<td>Austria</td>
<td>Duponchel, P. A. J. 1845: 372</td>
</tr>
<tr>
<td>Belgium</td>
<td>De Sélys-Longchamps, E. 1844: 25</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>Rebel, H. 1904: 368</td>
</tr>
<tr>
<td>China</td>
<td>Kuznetzov, V. I. 1981: 182</td>
</tr>
<tr>
<td>Croatia</td>
<td>Rebel, H. 1904: 368</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Duponchel, P. A. J. 1845: 372</td>
</tr>
<tr>
<td>Denmark</td>
<td>Bang-Haas, A. 1875: 36</td>
</tr>
<tr>
<td>Estonia</td>
<td>Frey, H. 1856: 230</td>
</tr>
<tr>
<td>Finland</td>
<td>Tengström, J. M. J. 1848: 144</td>
</tr>
<tr>
<td>France</td>
<td>Duponchel, P. A. J. 1838–1840: 604</td>
</tr>
<tr>
<td>France: Corsica</td>
<td>Skala, H. 1938: 44</td>
</tr>
<tr>
<td>Georgia</td>
<td>Kuznetzov, V. I. 1981: 182</td>
</tr>
<tr>
<td>Germany (as upupaepennella)</td>
<td>Hübner, J. 1796–1838: 68</td>
</tr>
<tr>
<td>Germany</td>
<td>Biesenbaum, W. 2016: 43</td>
</tr>
<tr>
<td>Hungary</td>
<td>Szöcs, J. 1981: 217</td>
</tr>
<tr>
<td>Ireland</td>
<td>Meyrick, E. 1927a: 791</td>
</tr>
<tr>
<td>Italy (as triangulosella)</td>
<td>Costa, O. G. 1836: 2–3</td>
</tr>
<tr>
<td>Italy</td>
<td>Glerean, P. & Triberti, P. 2015: 63</td>
</tr>
<tr>
<td>Italy: Sardinia</td>
<td>De Prins, W. & De Prins, J. 2005</td>
</tr>
<tr>
<td>Italy: Sicily</td>
<td>Massa, B., Rizzo, M. C. & Caleca, V. 2001: 93</td>
</tr>
<tr>
<td>Japan: Hokkaido, Honshū</td>
<td>Kunata, T. 1982: 34</td>
</tr>
<tr>
<td>Korea, Republic of</td>
<td>Park, K. T. 1983: 62</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Kuznetzov, V. I. 1981: 182</td>
</tr>
<tr>
<td>Latvia</td>
<td>Lienig, F. 1846: 297</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>De Prins, W. & De Prins, J. 2005: 127</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Ivinskis, P. & Pakalniškis, S. 1984: 27</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Wagner-Rollinger, C. 1974: 307</td>
</tr>
<tr>
<td>Macedonia</td>
<td>De Prins, J. & De Prins, W. 2017</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Kuznetzov, V. I. 1981: 182</td>
</tr>
<tr>
<td>Morocco</td>
<td>Rungs, C. E. E. 1979: 49</td>
</tr>
<tr>
<td>Netherlands</td>
<td>de Graaf, H. W. 1853: 48</td>
</tr>
<tr>
<td>Norway</td>
<td>Strand, E. 1901:40</td>
</tr>
<tr>
<td>Poland</td>
<td>Büttner, F. O. 1880: 451</td>
</tr>
<tr>
<td>Portugal</td>
<td>Mendes D'Azavedo, C. 1913: 25</td>
</tr>
<tr>
<td>Romania</td>
<td>Caradja, A. 1899: 208</td>
</tr>
<tr>
<td>Russian Federation: Central Asia and Siberia</td>
<td>Martynova, E. F. 1952: 86</td>
</tr>
<tr>
<td>Russian Federation: Far East (Khabarovsk Region, Kuril Islands, Primorye, Sakhalin)</td>
<td>Noreika, R. 1997: 392</td>
</tr>
</tbody>
</table>

......continued on the next page
Scouting of the genus-level characters in *Caloptilia stigmatella*

Under the latest classification of Gracillariidae (Kawahara et al. 2017), 25 genera including *Caloptilia* are grouped into the subfamily Gracillariinae Stainton, 1854. Having a robust phylogeny of family level taxa, there is now a need for re-evaluation of morphological characters of diagnostic importance at the genus-level, so the generic delineations could be completed. The critical re-examination of the diagnostic characters in the historical Fabrician type specimen became crucial for reconsidering the further re-verification of species assigned to *Caloptilia*.

The morphological diagnostic characters for *Caloptilia* were verified by Vári (1961) and Kumata (1982), who established 8 subgenera within *Caloptilia* on the basis of general morphological characters of the imago, including

<table>
<thead>
<tr>
<th>Country</th>
<th>Reference of the first record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>Skala, H. 1937: 11</td>
</tr>
<tr>
<td>Spain</td>
<td>De Prins, W. & De Prins, J. 2005: 127</td>
</tr>
<tr>
<td>Sweden</td>
<td>Zeller, P. C. 1847: 322</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Frey, H. 1856: 231</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Sherniyazova, R. M. 1975: 188</td>
</tr>
<tr>
<td>Turkey</td>
<td>Koçak, A. Ö. & Seven, S. 2001: 1</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>Rebel, H. 1904: 368</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Fabricius, J. C. 1781: 295</td>
</tr>
<tr>
<td>Nearctic</td>
<td></td>
</tr>
<tr>
<td>Canada: Alberta</td>
<td>Pohl, G. R., Anweiler, G. G., Schmidt, B. C., Kondla, N. G. 2010: 60</td>
</tr>
<tr>
<td>Canada: British Columbia</td>
<td>Busck, A. 1904: 771</td>
</tr>
<tr>
<td>Canada: Quebec</td>
<td>Handfield, L. 1997: 30</td>
</tr>
<tr>
<td>United States</td>
<td>Chambers, V. T. 1872: 27</td>
</tr>
<tr>
<td>United States: Atlantic States</td>
<td>Dyar, H. G. [1903]: 559</td>
</tr>
<tr>
<td>United States: Florida</td>
<td>Heppner, J. B. 2007: 241</td>
</tr>
<tr>
<td>United States: Kentucky</td>
<td>van Orden Covell, C. 1999: 23</td>
</tr>
<tr>
<td>United State: Maine</td>
<td>Brower, A. E. 1984: 46</td>
</tr>
<tr>
<td>United States: Massachusetts</td>
<td>Forbes, W. T. M. 1923: 175</td>
</tr>
<tr>
<td>United States: Ohio, Pennsylvania</td>
<td>Forbes, W. T. M. 1923: 175</td>
</tr>
<tr>
<td>United States: South Carolina</td>
<td>De Prins, W. & De Prins, J. 2005: 127</td>
</tr>
<tr>
<td>United States: Texas</td>
<td>Frey, H. & Boll, J. 1876: 210</td>
</tr>
<tr>
<td>Oriental</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Fletcher, T. B. 1933: 62</td>
</tr>
</tbody>
</table>
forewing venation, internal characters of genitalia, and especially the chaetotaxy of the last instar larvae. As both revisers (Vári 1961; Kumata 1982) mentioned in their generic diagnoses, many diagnostic characters can vary from species to species and it is up to revisers to determine the corresponding differences which fall within generic or species levels. Wing venation was traditionally used in Gracillariidae to separate closely related genera (Ely 1918). The position of veins and the degree of their coalescence may vary, however, in combination with other characters (ecology, external and internal morphology of adults, pupae and larvae). Wing venation, especially in the absence of an abdomen, is one of the key generic diagnostic characters in Gracillariidae, e.g., the subgenera in *Caloptilia* were defined by Kumata (1982) whether radial veins distal to the discoidal cell are well separated at their bases, and whether forewing veins M₁ and M₃ are connate or short stalked at their bases.

FIGURE 3. *Caloptilia stigmatella* type. Fabrician type *C. stigmatella* secured in position with dental wax ready for scanning.

The determination of vein position in the forewing and hindwing of the type species of *Caloptilia* represented by the type specimen *Caloptilia stigmatella* Fabricius, 1781, despite slight variation of some radial and median veins in the degree of coalescence, indicates the group of species which are surely associated with the generic name *Caloptilia*. Since Fabricius first described *C. stigmatella* over two centuries ago many moths with very similar wing patterns have been incorrectly assigned to this group. This group is in desperate need of new characters to help make taxonomic sense of the group at a generic and specific level (Arévalo-Maldonado in prep.).

Micro-CT scanning and virtual descaling of wings

The lack of genitalia prompted taxonomic researchers to use micro-CT to investigate potential taxonomic characters in the wings. To reveal the wing veins by conventional methods would typically involve detachment of the wing and removal of the scales, an undesirable option for such a valuable and important specimen.
FIGURE 4. *Caloptilia stigmatella* type. Initial scan of *C. stigmatella* holotype wings targeted above the pin.

A test scan was performed on a classically set Victorian specimen on a headless micro-pin with its wings spread. The pin was inserted vertically onto a stage into dental wax. The pin served as the axis around which the insect was scanned. Artefacts from the pin almost entirely obscured the insect in the initial scans. Metal pins seriously affect the quality of a micro-CT scans because of their very high X-ray attenuation, causing artefacts in the reconstructed data (Simonsen & Kitching 2014). Next the type specimen was scanned; a different arrangement was required as the specimen has been mounted with closed wings on a longer pin. The pin was fixed horizontally using dental wax, with the head of the moth pointing down below the pin shaft and the wings above it (Fig. 3). This configuration allowed the closed wings to be scanned in their entirety whilst excluding the pin from the scan, thus avoiding attenuation (Fig. 4). Careful attention to the alignment and positioning of the specimen ensured that the specimen could be rotated safely within the scanning chamber without damage. The sample was scanned using a micro X-ray CT (Bruker Skyscan 1172) at 39kV and 100uAmps with a voxel size of 1.96um/pixel. Images from the micro X-ray CT were reconstructed into an image stack using nRecon (Ver. 1.6.9.18; Bruker). From the
reconstructed image stack, an image stack for each wing was created with CT Analyser (Ver. 1.14.10.0+; Bruker) by using the region of interest (ROI) selection tools (Figs 5, 6). The polygon selection tool was used to surround the wing of interest across several layers of the reconstructed image stack; interpolation was used to select the rest of the wing based on the shape of the drawn polygon across the remaining image stack. Using the ROI, each wing was exported as a separate image stack for visualization and further processing in Amira (Ver. 6.3; Fisher Scientific / FEI).

FIGURE 5. Caloptilia stigmatella type. 5. Visualisations of left fore and hindwings of C. stigmatella holotype.

Taxonomic data verification

Re-verification of characters obtained from the observation and virtual descaling of the Fabrician holotype of Caloptilia stigmatella

For the diagnostic morphological and ecological characters of the genus Caloptilia we follow Vári (1961),
Kumata (1982) and De Prins (1985); for molecular diagnostic characters we follow Kawahara et al. (2017). The wing venation characters of the holotype of *C. stigmatella* are reconstructed following the procedure described above. The schematic visualization of veins obtained by micro-CT scanning is presented in Fig. 7 and the description is as follows:

FIGURE 6. *Caloptilia stigmatella* type. Visualisations of right fore and hindwings of *C. stigmatella* holotype.
Hindwing 85% as long and 78% as wide as forewing, narrowly lanceolate, sharply pointed with 8 veins and with open cell between M₁ and M₂; vein R₂₊₃ short and distinctly separated from Sc+R₁ and Rs; veins M₁ and M₂ long stalked, veins M₃, CuA₁, and CuA₂ placed at equal distance from each other at dorsal margin of hindwing, vein M₄ arises from near middle of vein CuA₁.

FIGURE 7. The schematic visualization of wing venation in the holotype of *C. stigmatella*.

Conclusion

Micro-CT was the only possible tool to study the wing venation of the type specimen of *Caloptilia stigmatella* Fabricius, 1781 in a non-destructive way. The scans of the fore- and hindwing were successful. Finally, after 237 years taxonomists will now be able to study and compare the matrix of veins in other congeneric species and hopefully delineate the genus *Caloptilia* and start to resolve some of the taxonomic ambiguity surrounding this leaf-mining family.

Acknowledgments

The authors gratefully acknowledge the very kind help of Geoff Hancock (Glasgow, UK) in locating the Fabrician type specimen and providing other valuable information. We kindly thank the staff of the Entomology section/Patrimonium service at the Royal Belgian Institute of Natural Sciences (Brussels, Belgium) for organizing the study visit for HAAM and providing the facilities for JDP. We thank two anonymous reviewers for their valuable comments and suggestions.

References

