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Cross-polarized photon-pair generation and
bi-chromatically pumped optical parametric
oscillation on a chip
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Nonlinear optical processes are one of the most important tools in modern optics with a

broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal

processing and quantum optics. For practical and ultimately widespread implementation,

on-chip devices compatible with electronic integrated circuit technology offer great

advantages in terms of low cost, small footprint, high performance and low energy

consumption. While many on-chip key components have been realized, to date polarization

has not been fully exploited as a degree of freedom for integrated nonlinear devices. In

particular, frequency conversion based on orthogonally polarized beams has not yet been

demonstrated on chip. Here we show frequency mixing between orthogonal polarization

modes in a compact integrated microring resonator and demonstrate a bi-chromatically

pumped optical parametric oscillator. Operating the device above and below threshold, we

directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can

find applications, for example, in optical communication and quantum optics.
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F
ollowing the ground-breaking demonstration of second-
harmonic generation by Franken et al.1, nonlinear optical
processes quickly rose to form the backbone of disciplines as

important as spectroscopy2, signal processing3 and quantum
optics4. With the goal of compact, more stable and scalable
devices, the main platform for nonlinear optical architectures has
rapidly evolved from bulk optics to fibre-based devices5, and has
more recently progressed towards integrated photonics6,7. In
particular, devices compatible with large-scale electronic chip
complementary metal–oxide–semiconductor (CMOS) technology
offer the potential for both mass production and low-cost
commercial implementation8. Since second-order nonlinear
materials are very challenging to integrate and are typically not
CMOS compatible8, most integrated nonlinear devices rely on
third-order processes. Various third-order nonlinear processes
such as four-wave mixing (FWM), self- and cross-phase
modulation, Raman and Brillouin scattering have been
exploited on chip9 to achieve significant breakthroughs such as
integrated broadband nonlinear parametric gain10, optical
parametric oscillation11, frequency combs12, third-harmonic
generation13, optical modulators14, all-optical routing15,
mode-locked lasers16, photon pair sources17 and many others.

Most applications exploiting nonlinear processes in either bulk
media or fibre-based devices have extensively relied on the
electric field polarization as a fundamental degree of freedom to
achieve novel nonlinear functionalities5. There are several
different types of FWM, as well as spontaneous parametric
downconversion, which can be categorized, for example, by the
frequency and polarization of the interacting fields5,18,19. In
general, the fields generated through parametric frequency
conversion can either have identical (degenerate) or different
(non-degenerate) frequencies and present different combinations
of polarization, according to the following definitions: Type-0, the
pump and generated fields are co-polarized; Type-I, the generated
fields are co-polarized but different from the pump polarization;
and Type-II, the generated fields have orthogonal polarizations.
Table 1 summarizes the different types of FWM processes in
terms of linear polarization for the different pump and generated
fields (horizontal and vertical), as well as their efficiency assuming
equal and perfect phase-matching conditions20. All these three
polarization combinations can be achieved in second-order
nonlinear media21, enabled by the crystal symmetry, and have
been used, for example, to generate (entangled) photon pairs.
In contrast, integrated third-order devices have not been able
to exploit all of these degrees of freedom. While Type-II
spontaneous FWM could in principle be achieved by using two
orthogonally polarized pump fields20,22, the overlapping and

dominant stimulated processes generally make spontaneous
FWM experimentally undetectable21,23. Furthermore, to achieve
efficient frequency conversion in a small footprint, integrated
nonlinear processes are often enhanced through the use of
cavities16,24 or photonic crystal waveguides13. These structures
are typically designed for single polarization operation, as most
integrated waveguides show a strong polarization-dependent
dispersion and loss. Achieving efficient Type-II spontaneous
FWM on a chip therefore requires structures that not only
operate on two orthogonal polarizations with specific dispersion
properties, but also provide nonlinear enhancement while
suppressing competing stimulated processes.

Here we demonstrate cross-polarized spontaneous FWM in a
novel bi-chromatically pumped integrated optical parametric
oscillator (OPO). To achieve this, we introduce a method
to suppress stimulated degenerate FWM while enhancing
spontaneous non-degenerate FWM between two cross-polarized
pumps inside a high-Q integrated nonlinear microring resonator.
We show, on the one hand, that this novel kind of OPO emits
high-purity orthogonally polarized photon pairs when operated
below OPO threshold. On the other hand, it generates
orthogonally polarized beams while running above the OPO
threshold. The investigated device and the implementation of the
cross-polarized FWM process can find various applications in
quantum optics, as well as optical communications.

Results
Type-II SFWM. Here we demonstrate Type-II spontaneous
FWM in an integrated photonics platform, and achieve a novel
kind of OPO—specifically a cross-polarized bi-chromatically
pumped OPO. Our approach is based on a microring resonator
fabricated in a CMOS-compatible high refractive index glass8

(Hydex, see Methods). The microring resonator operates on both
fundamental transverse electric (TE) and transverse magnetic
(TM) modes having similar yet slightly different dispersions.
Cavity enhancement is provided by the high Q-factors of the TE
and TM resonances that enable high parametric gain at low pump
powers. The measured spectral response of the resonator is
presented in Fig. 1. The insets show the measured TE and TM
resonances (black) plotted in a linear scale with a Lorentzian fit
(red dashed), revealing resonance bandwidths of 6.610 pm
(820 MHz) and 3.295 pm (410 MHz), which result in measured
Q-factors of 235,000 and 470,000, respectively. In our scheme, the
suppression of stimulated FWM between the two pumps was
obtained by generating a frequency offset of 70 GHz between the
TE and TM resonances, while keeping the free spectral ranges
(FSRs) of both modes almost identical (200.39 and 200.51 GHz,
respectively), allowing Type-II spontaneous FWM to take place at
targeted resonances, see Fig. 2 (for more details, see Methods).
This offset is generated by the slightly different dispersions of the
TE and TM modes, resulting in different effective resonator
lengths and hence different resonant frequencies. Energy
conservation dictates that the stimulated FWM bands have to
be symmetric with respect to the two pump frequencies. Due to
the frequency offset between the TE and TM resonances the
spectral position of the stimulated FWM gain does not overlap
with the ring resonances, thus suppressing this process inside the
microring resonator. At the same time, the TE and TM mode
dispersion has to be kept similar so that the difference in FSR
between the two modes (120 MHz) is smaller than the bandwidth
of the resonances, to achieve energy conservation for Type-II
spontaneous FWM processes. Furthermore, the mismatch
between the FSRs with respect to the resonator bandwidth has
to be minimized to achieve high efficiency in Type-II FWM (see
Methods). Finally, the required phase-matching condition can be

Table 1 | Different types of FWM processes in terms of the
polarization of the interacting fields.

P1 P2 S I Efficiency20

H H H H
Type-0 p(g� L)2 P1� P2V V V V

H H V V
Type-I p(g� L/3)2 P1� P2V V H H

H V H V
H V V H

Type-II p(g� L/3)2 P1� P2V H H V
V H V H

FWM, four-wave mixing.
List of different FWM processes and their relative efficiencies (from Lin et al.20) in terms of
pump powers (P1 and P2), propagation length (L) and nonlinear parameter (g). P1, P2, S and I
represent the first pump, second pump, signal and idler photon, respectively. H denotes
horizontal and V vertical polarization.
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achieved by operating in a slightly anomalous dispersion regime
for both modes5.

Below-threshold operation. When operated below the OPO
threshold, our device directly generates orthogonally polarized
photon pairs. To characterize them and confirm the nature of the
underlying nonlinear process, we performed photon coincidence
measurements (see Methods). The photon pairs generated in the
TE and TM modes of the microring resonator were collected at
the ring through port after appropriate filtering of both pump
fields by means of a polarization-maintaining, high-isolation
200-GHz-wide notch filter (for example, by TeraXion Inc.). The
device was pumped in a hybrid self-locked pump configuration
(Fig. 3), where the TE pump laser (1,555.65 nm) was directly built
around the resonator, while the TM resonance (1,556.24 nm) was
pumped with an external laser (see Methods). The generated
photons were then separated by a polarizing beam splitter and
detected with single-photon detectors. We measured a clear
coincidence peak (see Fig. 4a) with a coincidence-to-accidental
ratio (CAR) of up to 12 without any background subtraction (see
Fig. 4b). As photon pairs can only be generated via spontaneous
nonlinear processes, the measured photon coincidences give a
strong indication that the photon pairs are generated through
Type-II spontaneous FWM, with stimulated processes being
successfully suppressed. The power-scaling behaviour provides
further insight into the process associated with the generation of

the photon pairs. Only when one photon from each pump field
is used to create two daughter photons does it become possible
to directly generate orthogonally polarized photon pairs20.
Therefore, the coincidence counts (C) are expected to scale with
the product of both pump powers5 (CpPTE� PTM). If the power
of one pump field is kept constant, and the power of the second
one is increased, a linear scaling behaviour is predicted for type-II
spontaneous FWM, whereas if the power of both pump fields is
simultaneously increased (with constant power ratio), a quadratic
scaling is expected. As shown in Fig. 4c, no coincidences (within
the noise) were measured when the ring was not pumped or
pumped with the TE field alone, where the non-zero counts are
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Figure 1 | Microring resonator characteristics. Transmission spectrum measured with a high resolution Optical Spectrum Analyser (OSA), showing two

TE and two TM resonances, with a relative frequency offset of 70 GHz. A very small amplitude, higher order mode excitation is also visible. However, these

modes do not play any role in the FWM process due to the requirement of energy conservation. The insets show the TE and TM resonances in a linear

scale (black) with a Lorentzian fit (red dashed).
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Figure 2 | Schematic of the novel approach used to achieve Type-II

spontaneous FWM on a chip. Stimulated FWM (St-FWM, dotted lines)

is suppressed by an offset between the TE and TM resonances (dashed

vertical lines), as the St-FWM gain does not overlap with any of the

microring resonances. Correspondingly, Type-II spontaneous FWM

(Sp-FWM, continuous line) is allowed and enhanced by the resonator.

Figure 3 | Experimental set-up of the hybrid self-locked and external

pumping scheme. The TE polarization is pumped in a self-locked

scheme16,24,38, while the TM pump field (a CW external fibre laser actively

locked to the resonance) is added and extracted by two polarization beam

splitters (PBSs) placed before and after the microring resonator. The

amplified spontaneous emission of the amplifier is transmitted through the

band-pass filter before the resonator, thus selecting the desired pump

resonance. The output of the resonator is then fed back into the amplifier

and acts as a seed to initiate lasing on the TE resonance. The photon pairs

are extracted at the through port of the resonator and directed, after

filtering out the pump fields, to detectors D1 and D2. The arrow on top of

the amplifier represents the propagation direction of the light inside the

cavity. The coloured spheres with arrows illustrate the frequency and

polarization of the involved fields: red and blue are the TE and TM pumps,

respectively, while yellow and green are the TE and TM daughter photons,

respectively, generated through Type-II spontaneous FWM.
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due to the dark counts of the detector. A clear linear scaling
behaviour is visible with increasing TM pump power and constant
TE power, while a quadratic (without linear contribution) scaling
is observed with increasing balanced pump powers. The presence
of Raman scattering can be neglected, as the signal and idler
frequencies do not overlap significantly with the Raman gain
spectrum. This is also experimentally confirmed by the absence of
any linear contribution to the power scaling20 arising from Raman
scattering.

Heralded photon source. In addition to revealing the nature
of the nonlinear process, photon pairs are of interest for
several applications, such as quantum communications25.
Orthogonally polarized photon pair generation has recently
been demonstrated in non-CMOS compatible second-order
nonlinear integrated Bragg reflection waveguides using Type-II
parametric downconversion26. In third-order nonlinear media,
orthogonally polarized photon pairs have been generated in
specifically designed non-resonant microstructured fibres
pumped at 800 nm (ref. 27). On a third-order nonlinear chip,
the superposition of two Type-0 nonlinear waveguide sources has
been achieved, where two straight waveguides were connected by
a polarization rotation segment to generate photon pairs, which
are either both TE or TM polarized28. In stark contrast, the
source presented here directly generates orthogonally polarized
photon pairs (one TE, one TM) on chip with a single third-order
process. Due to the difference in linewidth between the TE and
TM resonances, the spectral bandwidth of the emitted photons is

determined by the narrower resonance. From the coincidence
measurement, shown in Fig. 4a, we extract a measured photon
bandwidth of 320 MHz (black line), which is in good agreement
with the resonator bandwidth of 410 MHz (red line), where the
difference can be explained by the timing jitter of the detectors
and electronics, resulting in a small temporal broadening of the
measured peak. It is worth noting that the narrow bandwidth,
required for several quantum applications29, is intrinsically
achieved inside the resonator24 and cannot be directly realised
in non-resonant waveguides or fibre-based architectures. The
measured CAR of up to 12 is limited by loss, dark counts and the
quantum efficiency of the detectors (see Methods), as well as by
the photons generated through Type-0 SFWM of the individual
pumps, that is, issues which can in the future be addressed by
optimized dispersion control. However, we note that a CAR 410
already suggests the possibility for an immediate implementation
of the source for quantum cryptography applications, see, for
example, ref. 25. We measure a coincidence rate of B4 Hz at
5 mW balanced pump power at the input of the chip (5 mW is the
highest achievable pump power featured by a CAR 410).
Considering all losses of the detection system (8.5 dB for both
signal and idler) as well as the quantum efficiency of the detectors
(5 and 10%), this corresponds to a pair production rate (PPR) of
40 kHz and a pair production probability of 1.48� 10� 12,
accounting for the 1.6 dB coupling loss of the pump into the
chip. The measured coincidence rate can be further increased to
approach the production rate by using better detectors and
implementing low-loss filtering on chip. To further characterize
the performance of our device as a single-photon source, we
measured the heralded autocorrelation function gh

(2), as well as the
idler–idler autocorrelation function to estimate the purity of the
state (see Methods). A clear dip of gh

(2)(0)C0.26±0.11o0.50 was
recorded (see Fig. 5a), showing that the source operates in a
non-classical single-photon regime29,30, while the idler–idler
autocorrelation (see Fig. 5b) shows a clear peak with a
maximum of 2.01±0.03, resulting in N¼ 0.99±0.03E1
effective modes, underlining the high purity of the source.
Finally, the production of cross-polarized photon pairs is not
limited to only the adjacent resonances, but the generation of
multiplexed cross-polarized photon pairs is also possible. Indeed,
we measured cross-polarized photon pairs over 12 resonance
couples, limited by the available filters, each with PPRs 420 kHz
at 5 mW balanced pump power (see Fig. 6 and Methods). All
these characteristics highlight the potential of our device for
quantum optical applications.

Above-threshold operation. The same pumping scheme and
Type-II FWM process can, in principle, lead to above-threshold
OPO. However OPO operation could not be reached at the
available pump powers (up to 26 mW) with the resonator used in
the experiments mentioned above. We therefore resorted to a
second ring with higher Q-factors of 750,000 and 1,100,000 for
the TE and TM modes, respectively, which was pigtailed to
single-mode, non polarization-maintaining fibres, thus prevent-
ing us to use this device for the single-photon experiments.
Instead of separating the beams by polarization, we detected all
outputs (pump and generated fields) using an optical spectrum
analyser. With a balanced pump power, a quadratic power-scaling
behaviour was measured below threshold (Fig. 7), as also seen in
Fig. 4c for the low-Q ring. At the OPO threshold, which was
reached at 14 mW balanced pump power (see OPO spectrum in
the inset of Fig. 7), the power scaling changed from quadratic to
linear, confirming the transition from spontaneous emission to
OPO (ref. 11). This device is a novel type of bi-chromatically
pumped OPO operating on two orthogonally polarized beams.

b c

Pump (mW)

82 4 6

8

2

4

6

C
oi

nc
. c

ou
nt

s 
(H

z)

84 65 7

8

9

10

11

12

Pump (mW)

C
A

R
a

0 2 4–2

0.2

0

0.4

0.6

C
oi

nc
id

en
ce

 c
ou

nt
s 

(H
z) 0.8

–4 1 3–1–3

Signal/idler delay (ns)

Figure 4 | Photon pair source characterisation. (a) Measured photon

coincidence peak, showing the raw measured coincidences (C)

in Hz. The black curve corresponds to the optimum fit resulting in a

measured photon bandwidth of 320 MHz, while the red curve corresponds

to the fit with the expected photon bandwidth of 410 MHz. (b) CAR

(coincidence-to-accidental ratio) as a function of balanced pump power

(the line connecting the points is just for visual purposes), showing a CAR

410 for balanced pump powers between 3 and 5 mW. (c) Measured

photon coincidence counts (sum of all coincidence counts measured within

the FWHM of the coincidence peak) for balanced and unbalanced pump

powers. In the unbalanced configuration (blue circles), the TE pump power

is kept constant at 6 mW and the TM pump power is increased, showing a

linear scaling behaviour. In the balanced configuration (red squares), TE and

TM pump powers are identically increased, showing a clear quadratic

scaling behaviour without any linear contribution.
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Discussion
We achieve Type-II spontaneous FWM in an integrated platform,
thus providing more access to polarization as a degree of freedom
for integrated third-order spontaneous nonlinear interactions.
Using this process, we demonstrate a novel bi-chromatically
pumped OPO, which below threshold directly generates ortho-
gonally polarized photon pairs on a CMOS-compatible chip. The
measured photon bandwidth, CAR and high purity single-mode
operation in the non-classical single-photon regime underline the
utility of the photon pair source for quantum applications. For
example, on-chip wavelength photon routing was recently
achieved using electronically controlled spectral filters31. With
our cross-polarized source, polarization photon routing and
quantum operations can be achieved by using the source in
combination with passive and easy-to-implement polarization
elements such as polarizing beam splitters32,33 and waveplates34.

Furthermore, since with our scheme two different FWM
processes become accessible on the same chip, our device opens
up the possibility of using, for example, Type-0 and Type-II
FWM simultaneously to generate complex quantum optical states
(for example, multi-entangled states) on a compact platform.

Above threshold, the novel OPO directly generates orthogon-
ally polarized beams, which can open up a new route for the
generation of polarization-squeezed light or find applications in
polarization-multiplexed and coherent communications. Finally,
as Type-II FWM is a fundamental nonlinear process, besides the
realization of a cross-polarized OPO, different devices and
geometries can be realized that lead to further applications
ranging from entanglement generation to parametric amplifiers
and all-optical signal processing.

Methods
Device fabrication. The microring resonators are fabricated using UV
photolithography and reactive ion etching in a CMOS-compatible high
refractive index silica glass deposited by chemical vapour deposition without the
need for high temperature annealing. Hydex is featured by very low linear
(o0.06 dB cm� 1)8 and negligible nonlinear optical losses (no nonlinear
losses measured up to 25 GW cm� 2)8, and a high effective nonlinearity
(g¼on2/(c0Aeff)E233 W� 1 km� 1)8. The etched waveguide cross-section is
almost square (1.5� 1.45 mm), in turn enabling the desired slightly different
dispersions in the TE and TM modes, which are low and anomalous at 1,550 nm
for both polarizations (zero dispersion wavelengths at 1,560 nm and 1,590 nm,
respectively)8. The microring resonators are vertically coupled to two bus
waveguides, forming a four-port configuration. The resonator used for the
single-photon measurements exhibits 200.39 GHz and 200.51 GHz FSR with an
offset of 70 GHz, as well as Q-factors of 235,000 and 470,000 (820 MHz and
410 MHz bandwidth) for the TE and TM modes, respectively. The input and
output bus waveguides are featured with mode converters and are pigtailed to
polarization-maintaining fibres, resulting in coupling losses of o1.6 dB per facet.
The resonator used for the above-threshold OPO measurement exhibits 200.54 and
200.76 GHz FSR with an offset of 85 GHz, as well as Q-factors of 750,000 and
1,100,000 for the TE and TM modes, respectively. The input and output bus
waveguides are pigtailed to single-mode fibres (non polarization maintaining),
resulting in coupling losses of o1.5 dB per facet.

Type-II FWM and suppression of stimulated FWM. In addition to phase
matching, the energy has to be preserved in all nonlinear processes. For the two
pumps involved in the Type-II FWM process, the total input pump energy is given
by the sum of both pump photon energies

E0 ¼ h � nTE þ nTMð Þ; ð1Þ
h being the Planck’s constant, and nTE and nTM the central frequencies of the two
pump resonances.

As the pump resonances have a specific linewidth, and assuming a Lorentzian
resonance (as in our case, see the spectrum in Fig. 1), the energy bandwidth is given
by the convolution of both pump lines, which for two Lorentzian curves is also
given by a Lorentzian
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2
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Figure 5 | Heralded and idler–idler autocorrelation measurement.

(a) Measured heralded autocorrelation, showing a clear dip at zero delay

below the limit for classical correlations (equal to 0.5), confirming the

quantum nature and single-photon operation of the source. Ten bins were

averaged for each point, displayed together with the statistical error

(standard deviation of the 10 bin distribution). (b) Measured idler–idler

autocorrelation, showing a clear peak with a maximum at 2.01±0.03,

confirming the single-mode operation and high purity of the source.
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featured by a full width at half maximum (FWHM) of:

GE0 ¼ h OTE þOTMð Þ; ð3Þ
with OTE,TM being the frequency FWHM of the individual resonances. The same
can be estimated for the nth adjacent resonances, where the signal and idler
photons will be generated. The total output energy curve will be again a Lorentzian

LEsi ðnÞ ¼
2

pGsi

1

1þ 2
GEsi

hn�Esið Þ
h i2 ; ð4Þ

centred at

Esi ¼ h vTE þ n � FSRTEð Þþ vTM � n � FSRTMð Þð Þ
¼ E0 þ h � n FSRTE � FSRTMð Þ ð5Þ

with a FWHM

Gsi ¼ h OTE þOTMð Þ ¼ GE0 : ð6Þ
To achieve spontaneous FWM, energy conservation must be fulfilled, that is, the
energy curves LEsi and LE0 have to overlap. The overlap integral for the two Lorentzian
curves (that is, the area of the overlapping region of LEsi and LE0 ) is given by:

1� 2
p

arctan
n � FSRTE� FSRTMj j

OTEþOTM

� �
; ð7Þ

which becomes 1 for equal FSRs in TE and TM, and decreases when the mismatch
between FSRs with respect to the FWHM of the resonances increases.

In addition to the overlap, the resonator linewidth and Q-factor play an
important role in the definition of the spontaneous FWM process efficiency. When
the Q-factors of the resonances are the same, the FWM efficiency is expected to
scale with the Q-factor to the power of 4 (ref. 35). In the case where the TE and TM
resonances have different bandwidths and Q-Factors, the FWM process is expected
to scale as QPump1 � QPump2 � QSignal � QIdler ¼ Q2

TE � Q2
TM for the Type-II FWM

process.
Using the measured values (see main text), the PPR for different resonances

with respect to the offset can be approximated with:

PPRðnÞ ¼ PPRmax 1� 2
p

arctan
n � 120 MHz

410 MHzþ 820 MHz

� �� �
ð8Þ

Note that this approximation does not include higher order dispersion and assumes
a flat FWM gain spectrum. Even with these assumptions, the fit in Fig. 6 shows
good agreement to the measured data, resulting in a PPRmax¼ 40.92±1.33 kHz
extracted from the fit.

Stimulated FWM can be fully suppressed by designing the ring resonator in
such a way that no ring resonance overlaps with the stimulated FWM bandwidth.
With two pump frequencies nTE and nTM separated by DnTE–TM the frequencies for
stimulated FWM are:

nSt� FWM1 ¼ nTE þ 2DnTE�TM for FWM pumping at vTM and seeding at vTEð Þ
ð9Þ

nSt� FWM2 ¼ nTM � 2DnTE�TM for FWM pumping at vTE and seeding at vTMð Þ
ð10Þ

with a linewidth of

OSt� FWM ¼ OTE þOTM: ð11Þ
The stimulated FWM bandwidths do not overlap, and thus stimulated FWM is
suppressed, under the following assumptions:

2DnTE�TM � FSRTEj j42OTE þOTM; ð12Þ

2DnTE�TM � FSRTMj j42OTM þOTE: ð13Þ
The FSRs and DnTE�TM depend on the waveguide dispersion, while the FWHM
depends on linear and bending losses together with the resonator coupling.
Therefore, the above stated equations can be used to design the ring resonator to
simultaneously achieve both cavity enhancement of the spontaneous Type-II FWM
and complete suppression of the stimulated FWM between the two pumps.

For example, for the first (lower-Q) microring resonator, equations (12) and
(13) are satisfied since:

2DnTE�TM � FSRTEj j ¼ 60:39 GHz41:64 GHz ¼ 2OTE þOTM; ð14Þ

2DnTE�TM � FSRTMj j ¼ 60:51 GHz42:05 GHz ¼ 2OTM þOTE: ð15Þ
The same also holds for the second (higher Q) microring resonator.

Single-photon measurements. The coincidence measurements were done using
two single-photon detectors (idQuantique id210), one set to the free-running mode
with 5% quantum efficiency leading to 1.6 kHz dark-count rates, while the second
detector is triggered by the first and operated at 10% quantum efficiency, resulting
in 0.3 Hz dark coincidence counts. Time tags from both detectors were collected
using a time-to-digital converter with 81 ps timing resolution (idQuantique id800).
To realistically assess the properties of our device, unless explicitly stated, all

measurements were performed using raw data without background subtraction or
correction for losses, detection efficiency or dark counts. For the heralded gh

(2)

measurement, the photons were separated using a polarizing beam splitter,
followed by a second 50:50 beam splitter in the idler arm. A third single-photon
detector (idQuantique id201) was used, also triggered by the first detector
measuring the signal photon. The heralded autocorrelation function gh

(2) can be
directly extracted from the time tags using the relation29:

gð2Þh ti1; ti2; tsð Þ ¼ Piis ti1; ti2; tsð Þ
R3gs=i1 ti1 � tsð Þgs=i2 ti2 � tsð Þ ; ð16Þ

where ti1(i2) are the detection times of the idler photon at the first (second) output
port of the beam splitter, respectively, ts is the detection time of the heralding signal
photon, gs/i1,2 are the normalized Glauber cross-correlation functions, Piis(ti1,ti2,ts)
is the triple coincidence rate and R is the PPR. To quantify the noise, 10 bins are
averaged and the relative standard deviation is displayed in the error bars in Fig. 5a.
It is important to note that the method described above to measure the heralded
autocorrelation is not valid for all experimental set-ups36. It is for instance required
that the photon coherence time is larger than the detection time-bin, the timing
jitter and the heralding time window29,36, all necessary constraints which are
fulfilled in our experiment.

For a perfect heralded photon source, it is expected that only one idler photon is
present if a signal photon is detected, which results in a dip approaching zero in the
conditional coincidence measurement (gh

(2)(0)-0). In real systems, where we need
to account for the possibility of generating multiple photon pairs, as well as for
both losses and dark count detection, the visibility is reduced. However, a dip in the
conditional coincidence function o0.5 (not corrected for any losses or low
detection efficiencies) is sufficient to prove the quantum nature of a heralded
photon source30. The dominant source of error originates from the fluctuations in
the triple coincidence measurement, which are often caused by detector dark
counts. Despite the fact that this measurement lasted 3 weeks, the low number of
observed triple coincidences resulted in a high relative error.

The idler–idler autocorrelation function, gii
(2), where the signal photon is not

detected, can instead be used to reveal the purity of the state and the number of
effective modes. After a photon pair is generated, there is a certain probability to
stimulate the emission of a new pair. This results in an autocorrelation peak with a
maximum related to the number of effective modes (N) through the relation
gii

(2)(0)¼ 1þ 1/N. A pure state is thus characterized by gii
(2)(0)¼ 2, corresponding to

a single mode37.

Hybrid pumping scheme. The external pumping of high-Q microring resonators
with a single pump laser usually requires thermal locking to follow the frequency
shift of the resonances induced by cavity heating. Using two external CW lasers to
simultaneously pump two resonances of the same device adds a significant degree of
complexity leading to a very unstable operation. For this reason, we used a hybrid
self-locked pumping approach, where the laser pumping the TE mode was directly
built around the resonator, thus eliminating the need for active stabilization16,24,38.
The microring resonator was embedded inside an external cavity that includes a
fibre amplifier and a wavelength filter (nested cavity design, see Fig. 3). The
amplified spontaneous emission of the fibre amplifier was transmitted through a
band-pass filter (100 GHz) centred at the desired TE ring resonance and was then
coupled into the chip. Light coupled out of the drop port of the ring resonator was
fed back to the amplifier, thereby closing the external pump cavity and promoting
lasing on the TE mode16,24,38. To allow self-locked lasing only on the TE
polarization, while pumping the TM mode with an external laser (actively locked to
the resonance using a feedback loop), polarizing beam couplers were placed before
and after the ring resonator. This hybrid approach using one self-locked and one
external pump permits pumping on both resonances in a very stable configuration
and provides precise control over the individual pump powers.
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