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Abstract 

The roll-on/roll-off (Ro-Ro) ships are true workhorses of coastal and deep-sea shipping. They are valued for their 

versatility to transport heterogeneous cargo and short turnaround times in ports. However, the optimal utilisation 

of cargo space has been inherently problematic with the Ro-Ro concept. In view of the existing attempts to 

contrive optimal stowage plans, the paper proposes three practical improvements with respect to the state of the 

art. The improvements lead to a finer approach to ship stability, fire safety, and cargo handling efficiency when 

optimising cargo stowage on Ro-Ro decks. Formally, we express the stowage problem as a mixed-integer linear 

programming (MILP) problem and solve it to optimality. The paper outlines the mathematical formulation, 

provides a numerical example, and studies practical application aspects.  

Keywords: optimization, ro-ro ship, cost efficiency, fire safety 

1 Introduction 

The Ro-Ro ships transport a wide variety of wheeled cargo such as private cars, buses, vans, semi-trailers, project 

cargo, as well as thousands of passengers on coastal ferry voyages. The wheeled cargo autonomously rolls on/off 

the ship through ramps, as opposed to being handled with specialised and costly equipment (e.g., cranes used for 

container ships). One shortcoming of the Ro-Ro concept is its inherent difficulty to utilise the cargo space 

efficiently. The presence of heterogeneous cargo in size and type makes it difficult to optimise the stowage plan, 

which aims to maximise the net revenue per time unit by loading as much cargo as possible [1], subject to stability 

and other constraints. If there is a possibility to choose which cargo load, the selection process will maximise the 

net revenue by picking the most profitable subset of cargo. If a stowage plan is suboptimal, precious revenues will 

be lost and safety jeopardised. And as the maritime industry is undergoing digitalisation with various onboard 

decision support systems becoming standard, the optimal stowage problem has attracted attention in the area of 

operational research (OR) [2-8]. 

1.1 Work so far 

In Ro-Ro applications the work is represented by Øvstebø et al. and Wathne [2-4], and Hansen et al. [6]. The 

proposed approaches provide a solid basis for solving the Ro-Ro ship stowage problem, given its peculiarities 

compared to stowage problems on other ships (e.g., container ships). In addition to the description of a mixed 

integer linear programming (MILP) model, the attention is given to alternative solution methods such as Tabu 

Search and genetic algorithms. However, these approaches have a number of challenges, as discussed later. 

Other related work comes from applications to general or specialised cargo such as container ships. Thus, Tang 

et al. modelled the ship stowage planning problem of steel coils stacked in two layers and carried on cargo ships 

[9]. The objective was to determine the location of variable size coils of steel on the ship, subject to ship stability 

and cargo handling efficiency. Seixas et al. [5] worked on an optimal two-dimensional stowage of heterogeneous 

cargo on a single deck, supply vessels to offshore rigs. The vessel would visit several offshore rigs during a return 

voyage, aiming to maximise the deck area utilisation and value of cargo load, subject to safety and other 

constraints. Although the adopted discretisation and solution methods may be appropriate for single deck, small 

to medium size vessels, they are computationally prohibitive for Ro-Ro ships with significantly larger deck areas, 

multiple decks, and wider variety of cargo types.  

The cargo stowage problem on container ships has the most developed theory and applications [7, 10-15]. The 

problem concerns the optimal placement of containers into cargo holds by cranes, so that the utilisation of payload 

capacity is maximised and sequential cargo handling within a multi-port journey is most efficient. Obviously, 

stowage, ship stability, strength and other constraints have to be respected. The cargo space is discretised into 
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equal size cells with capacity of two TEUs (Twenty-Foot Equivalent Units), i.e. they can stow two 20’ or one 40’ 

(or 45’) long container, which are considered standard. The problem is typically formulated as a linear integer 

programming, and sometimes as a binary liner problem [10]. As pointed out by Ding et al. [12], the binary 

formulation leads to a large number of variables and constraints, which can be impractical for the container 

stowage problem. The adopted discretisation approach benefits from the fact there are standard container sizes, 

and there are only a few of them. This is not the case for Ro-Ro ships, where the variety of cargo sizes is 

unregulated. This makes their mathematical models obviously different.  

1.2 Addressed challenges 

1.2.1 Discretisation 

The proposed discretisation approaches in the literature are deficient. The first approach discretises the deck area 

into lanes or rectangular slots designating alternative cargo locations. The size of the lanes and slots is, however, 

unknown in advance and used as a bounded decision variable to be settled during the optimisation [2, 3]. 

Consequently, some resultant layouts can appear unrealistic. Because of the unknown slot size, the imposed intact 

stability constraints are evaluated based on predicted rather than on actual values. This necessitates a verification 

of optimisation results against stability requirements, and the results might not pass the test. In the second 

approach, cargo slots are determined by merging neighbouring cells of a regular gird [6]. However, the cell size 

needs to be predetermined in advanced by the user, seeking a balance between the result accuracy and time 

efficiency. The presented model was applied to a single deck scenario only.  

We propose to work around these difficulties by creating individual grids for each cargo type on those decks 

where this cargo can be stowed (Section 2.1). The grids can be rectangular or of any other type, with the cells size 

(i.e., the slot size) corresponding to the size of cargo (e.g., a private car or semi-trailer) augmented by the necessary 

passage clearance on each side. There is also complete certainty about the grid resolution, as the grid cells always 

reflect the corresponding cargo size.   

1.2.2 Fire safety   

Being large subdivided spaces, Ro-Ro decks are notoriously known to introduce safety vulnerabilities. A recent 

FIRESAFE study by European Maritime Safety Agency (EMSA) found that some 30% of fires have happened on 

Ro-Ro decks [16]. These fires have been mainly electrical, originating within vehicles themselves—

predominantly in electrical cars and other alternative-fuel vehicles (AFV)1—or in reefer containers. A commonly 

agreed strategy to reduce the fire risk is to ensure early detection, confirmation and suppression of fires [17]. This 

can be achieved by controlling the cargo distribution on decks, thereby securing the required performance of 

automatic fire suppression as well as easy access to vehicles by crew. For instance, an uncontrolled arrangement 

of large vehicles such as semi-trailers, which could not be easily moved out of the way, has blocked access to 

ignitions sources and inhibited firefighting in the past [18]. The ceiling-based drenchers have proven ineffective 

due to shielding of water distribution by high cargo (trucks, trailers, semi-trailers etc.) [16]. 

Despite the unequivocal link between the cargo stowage planning and fire safety, it has been overlooked in the 

literature. This paper bridges this gap by developing and incorporating the corresponding safety constraints into 

the optimal stowage plan (Section 2.2). Additionally, we examine the effect of the introduced constraints on the 

net revenue being maximised. 

1.2.3 Minimal turnaround 

The proposed solution to the time efficient cargo loading and unloading has a common pitfall. As a Ro-Ro ship 

visits en route several ports of call, the cargo that continues the journey to next ports and is shifted to other 

locations to free the way for other cargo being discharged or loaded. As this operation increases time in port, it is 

addressed by penalising the blocking cargo through assignment of shifting cost proportional to the cargo size, its 

relative location and shifting distance. The assumption is that during the optimisation such cargo will be assigned 

different locations where the shifting cost is lower or nil. However, this approach does guarantee an optimal 

stowage plan with zero shifting cost. In practice, the obstruction of unloading or loading operations even by one 

vehicle can be unacceptable, especially if this vehicle is a semi-trailer or alike.  

                                                           
1 A vehicle that runs on a fuel other than traditional petroleum fuels (petrol or diesel fuel), such as electric cars, hybrid 

electric vehicles, hydrogen, LNG and LPG. 
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This paper offers a different approach that eliminates any need for shifting cargo at all, ensuring zero shifting cost 

for an optimal stowage plan (Section 2.3).  

1.3 Paper organisation 

The offered improvements are detailed in Section 2, followed by a mathematical formulation of the refined 

stowage problem (Section 3) and its example application (Section 4). Section 5 examines the effect of the 

introduced safety constraints, if they were used in real applications, on the maximised revenue and computation 

time. Section 6 concludes the paper. 

2 The proposed improvements 

2.1 Improvement 1: Discretisation of stowage locations 

The mathematical formulation of optimal stowage planning is driven by a discretisation approach for locations of 

heterogeneous cargo on decks. In our work, we assign individual grids for each cargo type on those decks where 

this cargo can be stowed. The grids are sized to deck dimensions and the number of grids corresponds to the 

number of cargo types, which can be stowed on a given deck. That is, each cargo type is associated with an 

individual grid of which copy is assigned to each deck, except those decks where the cargo cannot be stowed on. 

For example, if only cars and semi-trailers were transported and they could be stowed on two decks, each deck 

would be associated with two grids, resulting in four grids in total.   

The grids can be regular or irregular, with the cells size corresponding to the size of cargo augmented by the 

necessary passage clearance on each side. When vehicles are always stowed along the X-axis (the centre line), 

then regular grids can be used (Figure 1). Irregular girds are used when vehicles can be aligned with the 

sidewalls—as opposed to the centre line—to better utilise the deck area. For example, this can, be the case towards 

the fore of the ship where the deck area gets gradually narrower. It is important to note that the choice of the grid 

type, i.e. regular or irregular, does not affect the mathematical formulation.  

  
a)   Isometric view                                                           b) Top view 

 

Figure 1: Two example regular grids for large (lower grid) and smaller cargo units  

If cargo is not required to be aligned with deck lanes (may not exist at all on small ferries), the cell size of an 

associated regular grid would then correspond to the actual dimensions of the cargo, adding side clearances for 

opening doors, passage etc. In case when the decks are divided in longitudinal lanes and the vehicles must be 

stowed on those lanes, the width of a regular grid cell is simply sized to match the lane width.    

Figure 2 shows an example grid laid (in blue) over a deck. Each cell represents an alternative location of 

corresponding cargo type on the deck. During the optimisation, the grid cells are associated with binary decision 

variables (=1 cell has cargo or = 0 when has not) of which optimal values are sought. Before the optimisation, the 

grid is pre-processed by excluding the cells that overlap or intersect with the areas where the stowage is physically 

impossible or prohibited, as shown in Figure 2. There could also be areas of special purpose (e.g., only dangerous 

goods or high-risk cargo can be stowed) or being of different attributes to the main deck area (e.g., different max 

loading capacity).  
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Figure 2: An example grid (in blue) laid over the main deck (deck 3), excluding areas (in red) where the 

stowage is impossible (e.g., central and side casings, ramps etc.) or prohibited (e.g., areas designed for other 

cargo, necessary clearances for safety reasons). There are also designated areas in green (e.g., only specific 

cargo type can be stowed there).     

 

Due to the use of an individual grid for each cargo type, the cargo location is precisely known. This leads to 

accurate ship stability, strength, determination of geometric overlap with deck features (e.g., pillars, excluded 

areas from stowage) and other calculations.  This algorithmic feature is also helpful in determining the overlap 

between cargo units of different types, i.e. the overlap between cells belonging to different grids (Figure 1 b), as 

the deck area is shared (Figure 1 b). This overlap is then eliminated by imposing inequality constraints (Section 

3.5). 

 

2.2 Improvement 2: Fire safety 

The stowage planning has to take into account the fire risk. The FIRESAFE study has proposed several risk control 

measures [16] that can be incorporated into the optimal stowage plan, as listed in Table 1.  

 

Table 1: List of Risk Control Measures (RCM) proposed in FIRESAFE study [16] 

# RCM description 
Ref. in 

study 

1 Loading/Storage of cargo/vehicles as per their specific risk. S5 

2 

A policy on reefer units needs to be available. If accepted on board, they should be 

placed in dedicated areas (weather decks when possible, and preferably an area 

covered by CCTV). Power transfer cables should be in good condition, replaced 

frequently and only handled by designated crew. Reefer units of dubious quality 

should be rejected. Stowage area should be checked frequently during voyage. 

E38 

3 
Grouping of reefer units to better manage controls (in the stern could be most 

practicable). 
E34 

4 Putting reefer units along the ship sides to simplify inspections and connections. E35 

5 Increased deck height. S45 

6 
Loading procedure where high cargo (trucks/trailers) are mixed with low cargo 

(cars). 
S46 

7 
Mandatory spacing of at least 60cm between every 4 vehicles (to facilitate fire patrol 

and extinguishment). 
S48 
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# RCM description 
Ref. in 

study 

8 

Special areas - Passive separation. Partition could prevent smaller fires from 

spreading over the entire deck, which may result in a loss of ship. As the partition 

may limit the usability of the cargo deck only a dedicated and limited area is 

envisaged to be separated. Especially HEV, BEV, FC vehicles and vehicles with 

refrigerating units shall be stored in this area. Mobile partition like roller shutter or 

sliding doors as well as fixed insulated walls may realize suitable protected to 

adjacent areas. 

S52 

9 

Special areas - Water wall. This risk control option pursues the same objective as the 

mobile or fixed partition of the cargo deck. Instead of a solid structure a water wall is 

intended to be used to separate the cargo hold. 

S53 

10 

Water wall sections concept in enclosed ro-ro spaces. Water wall system advantages:  

loading/unloading sequences not impaired by water wall system equipment, 

convection cells limited by transverse bounds created by water wall system, fire 

containment enhanced, smoke containment allowing fire-fighting team to tackle the 

fire, and retrofit opportunity. 

S56 

 

The measures 3 to 7 are explicitly incorporated in the stowage planning in our work, whereas measures 1 and 2 

are implicit. The measures 8 to 10 are not addressed, as they require changes to deck design and hence are beyond 

this paper’s scope. The implicit measure 1 alludes to risk profiling of loaded cargo, which can be done 

automatically from vehicle number plates, declarations or by other means. The risk profiling is not addressed in 

our work. The measure 2 is a direct consequence of risk profiling, limiting the stowage of reefers, and other high-

risk cargo such as electric cars, to a designated area (Figure 2). Further, the measures 3 and 4 suggest such a 

designated area should be in the stern where reefers are aligned along the ship sides for simpler inspection and 

connection to electrical sockets. Figure 3 illustrates the arrangement of reefers on deck, where the corresponding 

constraints are introduced in Section 3.5.      

 

Figure 3: Arrangement of reefers (high-risk cargo) on deck 

The measure 5 is aimed at ensuring the effectiveness of the drencher system, which has been shown to become 

ineffective due to shielding of water distribution by high cargo (trucks, trailers, semi-trailers etc.) [16]. The 

measure 5 should naturally be considered during design. But since an increase in the deck height is to potentially 

undermine ship’s stability and payload capacity, demonstrating its cost effectiveness might be problematic. 

Alternatively, the measure can be imposed during the stowage planning by controlling the minimal headroom. 

The measure 6 requires mixing high and low cargo, which would primarily lead to larger average headroom and 

hence better effectiveness of the drencher system. Thus, measures 5 and 6 are akin in purpose and can be combined 

together by imposing a constraint on the average headroom on the deck (Section 3.5). 

The measure 7 suggests the mandatory spacing of 60 cm between every four vehicles. This applies longitudinally 

and transversely. We implement this requirement by introducing the longitudinal spacing at equal distance d, 

across the entire deck breadth, as shown in Figure 4. 

 



Page 6 of 21 

 

 

Figure 4: Longitudinal spacing of at least 60cm every D meters, to facilitate fire patrol and extinguishment  

The above requirements would indirectly address the experience with other high-risk cargo (e.g., electric cars). 

Thus in some fire accidents, the access for effective firefighting was greatly limited by large vehicles such as 

semi-trailers that could not be swiftly moved out of the way [18]. By positioning the high-risk cargo in the stern 

on designated areas and introducing the mandatory spacing between vehicles, the access for firefighters would 

significantly be improved.   

2.3 Improvement 3: Loading and unloading 

It is assumed that the itinerary, schedule, and ship capacity are fixed, shifting the focus to the operational planning 

problem of optimally distributing cargo onboard [19]. An itinerary includes several ports of call visited 

sequentially. In each port, cargo is loaded and unloaded and the ship may simultaneously transport cargo to be 

unloaded in different ports. Figure 5 demonstrates an example itinerary with six types of cargo loaded and 

unloaded in six different ports. Thus, cargo 1 is loaded in port 1 and unloaded in port 6, i.e. it has to be transported 

along the entire itinerary. Other cargo types are transported between fewer ports. Stowage of cargo 1 will need to 

be coordinated with all other cargo types, whereas by port 3, cargo 2 and cargo 3 will be unloaded, having no 

effect on stowage planning of later loaded cargo types. Hence, an itinerary can be split into five cargo-loading 

conditions that are physically independent but logistically linked. The cargo included in several loading conditions 

is referred to as continuing cargo. Each loading condition is assumed independent in ship stability and other 

physical constraints to be satisfied. However, due to the presence of continuing cargo, integrity constraints have 

to be imposed across affected loading conditions.   

 

Figure 5: Example itinerary consisting of five loading conditions   

Securing a swift loading and unloading in ports is the key prerequisite for an optimal stowage plan. To achieve 

that, stowage locations should be assigned in such a way so that the continuing cargo do not impede neither 

loading nor unloading. The earlier described discretisation method (Section 2.1) enables two approaches: 

- Assignment of penalty to minimise the impeding continuous cargo (analogous used in the literature); 

- Elimination of impeding cargo from a loading/unloading path altogether. 

The penalty cost is proportional to the shortest path to a corresponding exit ramp. Given the cargo location, the 

shortest path is determined to the exit ramp on the actual deck and then to the exit on the main deck (Figure 6). 

The shortest path is determined using the A* search algorithm [20].   

 

LC 3 LC 4 LC 5

P1 P2 P3 P4 P5 P6

Cargo 1

Cargo 2

Cargo 3

Cargo 4

Cargo 5

Cargo 6

Load condition 1 LC 2



Page 7 of 21 

 

 

Figure 6: Illustration of the shortest path on two decks      

To eliminate the impeding continuing cargo, we find the shortest path for each cargo unit towards a given exit 

ramp, identify continuing cargos stowed on this path, and introduce a set of inequality constraints to guarantee the 

absence of continuing cargos on the path; (Section 3.5) outlines these constraints. We also consider two 

application cases: 

- Continuing cargo is stowed in the same location throughout the itinerary; 

- The location of continuing cargo is adjusted in each port to better utilise deck area, in view of new cargo 

being loaded. 

Switching between the two options is done by activating corresponding constraints (Section 3.5). 

3 Mixed integer linear programming model 

3.1 Indices 

l loading condition 

d deck 

g grid 

c grid cell 

 

3.2 Sets 

𝐿 set of loading conditions 

𝐷 set of decks 

𝐺𝑑 subset of grids (cargoes) on deck d 

𝐶𝑔 subset of grid cells associated with grid g 

𝑃 set of all hoistable panels (decks) 

𝑃𝑑 subset of panels above deck d 

𝐶𝑝 subset of all grid cells on panel p 

𝑃𝑑𝑔𝑐 subset of panels that are above grid cell c of type g on deck d 

H set of cargo heights 

 

3.3 Parameters 

𝜅𝑙𝑑𝑔𝑐

= 𝑘 ∙ 𝑑𝑙𝑑𝑔𝑐
∗  

 

cost associated with cargo type g at deck d and grid cell c and in the loading 

condition l, and k is some scaling factor making sure that (𝜋𝑔 − 𝜅𝑙𝑑𝑔𝑐) > 0.    

𝑑𝑙𝑑𝑔𝑐
∗  shortest distance from cell c to the exit ramp 

 

𝜋𝑔 revenue per cargo unit of type g (or of grid index g). The revenue is kept fixed during 

calculations, whereas the cost depends on the cargo location.  

 

𝑁𝑔 number of cargo units of type g (or grid g) 

𝑊𝑔 individual weight of cargo unit of type g (corresponds to the grid index g) 

𝑊𝑑
𝑚𝑎𝑥  maximal allowable weight of cargo on deck d 
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𝑝𝑔 individual floor pressure (maximal among all contract surfaces) due to the weight of 

cargo unit of type g (corresponds to the grid index g) 

𝑃𝑔
𝑚𝑎𝑥 maximal allowable floor pressure within grid cell g 

ℎ𝑔 height of the cargo type g 

𝐻𝐶𝑑 deck ceiling height 

𝛿 required minimal clearance below the ceiling 

 

𝐻𝑑𝑝𝑐  height of panel p with grid cell c relative to deck d’s floor 

𝑀𝑟 roll moment 

𝑀𝑡 trim moment 

𝑏𝑐 width (transversely) of grid cell g 

𝛿𝑔
𝑦
, 𝛿𝑔

𝑥 transverse and longitudinal clearances around cargo of type g, respectively 

𝐿𝐶𝐺𝑔 longitudinal centre of gravity (from the side of the loading/unloading ramp) of cargo 

unit of type g. This value is almost certain when the cargo units roll on and park facing 

the same direction. Otherwise, when the direction can be changed, the value becomes 

uncertain 

(𝑋𝑑
0, 𝑌𝑑

0) origin of the deck’s d coordinate system (left bottom point) with respect to the global 

coordinate system (see Figure 2 and Figure 7) 

(𝑋𝑑
𝑐, 𝑌𝑑

𝑐) coordinates of CoG of deck d with respect to the global coordinate system 

𝑀𝑟
𝑚𝑎𝑥 max roll moment around the centre line 

𝑀𝑡
𝑚𝑎𝑥 max trim moment around the midship 

𝐻𝑑 height of the deck d from the keel 

𝑉𝐶𝐺𝑔 vertical centre of gravity of cargo unit of type g 

𝐿𝑊𝑇 lightweight of the ship 

𝑉𝐶𝐺 updated vertical centre of gravity of lightweight ship 

𝑉𝐶𝐺0 vertical centre of gravity of lightweight ship 

𝐴𝑝 area of panel p 

𝑤𝑝 unit area weight of panel p 

𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥  Limiting VCG values 

U upper limit for the average headroom per deck and it is calculated as the average 

between the maximal and second maximal height of the stowed cargos: 𝑈 =
max 𝐻+max 𝐻1

2
 where 𝐻1 = 𝐻\{max 𝐻} 

 

3.4 Decision variables 

𝑥𝑙𝑑𝑔𝑐  binary decision variable, and if 𝑥𝑙𝑑𝑔𝑐  = 1 then cargo is in loading condition l, stowed on deck 

d, its corresponding grid g, and within specific grid’s cell c. The actual number of binary 

decision variables per cargo type scales as |𝐿| × |𝐷| × |𝐺𝑑| × |𝐶𝑑|. Thus, 𝑥𝑙𝑑𝑔𝑐  corresponds 

to a cell address.  

 

𝐻𝑝 relative heights of hoistable panels (decks) with respect to the main deck floor, 𝑝 ∈ 𝑃. 

 

3.5 The model 

 

∑ ∑ ∑ ∑(𝜋𝑔 − 𝜅𝑙𝑑𝑔𝑐)𝑥𝑙𝑑𝑔𝑐

|𝐶𝑔|

𝑐

|𝐺𝑑

𝑔

→ max 

|𝐷|

𝑑

|𝐿|

𝑙

 
(1) 

 

s.t.2  

                                                           
2 Unless stated otherwise, the constraints are written—for the sake of simplicity—within a single cargo loading 

condition, consequently omitting subscript l.  
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𝐶𝑔"𝑥𝑑𝑔′𝑐′ + ∑ 𝑥𝑑𝑔"𝑐"
|𝐶𝑔"|

𝑐"
≤ 𝐶𝑔",     𝑑 ∈ 𝐷,  𝑔′, 𝑔" ∈ 𝐺𝑑 

(2) 

∑ 𝑥𝑑𝑔𝑐
|𝐶𝑔|

𝑐 = 𝑁𝑔,          𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺 

 

(3) 

∑ 𝑥𝑑𝑔𝑐
|𝐶𝑔|

𝑐 ≤ 𝑁𝑔            𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺 

 

(4) 

∑ 𝑥1𝑑𝑔𝑐 −
|𝐶𝑔|

𝑐 ∑ 𝑥𝑙𝑑𝑔𝑐
|𝐶𝑔|

𝑐 = 0,           𝑑 ∈ 𝐷,  𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿\1 
(5) 

𝑥1𝑑𝑔𝑐 − 𝑥𝑙𝑑𝑔𝑐 = 0,         𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿\1 

 

(6) 

∑ ∑ 𝑥𝑑𝑔′𝑐′
|𝐶𝑔|

𝑐′
|𝐺𝑑|
𝑔′ + 𝑀 ∙ 𝑥𝑑𝑔𝑐 ≤ 𝑀,       𝑑 ∈ 𝐷,  𝑔, 𝑔′ ∈ 𝐺, 𝑐 ∈ 𝐶, 𝑔 ≠ 𝑔′  

 

(7) 

∑ ∑ 𝑊𝑔𝑥𝑑𝑔𝑐
|𝐶𝑔|

𝑐
|𝐺𝑑|
𝑔 ≤ 𝑊𝑑

𝑚𝑎𝑥,      𝑑 ∈ 𝐷 

 

(8) 

𝑝𝑔𝑥𝑑𝑔𝑐 ≤ 𝑃𝑔
𝑚𝑎𝑥,      𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶 

 

(9) 

ℎ𝑔𝑥𝑑𝑔𝑐 ≤ 𝐻𝐶𝑑 − 𝛿,      𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶 

 

 

(10) 

ℎ𝑔𝑥𝑑𝑔𝑐 + 𝐻𝑑𝑝𝑐 ≤ 𝐻𝐶𝑑 − 𝛿,      𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶𝑝, 𝑝 ∈ 𝑃𝑑  

 

(11) 

ℎ𝑔𝑥𝑑𝑔𝑐 − 𝐻𝑑𝑝𝑐 ≤ −𝛿,      𝑑 ∈ 𝐷, 𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶𝑑, 𝑝 ∈ 𝑃𝑑𝑔𝑐 (12) 

−𝑀𝑟
𝑚𝑎𝑥 ≤ 𝑀𝑟 ≤ 𝑀𝑟

𝑚𝑎𝑥  
 

(13) 

−𝑀𝑡
𝑚𝑎𝑥 ≤ 𝑀𝑡 ≤ 𝑀𝑡

𝑚𝑎𝑥 (14) 

∑ ∑ ∑(𝐻𝑑 + 𝑉𝐶𝐺𝑔 − 𝑍𝑚𝑎𝑥)𝑊𝑔𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐

≤ 𝐿𝑊𝑇(𝑍𝑚𝑎𝑥 − 𝑉𝐶𝐺)

|𝐺𝑑|

𝑔

|𝐷|

𝑑

 

(15) 

∑ ∑ ∑(𝐻𝑑 + 𝑉𝐶𝐺𝑔 − 𝑍𝑚𝑖𝑛)𝑊𝑔𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐

≥ 𝐿𝑊𝑇(𝑍𝑚𝑖𝑛 − 𝑉𝐶𝐺)

|𝐺𝑑|

𝑔

|𝐷|

𝑑

 

(16) 

∑ ∑ ℎ𝑔𝑥𝑑𝑔𝑐
|𝐶𝑔|

𝑐
|𝐺𝑑|
𝑔 − 𝑈 ∑ ∑ 𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐
|𝐺𝑑|
𝑔 ≤ 0,     𝑑 ∈ 𝐷  

 

(17) 

In constraints (2),  |𝐶𝑔"| is the number of cells in grid g” that overlap with grid cell c’, i.e. the constraint is only 

relevant when these cells overlap (see Figure 1 b). Before applying these constraints, the grids that are stored in 

the computer memory are sorted according to the cell size in descending order. Thus, the first grid would be with 

the largest cell area. Then we check for overlap between larger area cells, c’, with cells of all grids of smaller cell 

area, c”. This allow notably reducing the amount of constraints controlling the cell overlap. Constraints (3) and 

(4) make sure that the number of cargo units loaded does not exceed the number of cargo units available for 

transportation. When all the available cargo units in cargo category g are contractual, i.e. must be loaded, then 

constraints (3) are used, when the cargo is optional then constraints (4) are activated instead. The number of 

continuing cargo units has to stay the same across all corresponding loading conditions. To make sure it is the 

case, constraints (5) are imposed. The constraints are interpreted as the sum of all grid cells in the 1st loading 

condition must be equal to the sum of these grid cells in any other loading condition. Constraints (6) are activated 

if continuing cargo must be stowed in the same location throughout the voyage. Constraints (7) control the stowage 

location of continuing cargo; M is some large number. As discussed in Section 2.3, during the calculation of the 

shortest path, the shortest path lines on each deck are intersected with other grid cells—belonging to other cargo 

types—on that deck. As the intersected cells corresponds to the binary decision variables, 𝑥𝑙𝑑𝑔𝑐 , these variables 

are then used for building constraints that eliminate the need of shifting continuing cargo during loading and 

unloading. Constraints (8) make certain that the total weight of cargo on each deck does not exceed the prescribed 
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maximum carrying capacity of that deck. Constraints (9) control the maximal floor pressure. Thus, grid cells can 

have different maximal floor pressures and only cargo units that do not exceed the maximal values can be stowed 

within those cells. The maximal pressure per grid cell is determined from the maximal flood pressure assigned to 

various areas on the deck (see Figure 2). And when a grid is being created, the cells are being assigned the 

corresponding maximal values. Constraints (10) are necessary to ensure the stowed cargo height does not exceed 

the deck ceiling height. As we also consider hoistable panels (or decks), cargo can be stowed either on a panel or 

under a panel. In both cases, the deck ceiling height is variable. For grid cells being on a panel, the constraints 

(11) are used. For grid cells under one panel or several panels, constraints (12) are applied.  

As explained in [3], ship stability calculations involve nonlinear equations. Consequently, the corresponding 

constraints are also nonlinear, making the MILP model intractable. Therefore, the following constraints have been 

linearised in a similar fashion as in [2, 3]. Stability constraints on maximal transverse and longitudinal moments 

are given in (13) and (14), correspondingly. When cargo units are loaded on decks, they create turning moments 

(torques) with respect to the longitudinal centre line (Y=0) and transverse centre axis (X=LCG). The resulting roll, 

𝑀𝑟, and trim, 𝑀𝑡, moments are calculated according to (18) and (19), with Figure 7 explaining the meaning of the 

used parameters.  

𝑀𝑟 = ∑ ∑ ∑ W𝑔𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐

(𝑦𝑐
1 +

𝑏𝑐

2
+ 𝛿𝑔

𝑦
− 𝑌𝑑

𝑐 + 𝑌𝑑
0)

|𝐺𝑑|

𝑔

|𝐷|

𝑑

 

(18) 

𝑀𝑡 = ∑ ∑ ∑ W𝑔𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐

(𝑥𝑐
1 + 𝐿𝐶𝐺𝑔 + 𝛿𝑔

𝑥 − 𝑋𝑑
𝑐 + 𝑌𝑑

0)

|𝐺𝑑|

𝑔

|𝐷|

𝑑

 

(19) 

 

Given limiting values, 𝑀𝑟
𝑚𝑎𝑥 and 𝑀𝑡

𝑚𝑎𝑥, are determined based on ballast tank capacity of the vessel (i.e. the 

capacity to equilibrate the vessel) as described in [2]. The capacity can be estimated from general arrangement 

drawings. Essentially, these constraints make sure that the available capacity of heeling tanks is sufficient to 

equilibrate the ship.   

 

Figure 7: Grid cell and cargo parameters used in calculations 

Stability constraints on acceptable range for metacentric height are aimed to control the transverse metacentric 

height, GM. It has to be above some minimal value to maintain stability, but also not exceed the assumed 

maximum to maintain passenger comfort and cargo safety. This is achieved by estimating a new position of the 

loaded vessel’s VCG, and imposing constraints on its minimal and maximal values. The new vertical position 

(denoted as Z for short) is calculated as follows: 

 

𝑍 =
∑ ∑ ∑ (𝐻𝑑 + 𝑉𝐶𝐺𝑔)𝑊𝑔𝑥𝑑𝑔𝑐

|𝐶𝑔|

𝑐 + 𝐿𝑊𝑇 ∙ 𝑉𝐶𝐺 
|𝐺𝑑|
𝑔

|𝐷|
𝑑

∑ ∑ ∑ 𝑊𝑔𝑥𝑑𝑔𝑐
|𝐶𝑔|

𝑐 + 𝐿𝑊𝑇 
|𝐺𝑑|
𝑔

|𝐷|
𝑑

 
(20) 

where 
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𝑉𝐶𝐺 = 𝑉𝐶𝐺0 +
∑ 𝐻𝑝𝐴𝑝𝑤𝑝

|𝑃|
𝑝  

𝐿𝑊𝑇
 

(21) 

 

As the resulting VCG is constrained to its min and max values, 𝑍 ∈ [𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥], the corresponding linear 

constrains (15) and (16)  (VCG is not expanded for conciseness). The limiting values, 𝑍𝑚𝑖𝑛 and 𝑍𝑚𝑎𝑥, are 

determined as described in [4]. That is, we first recall basic relationships in naval architecture [21]. Then according 

to DNVGL class rules, the intact GM has to be above 0.15 metres [22]. These values allows calculating 𝑍𝑚𝑎𝑥  as: 

 

𝑍𝑚𝑎𝑥 = 𝐾𝐵(𝑇𝑚𝑎𝑥) + 𝐵𝑀(𝑇𝑚𝑎𝑥) − 0.15   (22) 

 

Further, we assume that the natural roll period should not be shorter than some acceptable value, say 𝑇𝑟 ≥ 12  

seconds. This allows calculating  𝑍𝑚𝑖𝑛 as follows:  

 𝑍𝑚𝑖𝑛 = 𝐾𝐵(𝑇𝑚𝑎𝑥) + 𝐵𝑀(𝑇𝑚𝑎𝑥) −
4𝜋2𝐼𝑥

𝑇𝑟
2Δ

   (23) 

 

The use of the above formulae is a linearised method of controlling the GM and the linearisation of constraints is 

required for linear programming solvers. The use of more accurate, nonlinear relationships can be time prohibitive 

for practical applications of the stowage optimisation software [3].     

Constraints (17) are only explicit fire safety constraints on the average headroom on decks. Other the constraints 

requiring reefers, and other high-risk cargo, to be stowed within designated areas (towards ship stern and along 

the sides) are implicit. That is, once the designated areas are indicated as input to the program, only grid cells 

belonging to high-risk cargo are pre-processed to remove cells being outside the designated areas, as shown in 

Figure 2. The mandatory longitudinal spacing (Figure 4) is imposed by transversely splitting the deck into 

subdecks offset by the required spacing. Hence, this constraint is also implicit.      

3.6 Solution method 

The Ro-Ro ship stowage problem is an NP-hard [3] and the computational complexity of a MIP problem depends 

on the quality of linear relaxation (i.e. bounds), the size of the problem and other factors, and is linear in the 

number of binary variables, d, provided Brach&Bound algorithm is used [23, 24]. An exact relation between d 

and average complexity of practical problems is unknown but it varies between O(d) to O(2d) [25]. In this paper, 

the MILP problem was implemented in C++ and solved exactly by the commercial solver by GUROBI3 version 

7.02 with default settings. The solver implements the Brach&Bound algorithm.  

The numerical example and following calculations in this paper were performed on a laptop running on Windows 

7 (64-bit) and powered by Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz, 8GB RAM. 

4 Numerical example 

4.1 Assumptions 

We selected an existing handy size passenger Ro-Ro ship of 14,700 GT (Figure 8); further details can be found 

in [26]. The ship of this size was selected on the basis of the GT distribution for passenger Ro-Ro ships worldwide. 

As Figure 9, the selected ship size falls within the most frequently range used. The data was obtained from the 

IMO GISIS database by using the search criteria for ship type “Passenger/Ro-Ro Ship (Vehicles) (Passenger/Ro-

Ro Cargo)”, year of build “in or after 2000”, and gross tonnage “is more than or equals 9000”. Smaller ship sizes 

were discarded, for they are typically of single vehicle deck.  

 

                                                           
3 http://www.gurobi.com 
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Main particulars 

- Length (Lbp = 132.6 m, Loa = 142 m) 

- Breadth (B) = 21 m 

- Draught (T) = 5.1 m 

- Max draught (Tmax) = 5.3 m 

- Vertical centre of gravity (VCG) = 9.6 m 

- Longitudinal centre of gravity (LCG) = 

63.4 m 

- Lightweight (LWT) = 4,485 tons 

- Deadweight (DWT) = 1,925 tons 

- Gross tonnage (GT) = 14,700 

- Design speed (V) = 26 knot 

- Max turning moment from cargo around 

X axis (MXmax) = 10,000  ton-meters 

- Max turning moment from cargo around 

Y axis; (MYmax) = 124,000  ton-meters 

- Natural roll period (Tr )= 12 sec. 

Figure 8: Selected Ro-Ro ship along with relevant parameters 

 

 

Figure 9: Histogram of worldwide GT distribution for passenger Ro-Ro ships (source: IMO GISIS) 

The ship has four fixed Ro-Ro decks and eight hoistable panels (Deck 4) above the main deck (Deck 3), as listed 

in Table 2. The ceiling height of the main deck is 6 metres, and hence the panels are only used above low vehicles 

such as private cars, vans and alike. The cargo is loaded and unloaded through the stern ramp on the main deck, 

and the ramps to lower and upper decks are located towards the starboard. The ramp to Deck 5 can be lifted, 

allowing stowing cargo underneath on the main deck. The hoistable panels are referred by numbers from 1 to 8, 

starting from the starboard stern (top left on Figure 8) and going towards the bow, then down towards the portside 

and the stern (bottom left is panel 8). The panels are independent and only used above lower vehicles (cars, vans, 

bikes, etc.).    
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Table 2: Deck dimensions and capacity  

Reference Breadth 

(m) 

Length 

(m) 

Height 

(m) 

Capacity 

(tons/m2) 

Weight 

(tons/m2) 

Main 20 113.3 7.5 10   

LLH1 12 43.2 4.5 10   

LLH2 12 43.2 1.5 10   

Upper deck 20.38 64 11.5 10   

Panel1 6.23 22.06  7.5-11.5 3 0.1 

Panel2 6.23 24.15  7.5-11.5 3 0.1 

Panel3 9.93 14.4  7.5-11.5 3 0.1 

Panel4 9.93 20.61  7.5-11.5 3 0.1 

Panel5 9.31 20.61  7.5-11.5 3 0.1 

Panel6 9.31 19.2  7.5-11.5 3 0.1 

Panel7 6.93 24.15  7.5-11.5 3 0.1 

Panel8 9.26 22.06  7.5-11.5 3 0.1 

 

Each deck has a set of attributes such as dimensions and areas to be excluded (Figure 2), maximal payload and 

capacity (floor pressure), and others (Table 2). Together with the cargo attributes, these attributes are used to 

generate cargo type-related grids for each deck. The attributes of typical cargo categories are listed in Table 3 [2]. 

This table was used to generate a pool of cargo to be loaded in each port of call. The presence of a specific cargo 

category in a given port was determined with turn-up probability that changes from port to port. Figure 10 (a) 

shows a sample distribution for cargo turn-up probability, whereas the actual number of cargos is also randomly 

selected from the uniform range [0, nmax] with nmax values shown in Figure 10 (b). Both distributions are 

hypothetical and reflect a route that is dominated by low vehicles (private cars, vans).    

Table 3: Sample Ro-Ro cargo categories (only main attributes are shown)4 

Cargo category Breadth 

(m) 

Length 

(m) 

CEU5 Height 

(m) 

Weight 

(MT) 

LCG 

(m) 

VCG 

(m) 

Revenue 

per trip 

Motobike (Ducati) 0.78 2.00 0.24 1.08 0.21 1.00 0.16 50 

Toyota 2.00 4.85 1.52 2.00 1.35 2.43 0.54 290 

Toyota (electric) 2.00 4.85 1.52 2.00 1.35 2.43 0.54 290 

VAN (Boxer) 2.51 4.96 1.94 2.25 3.00 1.49 0.79 290 

Semi-trailer 2.80 13.57 5.94 4.50 15.00 6.79 2.47 388 

Container (FEU, type 1 

AA) 

2.80 12.40 5.43 3.95 23.00 6.20 1.38 400 

Supermini  

(Opel Corsa, VW Polo) 

1.68 3.98 1.05 1.45 1.06 1.19 0.51 150 

 

 

                                                           
4 Cargo attributes were found on public websites, as well the ticket prices, which were found on ferry booking portals. 
5 The car equivalent unit (CEU) is based on the dimensions of a 1966 Toyota Corolla model RT43, which is 13.5 feet (4.125 

m) × 5 feet (1.55 m) × 4.6 feet (1.4 m). The ground space required for a CEU RT43 is approximately 69 sq. ft. (6.4 sq. m) and 

the ground slot, including spacing in between vehicles is 80 sq. ft. (7.4 sq. m). 
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(a)  

 

 
(b) 

Figure 10: Sample cargo turn-up probability (a) and the maximal number of cargo per turn-up (b)  

 

This way, we randomly create a sample itinerary with cargo distributions in each port, assuming the maximal 

number of cargo categories in port to be five. Table 4 lists generated cargo load across three ports. The majority 

of cargo is optional (=1), which means it is only transported if space is left on the deck after all contracted cargo 

have been loaded. In other practical cases, the contracted cargo might represent the majority. 

Table 4: Randomly generated cargo distribution in three ports of call (two loading conditions) 

# Category Reference 

(port in | port 

out-CEU) 

Number in 

category 

Optional Loading 

port 

Unloading 

port 

Allowed 

decks 

1 VAN 1|3-1.9 150 1 1 3 All 

2 

Semi-trailer 1|2-5.9 2 0 1 2 

Main deck 

only 

3 Toyota  1|2-1.5 180 1 1 2 All 

4 

Toyota (electric) 1|2-1.5e 180 1 1 2 

Main deck 

only 

5 Supermini  1|2-1.0 300 1 1 2 All 

6 

Container  1|2-5.4 2 0 1 2 

Main deck 

only 

7 Toyota 2|3-1.5 150 1 2 3 All 

8 Toyota (electric) 
2|3-1.5e 34 1 2 3 

Main deck 

only 

9 VAN (Boxer) 2|3-1.9 150 1 2 3 All 

10 

Semi-trailer 2|3-5.9 2 0 2 3 

Main deck 

only 

11 

Container  2|3-5.4 2 0 2 3 

Main deck 

only 

12 Supermini  2|3-1.0 150 1 2 3 All 

 

 

 

 

 

 

 

 

Motobike (Ducati)

Toyota

VAN (Boxer)

Semi-trailer

Container (FEU, type 1 AA)

Supermini Opel Corsa, VW Polo)

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Motobike (Ducati)

Toyota

VAN (Boxer)

Semi-trailer

Container (FEU, type 1 AA)

Supermini Opel Corsa, VW Polo)

0

5
0

1
0

0

1
5

0

2
0

0
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4.2 Result 1 

This subsection displays the results when the fire safety constraints were deactivated. Displayed stowage plans 

are followed by a result table showing the cargo distribution per deck, deck area utilisation and deck’s elevation 

above the main deck, if the deck is hoistable. For better readability of Figure 11 and  

Figure 12, cargo references are given. One can notice that the third hoistable deck (port side) on Figure 11 is not 

used, due to high cargo (1|2-5.9) underneath and no small enough cargo available to load it.        

 

Cargo ref.    Available Loaded 

1|2-5.9 2 2 

1|2-5.4 2 2 

1|3-1.9 150 4 

1|2-1.5 180 170 

1|2-1.5e 180 48 

1|2-1.0 300 57 

TOTAL 814 283 

 

Figure 11: Optimal stowage plan for the 1st loading condition (Port 1 – Port 2)  
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Cargo ref.   Available Loaded 

2|3-5.9 2 2 

2|3-5.4 2 2 

1|3-1.9 150 4 

2|3-1.9 150 26 

2|3-1.5 150 150 

2|3-1.5e 34 34 

2|3-1.0 150 71 

TOTAL 638 289 
 

Figure 12: Optimal stowage plan for the 2nd loading condition (Port 2 – Port 3)  

 

4.3 Result 2 

This subsection shows the results obtained after the introduction of the fire constraints, while using the same cargo 

load shown in Table 4. The activated fire constraints ensured the longitudinal clearance between vehicles 

(clearance of 60 cm every 20 meters), high-risk cargo (reefers and electric cars) to be stowed on the designated 

area on main deck, and the average headroom to be above the required one. Figure 13 shows the illustrative 

designated areas for reefers and electric cars, whereas the optimal stowage plans for both loading conditions are 

shown in Figure 14 and Figure 15. Note, the first three hoistable decks (port side) on Figure 14 are not used 

(empty) due to high cargo underneath and available low cargo that would still fit on the hoistable decks stowed in 

other locations.   
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Figure 13: Assumed designated areas for reefers and electric cars: the areas are on the main deck only and 

along both ship’s sides  

 

 

 

Figure 14: Optimal stowage plan for the 1st loading condition (Port 1 – Port 2) with active fire constraints on 

the main deck 
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Figure 15: Optimal stowage plan for the 2nd loading condition (Port 2 – Port 3) with active fire safety 

constraints on the main deck 

5 Sensitivity analysis 

5.1 Effect of fire safety constraints on revenue 

This section demonstrates the effect of the introduced fire safety constraints on the net revenue (Section 2.2 and 

Eq. (17)). This was achieved through sensitivity analysis by randomly varying the cargo distribution and 

parameters for a fixed itinerary and ship configuration presented in Section 4. As the constraints can be treated as 

fire risk control measures, the results can be helpful in future analysis of their cost effectiveness. The analysis 

itself is outside the scope of this paper, as it also requires estimating the effect on fire risk.  

The following fire constraints were introduced one at a time, calculating the effect on the net revenue: 

[Avg.headroom] Constraints on the average headroom to improve the effectiveness of the drencher 

system. 

 

[Spacing] Constraints introducing the longitudinal spacing by transversely splitting the main deck 

into subdecks. 

 

[D.area] Constraints requiring reefers, and other high-risk cargo such as electric cars, to be 

stowed within designated areas (typically towards ship stern and along the sides). 

 

[Combined]  

 

All constraint types are active. 

Figure 16 shows the boxplots of the relative reductions in the net revenue (maximised during the optimisation). 

The reductions are shown with respect to a reference case where the fire safety constraints were not applied. Each 

boxplot was obtained based on 20 sample points.  
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Figure 16: Boxplots of individual and combined reduction from fire safety constraints in the total net revenue 

per voyage.  

As the result shows, the spacing constraints have the biggest negative potential on the revenue. This is self-

explanatory, because they explicitly remove a significant share of useful cargo space. The combined effect of the 

constraints may lead to some 20% reduction in the net revenue. It should be noted, however, that these estimates 

are conditional on the assumed ticket prices (Table 3), distributions of cargo types and their numbers (Figure 10).  

5.2 Effect on computation time 

The intention of this section is more practical than academic. We investigate the link between problem 

characteristic parameters and computational cost (CPU time). In this analysis, we assume that the ship 

configuration, i.e. the number and capacity of decks, is fixed and only the payload configuration (the numbers and 

types of vehicles) varies.  

The problem size is driven by the number of binary variables and constraints, which in turns is driven by 

characteristic parameters such as the number of cargo categories (i.e., the number of grids per deck), the number 

of decks, and the floor area of cargo units, i.e., the number of cells in grids (grid fineness). The number of available 

cargo units within a cargo category was found to have insignificant effect on the CPU time and it was ignored. 

Thus, three independent, characteristic parameters that control the problem size are: 

 Number of cargo categories  

 Average of CEU across cargo categories 

 Number of loading conditions (proportional to the number of ports of call) 

We assumed the following uniform distributions for these parameters, [2, 15], [1, 5], and [0.24, 3.3], and generated 

300 random samples of payload configurations (cargo distributions). Figure 17 shows the distribution of 

calculated CPU time across these samples. Thus, 50% of cases would finish within some 20 minutes, whereas 

75% cases would be completed within an hour.     

 

Figure 17: Boxplot for computational cost (CPU time in minutes) 
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Assuming that the problem size, and hence CPU time, is proportional to the number of binary variables, the runs 

were used to regress a linear model of which partial regression coefficients shown in Figure 18.  Evidently, the 

average CEU has the biggest effect on the number of binary variables as a fall in CEU leads to finer grids and 

hence more alternative stowage locations (~1,000 more binary variable when average CEU is decreased by 1).  

 

 

Figure 18: Partial regression coefficients (main effects)6 showing the change in the number of binary variables 

(on average) corresponding to a unit change in the displayed input parameters 

6 Conclusions 

The paper has dealt with the optimal cargo stowage problem on Ro-Ro decks, which stow heterogeneous cargo 

along a multi-port journey. In view of the existing attempts to solve this stowage problem, the paper has proposed 

the three practical improvements with respect to the state of the art. As a result, a solution to the stowage problem 

leads to a better treatment of ship stability, fire safety, and cargo handling efficiency. The proposed improvements 

are summarised as follows: 

 The proposed discretisation of deck areas removes the uncertainty about the cargo location and enables 

precise ship’s stability and other calculations. It also introduces complete certainty about the grid 

resolution, as the grid cells always reflect the corresponding cargo size.     

 New constraints for fire safety on Ro-Ro decks have been developed and their effect on the optimisation 

results has been examined. The results can serve as a basis for future analysis of cost effectiveness of the 

proposed fire risk control measures.   

 Stowage plans that ensure zero shifting cost during loading/unloading. 

There are a few caveats to our approach we would like to highlight. We have solely focused on formulating the 

MILP problem, leaving the challenge of solving it to available solvers. The mathematical formulation ends up 

with tens of thousands of variables and constraints for a medium size Ro-Ro ship, with the problem size being 

largely driven by the cargo dimensions. However, the case studies show that the problem is solvable by 

commercial MILP solvers in reasonable time (Section 5.2). The proposed formulation does not explicitly group 

cargo of the same type. However, the cargo can be assigned to designated areas where it would become adjacent. 

The effect of passengers on ship stability was ignored, assuming it is negligible compared to the cargo load. We 

also recognise that the optimal stowage problem should ideally be solved as part of tactical and strategical 

decisions [19]. However, the benefits can be demonstrated already now, whereas the holistic solution—being 

potentially more beneficial—seems intractable at present.    
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6 Multiple regression model, (R2>0.9), was developed with main effects only and no intercept.   
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