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A B S T R A C T

This paper proposes a paradigm shift to the problem of infrastructure asset management modelling by focusing
towards forecasting the future condition of the assets instead of using empirical modelling approaches based on
historical data. The proposed prognostics methodology is general but, in this paper, it is applied to the particular
problem of railway track geometry deterioration due to its important implications in the safety and the main-
tenance costs of the overall infrastructure. As a key contribution, a knowledge-based prognostics approach is
developed by fusing on-line data for track settlement with a physics-based model for track degradation within a
filtering-based prognostics algorithm. The suitability of the proposed methodology is demonstrated and dis-
cussed in a case study using published data taken from a laboratory simulation of railway track settlement under
cyclic loads, carried out at the University of Nottingham (UK). The results show that the proposed methodology
is able to provide accurate predictions of the remaining useful life of the system after a model training period of
about 10% of the process lifespan.

1. Introduction

In most developed countries, the continuous ageing and the growing
demand of use of critical infrastructures calls for advanced Prognostics
and Health Management (PHM) concepts for optimal infrastructure
asset management [1]. In particular for the railway infrastructure, the
continuous deterioration of the track due to traffic loading represents
the main ageing factor requiring periodic interventions to restore the
track to an acceptable geometry [2,3]. These maintenance interventions
not only represent a significant part of the railway operation expenses,
but also imply temporary line closures and a reduction of the effective
network capacity, so they need to be planned months in advance. It is in
this context of anticipated decision making where the benefits of PHM
can be fully exploited for maintenance cost optimization and downtime
reduction.

As evident from the literature, railway track degradation and
maintenance modelling to date has a strong empirical retrospective
character, mainly grounded on data-based (stochastic or phenomen-
ological) models with limited prospective capability. A systematic re-
view of these models is proposed by Dahlberg [4] for track settlement
modelling, and more recently by Soleimanmeigouni et al. [5] and
Higgins and Liu [6] focusing also in track maintenance modelling. The
prediction accuracy of those models strongly depends on the quality

and quantity of the available historic data, and thus they are prone to
misjudgements especially under medium-to-long term future sce-
narios. To overcome this limitation, some physics-based models have
been proposed to predict the progressive mechanical degradation of the
track under cyclic loadings from first geomechanical principles, like the
cyclic densification model by Suiker and de Borst [7], and the elasto-
plastic models by Indraratna et al. [8] and more recently by
Sun et al. [9]. The referred physics-based models are transparent to
human understanding and they can adapt to different material and
loading conditions without much training, which is essential to confer
the required early predictive capability. However, they are unable to
account for the uncertainty in the predictions since they are based on
deterministic input-output relationships. In this context, a number of
authors have adopted statistical methods to quantify the modelling
uncertainty in track geometry degradation, such as regression ana-
lysis [10], stochastic processes [11–13], Markov models [14,15], and
Bayesian analysis [16], to cite but a few. Notwithstanding, as stated
before, the accuracy of these methods relies almost entirely on histor-
ical data, which bounds their prospective capability and the reliability
of their predictions.

In this paper, a paradigm shift for track geometry degradation
modelling and maintenance is proposed. Instead of making main-
tenance decisions based on either a retrospective data-based modelling
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of the track, or, alternatively, using a purely deterministic physics-
based approach, a knowledge-based prognostics framework is proposed
herein. This approach fuses information from physics-based models and
available data about track degradation within a Bayesian learning
paradigm to sequentially reduce the initial modelling uncertainty [17]
as long as new data are collected, so as to obtain increasingly accurate
forecasts of the future condition of the track. These forecasts enable the
testing of various load and utilisation scenarios, and more importantly,
allow us to answer the question of ”when will failure occur” with
quantified uncertainty. The proposed methodology enables informed,
anticipated, and risk-based decisions about optimal railway track asset
management, and can be extended to other railway assets to enable
decision-making at a system infrastructural level. To the authors’ best
knowledge, the existing literature on track degradation prognostics is
currently limited to Mishra et al. [18], focusing on railway switches
based on a phenomenological model for track geometry degradation.

For the problem of physical modelling of the track deterioration, an
elasto-plastic model for track settlement is developed based on first
principles of the plasticity of soils [19] and Critical State Soil Mechanics
(CSSM) [20]. This model provides the temporal evolution of the ele-
mentary volumetric and deviatoric plastic strains of the track based on
some geomechanical inputs. Apart from the traffic loads, the inputs
required by the model reduce to the critical state parameters [20], which
can be obtained from routine triaxial tests, and two uncertain para-
meters controlling the cyclic hardening of the granular layers of the
track, which are sequentially updated using condition monitoring
data. For the sake of Bayesian data assimilation, the proposed model is
embedded within a hidden Markov model [21] where the deviatoric
and volumetric plastic strains constitute the latent states, and the ver-
tical permanent axial strain is the observed state. Next, a sequential
Bayesian updating framework is used to update both the latent states
and the uncertain model parameters as long as new data become
available. The resulting equations for sequential updating are analyti-
cally intractable, hence a Sequential Monte Carlo approach based on
particle filters [22] is adopted whereby the probability density functions
(PDFs) are approximated by weighted samples or particles, which re-
present random realisations of the updated track degradation
states. Finally, by extrapolating those particles into the future, a prob-
ability-based estimation of the time (load cycles) to reach a predefined
functional limit for track degradation is subsequently obtained. This
time defines what in the Prognostics and Health Management com-
munity is commonly known as the remaining useful life (RUL) [1] of the
system.

As a case study, the proposed methodology is tested against ex-
perimental data taken from Aursudkij et al. [23] about permanent axial
strain in a ballasted railway track, carried out at the Nottingham
Railway Test Facility [24]. The results show that the proposed prog-
nostics methodology is able to accurately anticipate the future states of
deformation of the track after a training period of about 10% of the
total length of the process, which corresponds to the time required by
the model to assimilate the data. This prognostics performance is
compared with the performance obtained for the same dataset using an
empirical logarithmic model for track settlement. The assessment is
carried out using a newly developed prognostics metric named as the
relative prospective evidence, which measures the relative prediction ac-
curacy of two different model classes in relation to the amount of in-
formation that the models need to extract from the data to perform their
predictions. The results show that the physics-based model proposed in
this paper is the one with the larger and earlier anticipation capacity,
needing less support from condition monitoring data to make accurate
prognostics estimates.

The remainder of the paper is organised as follows. Section 2 pre-
sents the physical fundamentals behind the proposed model for track
deterioration. Section 3 overviews the mathematical basis and com-
putational aspects of Bayesian state estimation and prognostics, which
have been both specialised for their application to the railway track

degradation problem. In Section 4, the proposed framework is applied
to railway track settlement data to serve as a case study. A discussion
about the suitability of model-based prognostics for railway track
maintenance planning is provided in Section 5. Finally, Section 6 pro-
vides concluding remarks.

2. Physics-based model for track settlement

A constitutive model for ballast plastic deformation under cycling
loading is developed here following the general theory of plasticity,
CSSM, and Pender’s postulates about plastic deformation of over-
consolidated soils [25]. The model predicts the evolution of the plastic
vertical strain p

1 of a representative track section, which is the variable
of interest here, whereby the settlement of the section can be
straightforwardly derived. The reader is referred to [25] for a detailed
overview of the foundations of the proposed model, but for the sake of
clarity, the key formulation and definitions are reproduced here with a
uniform notation.

2.1. Physical fundamentals

Following the theory of plasticity, a granular medium under a stress
state represented by the stress tensor σij, will experience an increment in
the plastic strains given by Hill’s flow rule [26], as

=d h g dfij
p

ij (1)

where d ij
p is the corresponding plastic strain increment tensor, df is the

differential of function f, which denotes the yield criterion (or yield
surface), g is the plastic potential, and h is the hardening function. These
elements are briefly explained in Definitions 1 to 3, respectively. If the
stress invariants p and q are adopted instead of the stress tensor σij,
Eq. (1) can be rewritten as:

=d h g
p

dfv
p

(2a)

=d h g
q

dfs
p

(2b)

with v
p and s

p being the corresponding plastic volumetric and distor-
tional strain invariants. The reader is referred to Appendix A for further
insight about stress and strains invariants. Having v

p and s
p as known,

the vertical plastic strain of the track section can be straightforwardly
computed as:

= +1/3p
v
p

s
p

1 (3)

as shown in Eq. (A.4b) in Appendix A. It follows that functions f, g and h
need to be determined so as to define a closed-form expression for the
constitutive model in Eq. (2).

Definition 1 (Yield criterion [19]). The yield criterion defines the limit of
the elastic behaviour and the onset of plastic deformation under any possible
combination of stresses. Mathematically: =f p q( , ) 0.

Assuming Pender’s hypothesis that overconsolidated soils experi-
ence plastic strain only when there is a change in the stress ratio
( = q p/ ) [25], the yield criterion can be assumed to be given by:

= =f q p 0i (4)

where ηi defines a particular constant stress ratio yield locus i (refer to
Fig. 2 in [25]). By differentiating Eq. (4), =df dq dp,i and sub-
stituting = +dq dp pdi obtained from the definition of η, the required
expression for df in Eq. (2) can be shown to be given by:

=df pd (5)

Definition 2 (Plastic potential [19]). The plastic potential is given by the
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generic expression =g p q( , ) 0 and relates the incremental plastic strains
with the stress state following the plastic flow rule in Eq. (1).

An analytical expression for g can be obtained by noting that the
plastic strains are normal to the plastic potential =g p q( , ) 0, thus im-
plying that [19]:

=d
d

dq
dp

v
p

s
p (6)

In this research, the ratio d d/v
p

s
p is assumed to be given by a modified

version of Rowe’s stress-dilatancy model [27], as

=
+

d
d

M
M M

9( *)
9 3 2 *

v
p

s
p (7)

where M is the slope of the critical state line in the p q space [28], and
η* is a function of the stress ratio given by = p p* / ,cs with pcs being
defined in Eq. (13) below. The stress-dilatancy criterion in Eq. (7) dif-
fers from that proposed by Rowe [27] in that it provides positive values
for plastic volumetric strain increments (i.e., contraction), as long as η*
does not exceed the critical state value M. By substituting Eq. (7) into
(6) and solving the resulting differential equation, an expression for the
plastic potential function is obtained, as:

= + + + =g p q M p C M M( , ) 3 ln( / ) (2 3)ln(2 * 3) (3 )ln(3 *) 0
(8)

where C is an integration constant.

Definition 3 (Hardening function [19]). As a work hardening material,
ballast experiences a dynamical change of its plastic response during
yielding. This change is accomplished by modifying the yield surface as
plastic flow occurs. The hardening function (h in Eq. (2)) accounts for such
effect.

An expression for h can be obtained following the premise that no
volume change takes place during undrained deformation [20]. Math-
ematically:

= + =d d d 0v v
e

v
p (9)

where d v
e is the elastic volumetric strain increment given by [20]

=
+

d dp
p e(1 )v

e

0 (10)

with κ being the swelling/recompression constant. By substituting
Eqs. (2a) and (10) into Eq. (9), h is obtained as:

=
+

h
e

dp
p

g
p

pd
1 0

1

(11)

In Eq. (11), Pender’s assumption of parabolic undrained stress paths in
the p q space [25] is adopted to relate the stress derivatives dp and
dη. This assumption is expressed as:

=
M

p
p

p p
p p

1 /
1 /

cs

cs

0

0

2
0

0 (12)

where η0 is the initial stress ratio (corresponding to the minimum load
within the cycle), p0 is the initial value of the mean stress invariant p,
and pcs is the value of p at the point on the critical state line corre-
sponding to the current voids ratio e, obtained as [28,29]:

=p eexpcs
cs (13)

with Γ and λcs being material parameters. These parameters, together
with M and κ (see nomenclature Table A.3), are the critical state para-
meters of the model and can be evaluated from a series of drained
triaxial compression tests [30]. Having obtained the differential dp
using Eq. (12), and substituting it into Eq. (11), the hardening function

becomes after some algebraic manipulation1:

=
+

+h
p p p p

e M p p
M M

M
d

2 (1 / )( / )( )
(1 )( ) (2 / 1)

9 3 2 *
9( *)

cs cs0 0

0 0
2

0 (14)

It should be emphasised that the last equation is nominally valid for
the first load cycle. For subsequent loading, h should account for other
complex phenomena observed in experiments under cyclic loading
conditions, such as the Bauschinger effect, the effect of the stress ratio
and loading history, etc. [19]. A semi-empirical approach is adopted
here to account for such processes following Indraratna and Salim [8],
which essentially consists of multiplying the hardening function in
Eq. (14) by a semi-empirical factor ϕ given by

=
+
+M

p p q q
p p q q

n1 *
( ) ( )

e e

max min max min

2 2

2 2

1/2

(15)

where α and β are empirical fitting parameters, n is the accumulated
number of cycles, ⟨ · ⟩ are the Macauley brackets, and pe is given by the
expression [8]:

= +
+

p p
n

p p1 1
ln( 10)

( )e min max min (16)

with pmin and pmax being the minimum and maximum mean stress
invariant within load cycle n, respectively. The corresponding devia-
toric components q q,min max and qe are obtained using Eq. (A.4a), de-
fined in Appendix A.

2.2. Constitutive equations of proposed model

Substituting the expressions for f, g and h obtained above into Eq. (2),
and after some algebraic manipulation, the following expressions for the
evolution of the plastic volumetric and deviatoric strains are obtained:

+
= =d

d
p p p p

e M p p
2 (1 / )( / )( )
(1 )( ) (2 / 1)

0, ( ) ( )v
p

n

cs cs

n
v
p

n v
p

max n
0 0

0 0
2

0
0 1

(17a)

+ = =d
d

M M
M

d
d

9 3 2 *
9( *)

0, ( ) ( )s
p

v
p

n
s
p

n s
p

max n0 1
(17b)

where · |n denotes a variable evaluated at load cycle n, and
= q p/max max max . Note that for the nth loading cycle, the initial condition

for both deviatoric and volumetric plastic strains is given by the corre-
sponding plastic strains at the previous cycle n 1. The initial conditions

( )v
p

0 0 and ( )s
p

0 0 are assumed as known. Observe also that the ex-
pressions in Eq. (17) are non-linear differential equations of the plastic
strains, thus they need to be integrated numerically by replacing the de-
rivatives by their finite difference approximation (e.g., using explicit Euler
method). An algorithmic description of the numerical method proposed to
integrate the constitutive Eqs. (17a) and (17b) is presented in Algorithm 1.

3. Track-degradation prognostics

Prognostics is concerned with predicting the future state of health of
engineering systems or components given the current degree of wear or
damage, and, based on that, estimating the remaining time in which the
system is expected to continue performing its intended function within
desired specifications [1]. The predictions are carried out using no
additional evidence but a sequence of measurements up to the time of
prediction, and the available models for system behaviour. A physics-
based filtering-based prognostics framework is proposed herein as de-
picted in Fig. 1. The definitions in Section 3.1 are used to provide the

1 In the normal range of stresses, ballast remains in states denser than the
critical state [29], thus, the sign of the hardening function in Eq. (14) is re-
versed.

J. Chiachío et al. Reliability Engineering and System Safety 181 (2019) 127–141

129



In
pu

t:
σ

3
{C

on
fin

in
g

pr
es

su
re

};[
M
,λ

c
s,
Γ
,κ

]
{c

rit
ic

al
st

at
e

pa
ra

m
et

er
s}

;[ α,β]
{fi

tti
ng

pa
ra

m
et

er
s}

;[ σ 1,m
in
,σ

1,
m

a
x] {m

in
,

m
ax

ve
rt

ic
al

st
re

ss
};n

{#
of

lo
ad

cy
cl

es
};

N
S

{#
of

in
-c

yc
le

lo
ad

st
ep

s}
;εe v
| 0{

in
iti

al
el

as
tic

vo
lu

m
et

ric
st

ra
in

s}
;e
| 0{

in
iti

al
vo

id
s

ra
tio

};
[ εp v
| n,
ε

p s
| n] {p

la
st

ic
st

ra
in

s
af

te
rn

cy
cl

es
};

e
| n{

vo
id

s
ra

tio
af

te
rn

cy
cl

es
}

O
ut

pu
t:
[ εp v
| n+

1
,ε

p s
| n+

1

] {p
la

st
ic

st
ra

in
s

at
n
+

1}
;

e
| n+1

{v
oi

ds
ra

tio
at

n
+

1}
B

eg
in

:

1:
S

et
m

in
an

d
m

ax
de

vi
at

or
ic

st
re

ss
es

:[ q m
in
,q

m
ax
] T =

[ |σ 1,m
in
−σ

3
|,|σ

1,
m

a
x
−σ

3
|]

2:
S

et
m

in
an

d
m

ax
m

ea
n

st
re

ss
es

:[ p m
in
,
p m

ax
] T =

1/
3[ q m

in
,q

m
ax
] T +
σ

3
[ 1
,1

]T

3:
S

et
in

-c
yc

le
st

re
ss

in
cr

em
en

ts[ ∆p,
∆

q] T =
( [ p m

ax
,q

m
ax
] T −
[ p m

in
,q

m
in
] T) /N

S

4:
S

et
in

iti
al

st
re

ss
st

at
e[ q 0
,
p 0
] =[

q m
in
,
p m

in
]

5:
S

et
in

iti
al

vo
id

s
ra

tio
:e i
=

1
←

e
| n

6:
fo

r
i
=

1
to

N
S

do
7:

O
bt

ai
n

(p
c

s)
i
=

p c
s(

e i
)

fr
om

E
q.

(1
3)

8:
O

bt
ai

n
(p

0
) i
=

p 0
(q

i,
p i
,(

p c
s)

i)
fr

om
E

q.
(1

2)
9:

C
om

pu
te

st
re

ss
st

at
e:[ p i
,q

i] T =
[ p i
−1
,q

i−
1
] T +
[ ∆p,
∆

q] T
10

:
S

et
st

re
ss

ra
tio

in
cr

em
en

t:∆
η

i
=

q i p i
−

q i
−1

p i
−1

11
:

O
bt

ai
n

(d
εe v
/d

p
) i

fr
om

E
q.

(1
0)

12
:

C
om

pu
te

vo
lu

m
et

ric
el

as
tic

st
ra

in
:(
ε

e v
) i
=

(ε
e v
) i−

1
+

(d
εe v
/d

p
) i∆

p
13

:
C

om
pu

te
[ (d
ε

p v
/d
η
| n)

i,
(d
ε

p s
/d
η
| n)

i] fr
om

E
qs

.(
17

a)
an

d
(1

7b
)

14
:

C
om

pu
te

pl
as

tic
st

ra
in

s:[ (ε
p v
) i
,(
ε

p s
) i
] T =

[ (ε
p v
) i−

1
,(
ε

p s
) i−

1

] T +
[ (d
ε

p v
/d
η
) i
,(

dε
p s
/d
η
) i
] ∆η i[

1,
1]

T

15
:

O
bt

ai
n

to
ta

lv
ol

um
et

ric
st

ra
in

:(
ε

v)
i
=

(ε
p v
) i
+

(ε
e v
) i

16
:

U
pd

at
e

th
e

vo
id

s
ra

tioe
i+

1
=

e 0
−(

1
+

e 0
)(
ε v

) i
17

:
en

d
fo

r
18

:
[ e
| n+1
,ε

p v
| n+

1
,ε

p s
| n+

1

] ←
[ e N

S
,(
ε

p v
) N

S
,(
ε

p s
) N

S

]
A
lg
or
it
hm

1.
St

ep
-b

y-
st

ep
de

sc
ri

pt
io

n
of

m
od

el
fo

r
tr

ac
k

se
tt

le
m

en
t.

J. Chiachío et al. Reliability Engineering and System Safety 181 (2019) 127–141

130



required mathematical background about prognostics in the context of
the track degradation problem investigated here.

3.1. Fundamentals about model-based prognostics

Definition 4 (Hidden Markov model [21]). A hidden Markov model is a

time-series model comprised of a couple of discrete-time stochastic processes,
namely {xn}n≥ 0 and {yn}n≥ 0. The former is an unobserved Markov
process described by the state vector xn taking values in a space denoted by

, with known prior PDF π(x0) and transition density given by
x x( ),n n 1 non necessarily Gaussian. The process {yn}n≥ 0 represents a

sequence of noisy observations taking values in , which are assumed

Fig. 1. Schematic overview of the proposed prognostics framework.

Fig. 2. Sequential estimation and future prediction of permanent axial strain at 600 (upper left), 2000 (upper right), 10,000 (lower left) and 20,000 (lower right)
loading cycles. The updated state estimations up to prediction time n are represented using a box-and-whisker plot, where the bottom and top of the box represent the
25th and 75th percentiles, and the lower and upper whiskers the 5th and 95th percentiles, respectively. The future states prediction are represented using shaded
areas for the 5% 95% and 25% 75% probability bands.
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to be conditionally independent given the states xn.

A discrete-time state-space representation is typically adopted to
describe the hidden Markov model, as follows [1]:

= +x x uf ( , , )n n n n n1 (18a)

= +y x u wg ( , , )n n n n n (18b)

where × ×f :n
n n n nu x x is the state transition equation, re-

presented by a possibly nonlinear function of the state variable xn along
with a set u nu of input parameters to the system (loadings, geo-
mechanical inputs, etc.). The function × ×g :n

n n n nu x y de-
notes the observation equation and provides the expected observation or
measurement yn given the hidden state xn. Both functions f and g may
depend on a set of uncertain model parameters n (e.g., fit-
ting parameters). The terms n

nx and wn
ny in Eq. (18) are

stochastic variables that represent the modelling error and the mea-
surement error, respectively. Supported by the Principle of Maximum
Information Entropy [31], νn and wn can be conservatively modelled as
zero-mean Gaussian distributions [1]. Thus, the state space model de-
fined in Eq. (18) can be probabilistically rewritten as2:

=x x f( , ) ( ( , ), )n n 1 1 (19a)

=y x g( , ) ( ( , ), )n n (19b)

where ×n nx x and ×
w

n ny y are the covariance matrices of the
model error and the measurement error, respectively. Note in Eq. (19)
and in what follows that the conditioning on the model inputs un is
dropped for simpler notation.

In this work, the (latent) state of the system at loading cycle n is
assumed to be described by the plastic deviatoric and volumetric
strains, i.e., =x ( , ) ,n s

p
n v

p
n

2 where subscripts (s, v) denote the
deviatoric and volumetric components, respectively. The observations
of the system are assumed to be given by the vertical plastic
strain, =y ,n

p
n1 which can be theoretically estimated from the

component plastic strains using Eq. (3). Under these assumptions, the
covariance matrices for the error terms are given by

= ×diag ( , )s v, ,
2 2 for the model error, and =w w for the

measurement error, with σν,s and σν,v being respectively the standard
deviations of the deviatoric and volumetric components of the model
error, and σw the standard deviation of the measurement error. With
these settings, the deterministic physics-based model proposed in
Section 2 is stochastically embedded within a hidden Markov model by
defining the functions f and g in Eqs. (19a) and (19b), as:

=x f ff ( , ) ( ( , ), ( , ))n n s s
p

n v v
p

n1 1 1 (20a)

= +g 1
3n s

p

n
v
p

n (20b)

where functions fs and fv in Eq. (20a) are given by

= +f ( , ) ( )s s
p

n s
p

n s
p

n1 1 (21a)

= +f ( , ) ( )v v
p

n v
p

n v
p

n1 1 (21b)

In the last equation, s
p

n and v
p

n are the increments in the plastic
deviatoric and volumetric strains within loading cycle n,
respectively. These strain increments can be obtained as:

=
=

d
ds v

p

n

j

N
s v
p

n j
j,

1

,

Eq.(17)

S

(22)

where subscripts (s, v) denote the deviatoric and volumetric compo-
nents, respectively, and NS is the number of discretising steps of the
loading ramp at cycle n (the unloading ramp is regarded as elastic). The
reader is referred to Algorithm 1 for details about the numerical com-
putation of the plastic deviatoric and volumetric strains for load cycle n.

Definition 5 (Sequential state estimation). The sequential estimation of the
track degradation aims at obtaining an updated estimation of the actual
condition of the track based on available measurements up to cycle n. The
degradation is described by the state variable xn along with the uncertain
model parameters θ, leading to an augmented state variable

= +z x( , )n n
n nx . Thus, given a sequence of track degradation

measurements, denoted as y y y y{ , , , },n n n1: 1 1 the goal is to obtain the
most plausible sequence of track degradation states z z z z{ , , , }n n n0: 0 1
for those measurements, which is given by Bayes’ Theorem as [1]:

=z y
y z z y

y z z y dz

y z z z z y

( )
( ) ( )

( ) ( )

( ) ( ) ( )

n n
n n n n

n n n n n

n n n n n n

0: 1:
0: 1: 1

0: 1: 1 0:

Eq. (19b)

1 0: 1 1: 1

last update (23)

where

=z z x x( ) ( , ) ( )n n n n n n n1 1

Eq. (19a)

1

(24)

Observe from Eq. (24) that model parameters θn are virtually time-
evolving although they are essentially not dependent on time, which is
a key problem that typically arises when sequentially updating the state
variable as an augmented state [32]. A common solution is to add a
white-noise perturbation to the set of updated parameters at time n 1
before evolving to the next predicted state at time n,
i.e., = + ,n n n1 where (0, )n n . This induces a Markovian-
type artificial dynamics to the model parameters whereby the required
PDF ( )n n 1 is prescribed [32,33], as follows:

=( ) ( , )n n n1 1 n (25)

where is a covariance matrix specified here as
= ( )diag , , , , ,2 2 2

n n n j n n,1 , , with 2
n j, being the variance of the

random walk of the jth component of the parameter vector θ at time or
cycle n. Note that such artificial evolution imposes a loss of information
in θ over time (e.g., increasingly larger spread in π(z0:n|y1:n)) since
additional uncertainties are artificially added to the model para-
meters. Several methods have been proposed in the literature to over-
come this drawback, with the most popular being those that impose a
shrinkage over n as long as new data are available [32]. An efficient
method of this class is adopted in this work [34], which consists in
sequentially modifying the variances =j n, 1, , ,2

n j, as follows:

= P
RMAD

1 *
RMAD( ) *

RMAD( )j
n j j

n j

2 2 ,

,
n j n j, 1, (26)

where RMAD(θn, j) is the relative median absolute deviation of
π(θn, j|y1:n), RMAD*j is the target RMAD for π(θn, j|y1:n), and P* [0, 1]j
is a scaling constant that controls the speed of convergence to
RMAD*j . Both RMAD*j and P*j need to be tuned by the modeller. A
comprehensive discussion about the optimal choice for P*j and RMAD*j
is found in [34].

Definition 6 (Predicted system state). Given the most up-to-date assessment
of the system at time or cycle n, π(zn|y1:n), a probability-based prediction of
the future states of degradation of the system ℓ-steps forward in time can be
obtained by Total Probability Theorem as [1,35]:

=+
= +

+

+z y z z z y dz( ) ( ) ( )n n
t n

n

t t n n n n1:
1

1 1: : 1
(27)

2 In what follows, the probability density functions are denoted as π( · ) in-
stead of p( · ), to avoid confusion with the mean stress invariant p.
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where ℓ > 1 is the number of prediction steps in absence of new data,
and z z( )t t 1 is the state transition equation defined in Eq. (24), which,
for t > n, encloses the future behaviour of the system.

To numerically solve this multi-dimensional integral, an approx-
imation can be readily obtained by conditional sampling, using recur-
sively the one-step transition equation defined in (24), i.e.: first sample

+zn
i

1
( ) using the aforementioned one-step transition equation conditional

on the initial state zn, i.e., +z z(· )n
i

n1
( ) ; then sample the succeeding

state conditional on the previous sample, i.e., + +z z(· )n
i

n
i

2
( )

1
( ) ; finally,

repeat the same process until the target time +n is reached.

Definition 7 (End of Life (EOL) [1]). The EOL is defined as the earliest
time or loading cycle t > n when the predicted event z[ ]t takes place,
where zt∼ π(zt|y1:n) and is the subset of states where the system
behaviour becomes unacceptable.

In the context of the proposed track degradation problem, re-
presents the set of values for the vertical plastic strain exceeding the
threshold , which delimits the boundary between the failure region

and the safe region = . Observe that since the predicted
states zt are uncertain (recall Eq. (27)), the EOL will be an uncertain
variable distributed according to the PDF π(EOLn|y1:n). This PDF can be
theoretically obtained as the distribution of the predicted states con-
tained in the boundary , i.e., y z y(EOL ) ( ),n n t n1: 1: given
that =t z[ EOL ] [ ]n t . It follows that +z y( )n n1: can be
written as a conditional PDF +z y( , ),n n1: which can be evaluated
as:

= =+z y y k z y z( , ) (EOL ) ( ) ( )n n n n t n t1: 1: 1:

Eq.(27) (28)

where k is a normalising constant and z( )t is an indicator function
that assigns the unity if z( ),t and makes zero the rest.

Definition 8 (Remaining Useful Life (RUL) [1]). The RUL is the remaining
time in which the system is foreseen to perform within the region of
acceptable performance, where = , the non-empty subset of
authorised states of the system. A prediction of the RUL from the time of
prediction n can be straightforwardly obtained from EOLn as

= nRUL EOLn n .

Definition 9 (Prospective evidence for a model). Given a degradation
process n observed up to current time or load cycle n, and a particular
model class which idealises such a process (e.g., the one proposed in
Section 2), the prospective evidence for model class is the probability of
the subsequent degradation process, denoted as +,n to be predicted by

. The prospective evidence can be obtained by Total Probability Theorem
as:

=+ + d( , ) ( , , ) ( , )n n n n n n n n (29)

where ( , )n n is the marginal posterior of the model para-
meters at load cycle n, given by Eq. (23), and +( , , )n n n is the
prospective likelihood function, which measures how likely +n is pre-
dicted by model class parameterized by θn. The computation of this
likelihood function along with the estimation of the multidimensional
integral in Eq. (29) are explained in Appendix B.

Note that for this definition, data for the future degradation process
+ are assumed to be known, which holds true for offline and pseudo-

online prognostics analyses, but it could be a hard assumption in a
purely online prognostics scenario. In that case, we assume that + can
be available through experiments run in similar conditions or by the
existence of repeated tests.

3.2. Algorithms for prognostics

The methodology for track degradation prognostics explained above
involves the evaluation of multidimensional integrals (recall Eqs. (23)
and (27), respectively) which are analytically intractable, except for

some of especial linear cases using Gaussian uncertainties [22]. Ap-
proximating methods like Sequential Monte Carlo [22] are required to
overcome those integrals by numerical approximation. In prognostics,
these approximating methods are typically integrated within algorithms
which (1) sequentially estimate the joint PDF of states and model
parameters as long as new data are collected, referred to as particle
filtering algorithms, and (2) extrapolate the updated state estimations
into the future in absence of new observations until the EOL is
reached. Depending upon implementation both algorithms may not be
separable, however, for the sake of clarity, they will be presented here
separately in Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Sequential state estimation algorithm
With particle filters, the PDF of the most up to date state of de-

gradation of the track π(z0:n|y1:n) can be approximated through a set of
N weighted particles or samples =z{ , } ,n

i
n

i
i
N

0:
( ) ( )

1 as:

=
z y z z( ) ( )n n

i

N

n
i

n n
i

0: 1:
1

( )
0: 0:

( )

(30)

where δ is the Dirac delta and = 1i
N

n
i( ) . The value of the particle

weights ={ }n
i

i
N( )

1 can be obtained by sequential importance sampling [22]
each time a new data point arrives, as explained in the pseudocode
given as Algorithm 2. Note that a systematic resampling step is pro-
posed in Algorithm 2 (see line 15) to avoid the well-known weight
degeneracy problem associated to the sequential importance sampling
method [36]. If necessary, a control step on this degeneracy by using
the effective sample size (ESS) [36] may be incorporated before the re-
sampling step. The interested reader is referred to Orchard and co-
workers [35] for further details about sequential state estimation for
model-based prognostics.

3.2.2. Particle-filtering based prognostics
Using the particle-filtering approach presented above, the goal is to

obtain an up-to-date estimate of the EOL of the track as the PDF of the
earliest time when the predicted degradation states reach the failure
region . To this end, a particle filter approximation of the predictive
Eq. (27) is needed, which can be shown to be obtained as [1]:

+
=

+
= +

+

+ +z y z z z z dz( ) ( ) ( )n n
i

N

n
i

n n
i

t n

n

t t n n1:
1

( )
1

( )

2
1 1: 1

(31)

Observe that the last equation cannot be solved analytically, how-
ever it can be sampled by drawing one conditional sample sequence

=+ + + + +z z z z{ , , , }n n
i

n
i

n
i

n
i

1:
( )

1
( )

2
( ) ( ) from each of the N multidimensional

integrals in Eq. (31), using the conditional sampling methodology ex-
plained in Definition 6. Each of the predicted sequences

=+ +z i N, 1, ,n n
i

1:
( ) adopts the weight n

i( ) of the corresponding up-
dated sample zn

i( ); therefore an approximation of Eq. (27) would finally
be obtained as:

+
=

+ +z y z z( ) ( )n n
i

N

n
i

n n
i

1:
1

( ) ( )

(32)

where =+ + +z z i N, 1n
i

n n
i( )

1:
( ) . Based on Eq. (32), a particle-filter

estimation of the EOL and RUL at time n is obtained as

=
y(EOL ) (EOL EOL )n n

i

N

n
i

n n
i

1:
1

( ) ( )

(33a)

=
y(RUL ) (RUL RUL )n n

i

N

n
i

n n
i

1:
1

( ) ( )

(33b)

In Eqs. (33a) and (33b), n
i( ) is the normalised weight of the ith

particle at time of prediction n, and EOLn
i( ) and RULn

i( ) are the particles
for EOLn and RULn respectively, which are obtained as
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= + =+{ }n zEOL inf : 1 ( ) 1n
i

n
i( )

( )
( )

(34a)

= nRUL EOLn
i

n
i( ) ( ) (34b)

with : {0, 1}( ) being an indicator function that assigns the unity
if +z( ),n and makes zero the rest. An algorithmic description for
filtering-based prognostics is provided below as Algorithm 3.

3.3. Prognostics metrics

A prognostic performance evaluation is required to assess the
goodness of the EOL/RUL estimates so as to avoid subsequent main-
tenance decisions based on poor predictions, which may increase
system risk. Two main attributes are typically used to evaluate the
performance of a prognostic estimation, namely [37]: (a) correctness,
which is related to the prediction accuracy when compared with ob-
served (future) outcomes; and (b) confidence, which deals with the
uncertainty in the EOL/RUL predictions. Based on these attributes, a
prognostic error measure + +: is proposed here as:

= +[EOL ] [EOL*]
[EOL*]

std[EOL ] std[EOL*]
std[EOL*] (35)

where denotes the mathematical expectation, std is the standard
deviation, and EOL* represents a benchmark EOL, which is considered
as an uncertain variable with known statistics (e.g., EOL* might be
represented by a Gaussian PDF with known mean and standard devia-
tion). Observe from Eq. (35) that n is contributed by the relative
discrepancy between the expected values of EOLn and EOL* (first term),
which accounts for the correctness of the prediction, and the relative
difference between the spreads in the PDFs describing the EOLn and
EOL* (second term), which accounts for the confidence of the predic-
tion.

Remark (Non symmetry). In situations where the computed PDF of EOLn
lacks of smoothness or symmetry, n is preferably formulated using the
median (Md), as a measure of location, and the interquartile range
(IQR), as a measure of spread, as follows:

= +Md[EOL ] Md[EOL*]
Md[EOL*]

IQR[EOL ] IQR[EOL*]
IQR[EOL*] (36)

In addition to quantifying the prognostics performance for a parti-
cular model class or a particular algorithm, one may be interested in

assessing and ranking two different model classes, e.g., and ,
according to their relative prognostics performance. To this end, a novel
relative prognostics metric is proposed herein based on the ratio be-
tween the prospective evidence for each candidate model class (refer to
Definition 9), as follows:

=
+

+
RPE ( , )

( , )n
(37)

where RPEn stands for the relative prospective evidence at time or load
cycle n, which provides a measure of the relative anticipation capacity
of the two model classes at different time instants during the process,
such that RPEn≶1 when + +( , ) ( , ).

The reason for proposing a relative performance metric ratio based
on evidence is because the computation of the evidence has been shown
to automatically enforce a quantitative expression of the Principle of
Model Parsimony or Ockham’s razor [38,39], so the extremes of over-
fitting (at the cost of too much information extracted from data), or
under-fitting of the data become naturally penalised. In other words, if
the future degradation process +n is predicted equally well by the two
models, then the ”simpler”, i.e., the one which needs less support from
the data, would be favoured by the proposed RPE metric. More insight
about the proposed prognostics metric will be given below in the con-
text of a case study.

Remark. When dealing with online prognostics, data about the future
degradation process +n might be uncertain and known only through a
PDF +( ). In this case, the RPE metric can be obtained as a
mathematical expectation, as

=
+

+
+ +RPE ( , )

( , )
( )n

(38)

The multidimensional integral in Eq. (38) can be numerically evaluated
by the Monte Carlo method as

=

+

+T
RPE 1 ( , )

( , )
n

k

T

1

( )

( )
(39)

with +
( ) being T sample degradation trajectories drawn from +( )n .

4. Case study

The knowledge-based prognostics methodology for track settlement
presented before is exemplified here using data about permanent axial

Input:
{
z(i)

n =
(
x(i)

n , θ
(i)
n

)
, ω(i)

n

}N
i=1

{updated particles at timen from Algorithm 2}, Ū ⊂ Z {failure domain},

Output:
{
EOL(i)

n , ω
(i)
n
}N
i=1,
{
RUL(i)

n , ω
(i)
n
}N
i=1

Begin (t> n):

1: for i = 1, . . . ,N do
2: t ← n
3: z(i)

t ← z(i)
n

4: EvaluateI(Ū)(z
(i)
t )

5: while I(Ū)(z
(i)
t ) = 0 do

6: Sample from Eq. (25):θ(i)t+1 ∼ π(θt+1|θ(i)t )
7: Sample from Eq. (19a):x(i)

t+1 ∼ π(xt+1|x(i)
t , θ

(i)
t )

8: t ← t + 1
9: zt =

(
x(i)

t , θ
(i)
t

)
← zt+1 =

(
x(i)

t+1, θ
(i)
t+1

)
10: end while
11: EOL(i)

n ← t
12: RUL(i)

n = EOL(i)
n − n

13: end for

Algorithm 3. Particle-filter based prognostic algorithm.
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strain in a ballasted railway track taken from the literature [23]. The
test, as reported by Aursudkij et al. [23], was conducted on the Railway
Test Facility (RTF) of the University of Nottingham (UK) [24]. The RTF
is housed in a 2.1 [m] (width) × 4.1 [m] (length) × 1.9 [m] (depth)
concrete pit, and for this test, it was comprised of 0.9 [m] (depth) silt
subgrade material, 0.3 [m] (depth) limestone ballast material, and
three concrete sleepers. The sleepers were loaded with a sinusoidal load
with maximum magnitude of 94 [KN] and 90° phase-lag between each
actuator, which simulates a 20 tonnes axle-load train leading to a
maximum in-cycle vertical stress = 210max1, [KPa], and a confining
pressure = 303 [KPa] (σ3 represents the mean pressure due to geo-
static stresses in the railway track section). The settlement of the central
sleeper was measured using LVDT sensors at a set of non-regularly
scheduled load cycles, whereby the permanent axial strain data were
obtained by dividing the measured settlements by the ballast section
height prior to test (0.3 [m]). A summary of the dataset used for this
case study is provided in Table 1. The reader is referred to Aursudkij
et al. [23] for further information about the experimental setup, and
to Brown et al. [24] for a detailed description of the Nottingham RTF.

Following the methodology for sequential state estimation pre-
sented in Section 3.2, probability-based predictions about the evolution
of the permanent axial strain are obtained. The results, which are
presented in Fig. 2 for several time instants (load cycles) during the
loading process, show a good agreement between the track settlement
as measured by the LVDT sensors and that estimated by the particle
filter algorithm. For these calculations, the voids ratio of the intact
ballast was set to =e 0.8,0 and the values of the critical state parameters
shown in Table 2 were adopted to evaluate the underlying constitutive
geomechanical model. These critical state parameters have the desir-
able property of being independent of the state of the material (e.g.,
voids ratio and stress condition), and, for this case study, they have
been obtained through initial fitting tests with the data. In the en-
gineering practice, they can be obtained from routine triaxial
tests. Here, the model error term ν defining the state transition equation
is assumed to be the same for both the volumetric and deviatoric
components, therefore = diag ( , ) in Eq. (19a), where σν is an
uncertain parameter that is sequentially updated with the data, as
shown further below. The coefficient of variation (c.o.v.) of the mea-
surement error w is set to =c.o.v 0.05,w taking it as known, whereby the
standard deviation σw for the measurement Eq. (19b) can be straight-
forwardly obtained as = yc.o.v ,w w n with yn being the measurement
taken at cycle n. For this case study, the fitting parameters α and β
defining the hardening function (recall Eq. (15)) along with the stan-
dard deviation of the model error σν, are selected as the uncertain
model parameters to be sequentially updated within the augmented
state variable =z x( , ),n n hence = ={ , , } { , , }1 2 3 . These

parameters resulted to be the most sensitive model parameters after a
preliminary sensitivity analysis. A uniform PDF is conservatively
adopted for the prior PDF of the model parameters π(θj), =j 1, 2, 3, as
specified in Table 2 (see fourth column), as a way of representing our
prior state of ignorance about the initial values of such uncertain
parameters.

At each prediction step, which corresponds to the loading cycles
when settlement data are collected, Algorithm 2 is run by using

=N 5000 particles to obtain an updated estimation of both the per-
manent axial strain and the uncertain model parameters. For this al-
gorithm, the scaling variables =RMAD RMAD* 0.1·j j0, and =P* 0.9j (re-
call Eq. (26)) are adopted to control the artificial dynamics of the model
parameters = ={ } ,j j 1,2,3 where RMAD0, j is the relative median abso-
lute deviation of the marginal priors π(θj). The diagonal elements j0, of
the covariance matrix 0 in Eq. (25) are appropriately selected through
initial test runs and set to 5% of the 5th-95th inter-percentile range of
the marginal priors π(θj). To reveal the sequential uncertainty reduction
in the updated model parameters, the updated mean estimation of the
jth component of θ, as well as its 25% 75%, 5% 95% uncertainty
bands, are plotted against the loading cycles in Fig. 3 for =j 1, 2, 3.

Next, based on the most up-to-date predictions of the permanent axial
strain of the track, Algorithm 3 is used for EOL and RUL calculation. To this
end, the time-ahead predictions of the track settlement, which are depicted
in Fig. 2 using shaded areas to illustrate the prediction uncertainty, are
extrapolated forward in time until the permanent axial strain crosses the
threshold between the useful domain and the failure domain ,
whereby the PDF of EOL is obtained as a first-passage time distribution
problem. For this example, the threshold is set to = 0.0125 [di-
mensionless], thus, the useful domain is defined as the subspace

= = +{( , ) : 1/3 [0, 1. 25·10 ] }2
1

2 . To speed up
the EOL calculation, which requires the simulation of =N 5000 particle
trajectories thousands (or even millions) of loading cycles ahead until
reaching the failure domain, the ”natural” load cycles are converted to duty
cycles by dividing the load cycles by a fixed factor >DC 1 [40]. Here, a
duty cycle is defined as an appropriate fixed amount of load cycles where a
sensible amount of settlement is accumulated. After some pilot tests,

=DC 50 was revealed as a suitable value for this example.
Fig. 4a shows the sequence of estimated PDFs of EOL for the dif-

ferent load cycles when track settlement data are available. By com-
paring between consecutive PDFs in Fig. 4a, one can observe that the
mean EOL prediction gradually tends to converge to the reference mean
value for EOL* (blue marker in Fig. 4a), and the prediction uncertainty
(i.e., the spread of the PDFs) tends to decrease, as a consequence of the
sequential updating of the model as long as new data are collected. The
gradual increase in the prediction accuracy is also revealed in Fig. 4b,
where the mean RUL estimations are plotted against time of prediction
using an accuracy cone type of representation [41]. Two cones of ac-
curacy at 10% and 20% of the reference RUL, denoted here as RUL* and
obtained as = nRUL* EOL* , are included to visually interpret the
prognostics performance in regards to prediction accuracy. Observe
that the expected RUL prediction is appreciably inaccurate for the in-
itial 5000 load cycles (values out of accuracy cones), which suggests
that a training stage is required by the model to learn from the
data. This learning period is also manifested in Fig. 4c, where the
proposed prognostics error n in Eq. (36) is plotted against loading
cycles assuming a Gaussian PDF centred at 75,000 and 10% c.o.v. for
EOL*.

Finally, the prognostics performance of the track geometry de-
gradation model proposed in Section 2 is compared with the

Table 1
Permanent vertical strain data used for calculations. Data taken from [23] corresponding to ”RTF” test.

Loading cycles n, ( × 103) 0 625 1250 2500 5000 10,000 20,000 50,000 75,000 100,000

Plastic axial strain p
n1 0 0.0017 0.0045 0.0058 0.0075 0.0087 0.0104 0.012 0.01275 0.0133

Table 2
Nominal values and prior uncertainty of model parameters and inputs used in
calculations.

Type Parameter Value Prior PDF

Critical State Γ 2.99 Not applicable
M 1.9 Not applicable
λcs 0.194 Not applicable
κ 7·10 3 Not applicable

Fitting (hardening model) α (θ1) – (1, 10)
β (θ2) – (0, 1)

Model error σν (θ3) – (5·10 , 5·10 )5 4
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performance of a well-known class of phenomenological models for
track settlement [30,42,43], given by the logarithmic model

= +A B nlog ,p
1 where A and B are fitting parameters. For comparison

purposes, this model is referred to as model class ,0 while the one
proposed in Section 2 is denoted as model class 1. A discrete-time
state-space representation of model class 0 is obtained and subse-
quently embedded within the SIS particle filtering algorithm (refer to
Algorithm 2), following the methodology in Section 3.1. For model
class ,0 the basic functions fn and gn defining the hidden Markov
model are given by = + B nf /n

p
n1 1 and =g ,n

p
n1 respectively. The

same uncertainty structure (i.e., modelling and measurement errors)
that is assumed for model 1 is also assumed for 0. The assessment
of the two model classes is carried out by computing the RPEn metric
proposed in Section 3.3. The results are shown in Fig. 5 for the load
cycles where measurements are available. In view of Fig. 5, the physics-
based model class 1 proposed in this paper is revealed to be the one
with the larger and earlier anticipation capability (RPEn > 1), since it
provides larger RPEn values in the earlier stages of the process. More
insight and discussion about prognostics performance is provided in the
next section.

5. Discussion

5.1. On the case study results

The proposed methodology for knowledge-based prognostics for
railway track degradation has been exemplified using the case study
presented in the previous section based on data from the Nottingham
Railway Test Facility. As a first interpretation of the results in Fig. 2, the

proposed methodology is able to accurately anticipate the evolution of
the plastic vertical strain of the track with quantified uncertainty after
an initial learning stage using limited data. The length of such a
learning stage is revealed in Fig. 3, where the updated mean of the
uncertain model parameters is shown to reach an asymptotic behaviour
after the first 5000 load cycles (about 7% of the reference EOL*), which
denotes that after this learning period the model has extracted enough
information from the data to make accurate predictions. This is in
agreement with the results shown in Fig. 4b for the RUL estimations,
and also with those in Fig. 4c, where =n 5000 is revealed as the time
when the prognostics error measure n starts a slower and gradual
decrease; i.e., the predictions become increasingly accurate for cycles
n > 5000, therefore making a decision based on the predicted EOLn is
recommended from that time. Note also in Fig. 4c that the overall
prognostics error n is mostly contributed by the uncertainty in the
predictions (second term in Eq. (35)), while the error term accounting
for the average prognostics accuracy becomes almost negligible after
the aforementioned learning period. This early correctness of the
prognostics results is a consequence of having adopted a physics-based
model for track deterioration instead of a data-based approach. At this
point, it is worth mentioning that the learning period required by the
model, and consequently, the actual anticipation capacity of the prog-
nostics algorithm, will certainly depend on the early availability and
quality of the condition monitoring data, but also on the prior un-
certainty of model parameters and their relative ”importance” in rela-
tion to the overall model response [44]. This model parameter im-
portance is expected to be lower for physics-based prognostics
formulations, like the one proposed here, than for purely data-based
approaches, where the model response becomes fully dominated by the

Fig. 3. Trace of the mean values of model parameters = { , , } against load cycles. Shaded areas represent the 25% 75% (darker color) and 5% 95% prob-
ability bands, respectively.
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(uncertain) value of the parameters [45]. This point is reinforced by the
values RPEn > 1 in Fig. 5, which reveals that the proposed physics-
based model performs better predictions than the data-based loga-
rithmic model used as a benchmark (denoted as 0), needing less
support from the data to train the fitting parameters. This tendency is
more accentuated in the earlier stages of the degradation process due to
the initial lack of condition monitoring data. As the process evolves
towards the end, both models have extracted enough information from
the data to allow them to perform similarly.

In terms of the prediction uncertainty, observe from Figs. 2 and 4 a
that the spread in the future predictions, which is initially high due to
the high prior uncertainty in the model parameters (especially in the
hardening parameters α and β), tends to decrease as the model is se-
quentially updated with new data, which is a common and desirable
feature in any prognostics problem. However, it is also observed that
the reduction of this prediction uncertainty does not take place gra-
dually along the full extent of the process but concentrated at the initial
stage, approximately coinciding with the learning period of the model
where most of the data are available. In this respect, it should be
pointed out that the observed uncertainty reduction is a particular
consequence of the data collection pattern in this case study, i.e., col-
lected over a set of non-regularly scheduled load cycles mostly con-
centrated at the beginning of the process, and not a general feature of
the proposed physics-based prognostics framework.

Besides the modelling uncertainties discussed above, there is an
additional source of uncertainty coming from the prognostics algorithm
itself, which is related to the asymptotic approach of the predicted
plastic axial strain to the established threshold (as observed in
Fig. 2). This asymptotic behaviour makes that many sample predictions
need very long simulations to reach the threshold, which leads to poor
EOL estimations unless the amount of particles (N in Algorithm 2) is
sufficiently large. A suitable solution to overcome this issue is by the
adoption of dedicated prognostics algorithms based on high-efficiency
sampling techniques, like the one recently proposed by the authors
in [46] based on SubSet simulation, or the one developed by Yan et al.
[47] based on adaptive Lebesgue sampling, among others. This task
constitutes a desirable future improvement of this work.

Fig. 4. Results for track degradation prognostics. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Relative prospective evidence (RPEn) obtained for the physics-based
model class 1 proposed in Section 2 and an empirical logarithmic model class

0.
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5.2. On the extensibility to track maintenance

As stated in Section 1, the degradation of the railway track geometry
results in a key asset management problem for the railway industry
with important implications in safety and cost. The potential and also
the limitations of the proposed prognostics framework in positively
contributing to optimal track asset management is discussed in this
section.

First, the authors remark that an apparent limitation of the proposed
approach in the context of railway track asset management is that a
physical variable such as the plastic strain (or settlement) of the track is
adopted instead of more common management variables like the track
geometry index [48] or the standard deviation (SD) of the settle-
ment [3]. However, the aforementioned management variables can be
expressed as functions of the settlement of the track [49] and these can
be included within the hidden Markov model in Eq. (18), whereby the
proposed filtering-based prognostics methodology is subsequently de-
rived.

Next, in regards to the applicability of the proposed methodology to
a real life scenario, it should be pointed out that the physical model
described in Section 2 provides the evolution of the permanent settle-
ment of the ballast as a pseudo-plane strain problem. This implies that
the railway track is assumed to (approximately) have homogeneous
material and geometrical characteristics along the longitudinal direc-
tion of loading. For a real world railway track, such assumption would
lead to the need for a segmentation of the track into different homo-
genous sections where the proposed prognostics framework can be
applied. Those sections would constitute predictable components of the
track asset for a specific railway line, and other assets related to the
track maintenance such as the drainage, switches and crossings might
be taken into account to define the length of those sections. In this
context, it should be emphasised that the proposed methodology is
general and as such, it can be extended to not only other railway assets,
but also to other engineering systems and infrastructures. This can be
achieved simply by considering the appropriate degradation models
and condition monitoring data, and embedding them within a hidden
Markov model, as explained in Section 3.1, where the subsequent
prognostics methodology is derived. From this standpoint, state-of-the-
art methodologies for infrastructure asset management like Petri
nets [50,51] can be adopted to perform modelling activities such as
optimal maintenance planning and life-cycle cost analyses at system
level based on prognostics, which constitutes an immediate next step of
this research.

Finally, to illustrate the potential of the proposed methodology for
improved maintenance decisions and optimum asset availability, a
conceptual scheme has been provided in Fig. 6. In this figure, a de-
gradation process, which is represented using a black solid line, is being

monitored from =n 0 up to present time n. At this time, a probabilistic
prediction of the future evolution of the process is performed whereby a
PDF of the EOL is obtained given a predefined threshold that delimit the
end of the safe region and the onset of the failure region . Based on
this prediction, a decision is made on how much time a corrective
maintenance activity can be delayed based on the risk of reaching the
failure region during the delay time. To illustrate this decision-making
process, two foreseen intervention scenarios are represented in blue and
red considering two sample delay times, τ and τ′ respectively, with
τ′ > τ. Observe that if the intervention is delayed until +n (scenario
2), a longer lifetime extension is obtained (red PDF) in relation to that
obtained for the shorter delay scenario (blue PDF), but it is at the cost of
assuming a higher probability of failure (red shaded area in the EOL
PDF). Conversely, the shorter delay time scenario (in blue) is more
conservative in terms of probability of failure, but it leads to a shorter
lifetime extension. This simple example reveals a relevant trade-off
between lifetime extension and reliability which is typically faced by
infrastructure owners and operators based on experience, which can be
rigorously assessed and quantified with the proposed prognostics
methodology for infrastructure asset management.

6. Conclusions

A knowledge-based prognostics methodology for railway track asset
management has been developed in this paper. The proposed metho-
dology is general but in this paper it was applied to the railway track
due to its impact on the safety and the maintenance cost of the overall
infrastructure. A geomechanical model for ballast settlement has been
provided based on first principles and postulates about the yielding of
granular materials. This model is embedded within a particle filtering
algorithm for sequential state estimation and prognostics. The algo-
rithm obtains probabilistic estimations of the remaining useful life (RUL)
of the railway track as the PDF of the time to reach a threshold for
tolerable vertical axial strain. A case study has been presented using
experimental data for track settlement from the literature to illustrate
and discuss the proposed methodology. The results show that the pro-
posed prognostics framework is able to provide reasonably accurate
predictions of the RUL after a short model training period. More re-
search effort is needed to exploit the potential of prognostics in the
context of optimal track asset management at whole-life whole-system
level by integrating prognostics within state-of-art methodologies for
infrastructure asset management.
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Appendix A. Modelling details

For granular materials like ballast and suballast under a three-dimensional stress state given by the stress tensor σij, =i j, 1, 2, 3, the following
relationships are used to obtain the stress invariants p and q:

= + +p 1
3

( )11 22 33 (A.1a)

= + + + + +q 1
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The corresponding volumetric and deviatoric strain invariants are given by:
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where ϵij is the (i, j)-th element of the strain tensor. Under the assumption of axisymmetric stress state ( =2 3 and =2 3), the stress and strain
invariants simplify to

= +p 1
3

( 2 )1 3 (A.3a)

=q 1 3 (A.3b)

= + 2v 1 3 (A.3c)

= 2
3s 1 3 (A.3d)

From Eqs. (A.3) it follows that:

= +p q/3 3 (A.4a)

= +1/3 v s1 (A.4b)

The reader is referred to the nomenclature Table A.3 for further information of the geomechanical parameters involved in this work.

Appendix B. Prospective evidence estimation

The prospective evidence +( , ) at time or load cycle n is given by Total Probability Theorem as:

=+ + d( , ) ( , , ) ( , )n n n n n n n n (B.1)

where +( , , )n n n is the prospective likelihood function, and ( , )n is the marginal posterior PDF of model parameters, providing that
= yn n1: . Since a particle-filter approximation of ( , )n n can be available (refer to Eq. (30)), then Eq. (B.1) can be estimated, as:

=

+ +( , ) ( , , )n n
i

N

n
i

n n
i

n
1

( ) ( )

(B.2)

where ={ , }n
i

n
i

i
N( ) ( )

1 are N particles drawn from ( , )n n . Assuming that information about the subsequent degradation process is given by
=+ { , , , , }, the prospective likelihood in Eq. (B.2) is obtained as the probability of predicting +n by the stochastic model defined in

Table A.3
Nomenclature table. Nominal values of critical state parameters (Γ, M, λcs, κ) are given in Table 2.

d v
p plastic volumetric strain differential q deviatoric stress invariant

d s
p plastic distortional strain differential p mean stress invariant

Γ critical state model parameter η stress-ratio = q
p

λcs critical state model parameter p0 initial mean stress
κ swelling/recompression constant σ1 vertical stress
M in-plane Poisson ratio σ3 confining pressure
α empirical factor Eq. (15) e voids ratio
β empirical factor Eq. (15) e0 initial voids ratio
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Eq. (19a) under the parameterization specified by n
i( ) within the model class , as follows:

=+ y y y y y y( , , ) ( , , ) ( , , ) ( , , )n n
i

n m n
i

k j n
i

j n n
i( ) ( )

Eq. (19a)

( )

Eq. (19a)

( )

Eq. (19a) (B.3)

where >j k m n{ , , , , } are the times or load cycles where the upcoming data are available. For the general case where +n is available at non-
consecutive load cycles (e.g., k j 1), the PDF y y( , , )k j n

i( ) in Eq. (B.3) is obtained as

=y y y x( , , ) ( , , ) ( , , , )k j n
i
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and the integral in Eq. (B.4) can be numerically estimated by conditional sampling from Eq. (19a), as

=
y y( , , ) 1 ( , , )k j n

i( )

1

( ) ( )

(B.5)

where +x x x x{ , , , }k j j k
( ) ( )

1
( ) ( ) is the last element of the ξth conditional sample trajectory drawn from Eq. (19a).
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