
This version is available at https://strathprints.strath.ac.uk/65306/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Deep UV micro-LED arrays for optical communications

Xiangyu He, Enyuan Xie, Erdan Gu, and Martin D. Dawson

Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, G1 1RD, UK
Contact mail: erdan.gu@strath.ac.uk

Deep ultraviolet (UV) optical communications have attracted considerable attention recently. As most of the Sun's ultraviolet radiation is absorbed by the ozone layer in Earth's stratosphere, UV optical communications offer not only a high-security communication link between satellites in the upper atmosphere, but also data transmission with low solar background noise for outdoor communication on the ground. Furthermore, deep UV light is strongly scattered in the air caused by abundant molecules and aerosols, which enables non-line-of-sight short-range optical communication. However, in comparison with visible light communications, the data transmission rate based on deep UV light emitting diodes (LEDs) has been little explored and is still quite low. This is mainly due to the low modulation speed of conventional deep UV-LEDs. Therefore, developing high speed deep UV-LEDs is of paramount importance.

In recent years, we have developed the micro-LEDs (μLEDs) as novel high-speed transmitters for visible light communications. These μLEDs, of edge dimension/diameter typically in the 10-100µm range, have extremely high modulation bandwidths due to their high operating current densities. Based on these studies, we report here the first III-nitride deep UV-μLED array emitting at around 262 nm to demonstrate its full potential for deep UV optical communications. This array consists of 15 μLED elements with a flip-chip configuration. With an emission area of 565.5 μm², each μLED element is individually addressable. The UV optical power of a single μLED element is 196 μW at 3.4 kA/cm² direct-current (DC) operating current density. We are currently measuring the modulation bandwidth of these deep UV-μLEDs. As they can sustain such a high DC operating current density, we expect a high modulation bandwidth and, in turn, a high data transmission rate for fast free-space optical communication. These results will be presented in the conference.


Acknowledgement: This work was supported by EPSRC grants EP/K00042X/1 and EP/M01326X/1. We gratefully acknowledge our colleagues in the former programme for their assistance with the data communications demonstrations.