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Abstract
Objectives: To determine the role of physical activity intensity and bout-duration in modulating associations between
physical activity and cardiometabolic risk markers.
Methods: A cross-sectional study using the International Children’s Accelerometry Database (ICAD) including 38,306
observations (in 29,734 individuals aged 4–18 years). Accelerometry data was summarized as time accumulated in 16
combinations of intensity thresholds (≥500 to ≥3000 counts/min) and bout-durations (≥1 to ≥10 min). Outcomes were body
mass index (BMI, kg/m2), waist circumference, biochemical markers, blood pressure, and a composite score of these
metabolic markers. A second composite score excluded the adiposity component. Linear mixed models were applied to
elucidate the associations and expressed per 10 min difference in daily activity above the intensity/bout-duration combi-
nation. Estimates (and variance) from each of the 16 combinations of intensity and bout-duration examined in the linear
mixed models were analyzed in meta-regression to investigate trends in the association.
Results: Each 10 min positive difference in physical activity was significantly and inversely associated with the risk factors
irrespective of the combination of intensity and bout-duration. In meta-regression, each 1000 counts/min increase in intensity
threshold was associated with a −0.027 (95% CI: −0.039 to −0.014) standard deviations lower composite risk score, and a
−0.064 (95% CI: −0.09 to −0.038) kg/m2 lower BMI. Conversely, meta-regression suggested bout-duration was not
significantly associated with effect-sizes (per 1 min increase in bout-duration: −0.002 (95% CI: −0.005 to 0.0005) standard
deviations for the composite risk score, and −0.005 (95% CI: −0.012 to 0.002) kg/m2 for BMI).
Conclusions: Time spent at higher intensity physical activity was the main determinant of variation in cardiometabolic risk
factors, not bout-duration. Greater magnitude of associations was consistently observed with higher intensities. These results
suggest that, in children and adolescents, physical activity, preferably at higher intensities, of any bout-duration should be
promoted.

Introduction

Cardiovascular disease accounted for 17.6 million deaths
worldwide in 2016, making it the leading cause of non-
communicable disease mortality [1]. While the disease is
generally a concern in adulthood, cardiometabolic risk
factors may be present from a much earlier age, for
example endothelial damage that leads to atherosclerosis
can develop during adolescence [2]. In addition, previous
evidence suggests cardiometabolic risk factors may
track from childhood and adolescence into adulthood [3].
This makes it important to understand the modifiable
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determinants of cardiometabolic risk factors in young
people. One such determinant is participation in physical
activity [4–6].

Current national and international physical activity
guidelines recommend adults should accumulate
moderate-to-vigorous physical activity (MVPA) or vig-
orous physical activity in bouts of at least 10 min duration
[7, 8]. For children and adolescents, a daily total of at
least 60 min of MVPA is recommended [7, 8] but many
countries (including the U.S. [9], U.K. [7], Australia [10],
and Canada [11]) do not specify any minimum bout-
duration for MVPA. However, a minimum bout-duration
of 5 min was included in a previous version of the
Canadian guidelines [12] and is included in some national
guidelines [13]. Providing the optimal guidance on how
to perform health-enhancing physical activity is impor-
tant for authorities and clinicians. However, whether
short bouts of activity confer similar benefits to longer
durations remains unclear and available evidence on
this issue remains scarce in young people [14–17].
Accelerometry is currently the de facto standard of
objective physical activity assessment in large-scale
epidemiological studies [18]. It is well-established that
accelerometry-determined MVPA levels are highly
influenced by the choice of intensity threshold [19] but it
has not been sufficiently explored how varying the
intensity threshold impacts on associations with cardio-
metabolic risk factors. Further, whether higher (or lower)
intensity physical activity may be particularly beneficial
for cardiometabolic risk factors at longer bout-durations
has yet to be examined. Therefore, the purpose of this
study was to assess how physical activity of different
intensities and accumulated in bouts of varying duration
relates to cardiometabolic health in young people. Since
bouted activity is highly correlated with total activity [14,
17], we also examined if an additional benefit of longer
duration activity was evident after accounting for varia-
tion in total physical activity.

Methods

Study design and participants

This study was based on secondary data from the Interna-
tional Children’s Physical Activity Database (ICAD,
http://www.mrc-epid.cam.ac.uk/research/studies/icad/) which
contains harmonized objectively measured physical activity
data from studies in youth across the world [20]. All studies
were based on participant/parental written informed consent
and consulted with their respective research boards to
ensure appropriate ethical approval of data-sharing. Inclu-
ded studies were conducted between 1997 and 2009 in 11

countries [21–38]. A total of 44,869 physical activity files
were available from the ICAD database. Participants with
sufficient physical activity data (criteria given below) and
data on any of the considered outcomes were eligible for
this study. After exclusion of participants due to insufficient
(detailed below) or unreliable data (flagged by ICAD central
processing) [20]—physical activity data (n= 5861), age
outside the 4–18 year range (n= 370), or missing outcome
data (n= 332)—a final sample size of 38,306 observations
from 29,800 unique individuals was included. Two or more
observations were available from 25.5% of the included
sample.

Physical activity data reduction

A detailed description of the protocol for harmonization of
physical activity data is provided elsewhere [20]. In short,
available raw data files were reanalyzed to create directly
comparable variables across all contributing ICAD studies.
Epoch length was harmonized to 60 s due to the lack of
availability of shorter epochs in older studies (KineSoft
version 3.3.20, KineSoft, Saskatchewan, Canada). For this
analysis, all epochs producing counts ≥30,000 were deemed
incompatible with human movement behavior and con-
sidered non-wear. Non-wear was further defined as strings
of identical count values for >60 consecutive min in the data
time-series (https://github.com/Thomite/pampro.git). These
strings were removed before summation of activity and
wear time. As strings of identical count values are unlikely
to represent true movement behavior, this approach will
both remove continuous zero counts and reduce data with
technical malfunction (i.e., count plateau). To avoid
extreme outliers, days with recorded mean counts/min
above the 99.9th percentile (2125 counts/min (cpm)) or
below the 0.1th percentile (36 cpm) were discarded. Three
or more days of ≥500 mins of wear-time between 7 a.m. and
midnight (data outside these hours was discarded) were
required for a participant to be included in this analysis [18].
To investigate the effect of higher intensity of physical
activity we defined four increasing, but arbitrarily chosen,
intensity thresholds; ≥500 cpm, ≥1000 cpm, ≥2000 cpm, and
≥3000 cpm. Further, we summarized time above these
intensity thresholds as uninterrupted bouts of ≥1 (includes
all activity), ≥2, ≥5 (medium), and ≥10 (long) min. A bout
was terminated when counts dropped below the respective
intensity threshold. As an example, the following min-by-
min accelerometer sequence 0-3000-3000-3000-3000-3000-
500-500-3000-3000-3000-3000-3000-0 would therefore be
summarized as 5+ 5= 10 min spent in ≥5 min bouts ≥3000
counts/min but zero min spent in ≥10-min bouts (and
similar for ≥2000 and ≥1000 counts/min intensities),
whereas there would be 12 min accumulated in all the ≥500
counts/min bout variables. Variables were derived for each
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day separately and averaged across valid days for analysis.
These data reductions lead to 16 combinations of intensity
and bout-duration.

Assessment of cardiometabolic risk factors

Outcome variables consisted of two anthropometric (waist
circumference and body mass index (BMI)) and five bio-
logical (insulin, glucose, triglyceride, HDL-cholesterol, and
mean arterial pressure (MAP, calculated as 1/3 × systolic
blood pressure+ 2/3 × diastolic blood pressure) [39]) mar-
kers reflecting established cardiometabolic risk factors.
Standardized methods were used to measure height and
weight across all studies with BMI calculated as weight (in
kilograms) divided by height (in meters) squared. BMI was
used to define overweight and obesity (World Obesity
Federation cut-offs) [40]. Waist circumference was mea-
sured by the same procedure (WHO) in all contributing
studies except the U.S. National Health and Nutrition
Examination Survey (NHANES). The latter used a metal
anthropometric tape placed at the midaxillary line (just
above the iliac crest) [33, 34], as opposed to the midpoint
between the lowest rib and iliac crest [21, 22, 27, 28, 31, 32,
35–37]. We converted NHANES data to WHO measure-
ment methodology by applying a correction formula [41].
Blood pressure was measured in 10 studies, all using
repeated measurements with automated [21, 27, 28, 32, 36]
or manual [33, 34] methods after at least 5 min of rest. Eight
studies obtained fasting measures of lipid metabolism (tri-
glyceride and HDL-cholesterol) and 7 studies measured
glycaemic metabolism in the basal state (fasting glucose and
insulin). All used standardized procedures [27, 28, 31, 33,
34]. To maximize information on the latent cardiometabolic
risk profile, we additionally calculated two composite risk
scores using standardized values (z-scores) of the risk fac-
tors [42]. The first composite score included BMI,
the homeostasis assessment model of insulin resistance
(HOMA-IR) [43], triglyceride, MAP, and inverse HDL-
cholesterol. The second composite score was identical
but excluded BMI (non-adiposity composite score). All
variables were standardized for age and sex with
MAP additionally standardized for body-height. BMI,
HOMA-IR, and triglyceride were log-transformed
before standardization. The composite score was standar-
dized to a mean of zero and standard deviation of one before
analysis.

Statistical analysis

Central tendencies of continuous variables are presented as
mean (standard deviation) or median (25th–75th percen-
tiles) based on distributional properties. Bout/intensity inter-
correlations were explored using Spearman’s partial

correlation controlling for age, sex, wear-time, and study.
Data from studies was pooled into one dataset, and separate
multivariable linear mixed-effects regression models were
used to analyze associations between the 9 outcomes and 16
combinations of intensity and bout durations while includ-
ing the co-variates age, sex, and wear-time. Body-height
was additionally included when MAP and waist-
circumference were outcomes. A mixed-effects logistic
regression model was used to calculate odds of being
overweight/obese. The non-adiposity composite score,
insulin, glucose, triglycerides, HDL-cholesterol, and MAP
were additionally controlled for BMI in secondary models.
Post-hoc models including age-by-intensity/bout-duration
and weight status (normal weight versus overweight/obese)-
by-intensity/bout-duration interaction terms were con-
structed to examine potential heterogeneity in associations.
In all models, individual participants and studies were
modeled as “random-effects” except in the logistic model
where only one observation per individual was included due
to failure of the models to converge (the earliest observation
was used). Additional adjustment for number of included
days produced minimal changes in coefficients. Regression
models were visually inspected for normal-distribution of
residuals, variance homoscedasticity, and linearity between
independent and dependent variables, as well as for influ-
ential observations (Cook’s D). All model assumptions
were verified and no transformation of variables was
necessary. Regression coefficients and 95% confidence
intervals (CIs) are presented graphically in the form of
forest plots, and represent the difference in outcome per 10
min/day positive difference in physical activity. To directly
model whether physical activity spent in medium or long
bouts confers an additional health benefit over an identical
amount of time spent in shorter bouts of physical activity,
we used an isotemporal substitution approach [44]. These
models took the form (omitting error term):

Y= β0+ β1Physical Activity≥5-9 min bouts at intensity+
β2Physical Activity≥10 min bouts at intensity+ β3Total Physical
Activityat intensity+ β4Wear-time+ β5Age+ β6Sex+
ζ1Study+ ζ2Participant

This model constrains total physical activity above the
intensity threshold, thereby allowing for investigation of its
composition [45]. The coefficients β1 and β2 thus represents
the effect of substituting time spent in physical activity of
1–4 min duration (short bout-duration) with an equal
amount of time spent in medium or long bout-durations of
MVPA [44]. We explored linear trends in the influence of
intensity and bout-duration on the outcomes by including
estimates from mixed linear regressions in a meta-
regression model [46]. CI’s in meta-regression models
were adapted to account for non-independence of coeffi-
cients [47] by recalculating the standard error as: (√(number
of coefficients (20)–1)) × the standard error obtained from
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the meta-regression. An intensity-by-bout duration interac-
tion term was added in a separate meta-regression model to
explore potential heterogeneity in associations across bout
duration/intensity combinations. Estimates for bout-
durations of ≥3 and ≥7 min (with intensity thresholds at
≥500 cpm, ≥1000 cpm, ≥2000 cpm, and ≥3000 cpm) were
added to the meta-regression to increase information about
the shape of the associations. Analyses were conducted
using Stata/IC version 15.0. Significance tests were two-
sided, and p values less than 0.05 were considered statisti-
cally significant. We did not include adjustment for multiple
testing and provide an interpretation of data based on the
pattern of results.

Results

Characteristics of the study sample

Participant and study characteristics, including number of
available studies and participants, are presented in Table 1,
Table 2 and in Supplementary File Table S1 and Fig. S1.
The median age of participants was 11.7 (11.1–13.6) years
and 26% of the sample was overweight or obese. Each
observation contributed a median of 6 (4–6) days with a
mean of 13.2 (1.2) hours of wear-time/day. The median
percentage of wear-time ≥500 counts/min, ≥1000 counts/
min, ≥2000 counts/min, and ≥3000 counts/min were 26.3%
(20.6–32.9%), 15.7% (11.6–20.7%), 6.9% (4.6%–9.8%),
and 3.1% (1.8–4.9%), respectively. Boys spent a higher
percentage of their time above each intensity/bout combi-
nation threshold (all p-values <0.001, Fig. 1). Correlations
between bout-durations were high but decreased with
higher intensity thresholds (correlation matrix shown in
Supplementary File Table S2).

Associations between combinations of intensity and
bout-duration with cardiometabolic risk factors

Forest plots of bout/intensity combinations and their asso-
ciations with the composite risk score, non-adiposity

composite risk score, and BMI from the linear mixed
regression are shown in Figs. 2 and 3. As the overall pattern
of association was similar for the remaining outcomes, we
show results (with and without BMI adjustment if appro-
priate) for insulin, glucose, triglyceride, HDL-cholesterol,
MAP, waist circumference, and odds of overweight/obesity
in Supplementary File Figs S2–S8. Intensity/bout combi-
nations were negatively associated with the cardiometabolic
risk factors, suggesting participants with higher activity
levels had more favorable risk profiles irrespective of
intensity threshold and bout-duration in the range examined.
Additional control for BMI attenuated effect-sizes, with
attenuation appearing greater (absolute and relative) at
higher intensities (Fig. 2 and Supplementary File Figs. S2–
S6). Using waist circumference as covariate instead of BMI
or exchanging waist circumference for BMI in the compo-
site risk score did not produce noticeable changes (data not
shown). Overall, the data suggested a pattern of increasing
effect-sizes with activity accumulated at higher intensity
thresholds e.g., a 10 min difference in total activity ≥500
cpm was associated with a −0.014 standard deviations
(95% CI: −0.018 to −0.01) lower composite risk score and
a −0.016 (95% CI: −0.022 to −0.011) kg/m2 lower BMI.
In comparison, additional 10 min of activity ≥3000 cpm was
associated with a −0.069 standard deviations (95%CI:
−0.081 to −0.056) lower composite risk score and a
−0.141 (95% CI: −0.157 to −0.125) kg/m2 lower BMI. A
pattern of increasing effect-sizes with increasing bout-
durations was observed within all intensity thresholds. For
example, a 10 min difference in total activity ≥2000 cpm
was associated with a −0.043 standard deviations (95% CI:
−0.051 to −0.035) lower composite risk score, while 10
min of the same intensity accrued in medium, and long
bouts was associated with a −0.065 (95% CI: −0.078 to
−0.052) and −0.081 (95% CI: −0.101 to −0.061) standard
deviations lower composite score, respectively. Effect-sizes
for glucose and triglycerides followed an irregular pattern at
≥2000 cpm and ≥3000 cpm with weaker associations
observed with medium and long bout-durations (Supple-
mentary File Fig. S3 and S4). The mean BMI of the quartile
spending the highest percentage of time ≥500 cpm (>32.9%
of wear time) was 0.28 (95%CI: 0.19 to 0.36) kg/m2 lower
than the quartile spending the least time above the threshold
(<20.6% of wear time). Being in the most active quartile of
physical activity ≥3000 cpm (>4.9% of wear time) was
associated with a 0.80 (95%CI: 0.71 to 0.89) kg/m2 lower
BMI in comparison with the quartile accumulating the least
activity above the threshold (<1.8% of wear time). Adding
age-by-intensity/bout-duration interaction terms in separate
models did not support heterogeneity of associations across
participant age for the composite risk score. Conversely, a
pattern of negative age-by-intensity/bout-duration interac-
tion terms were observed for BMI, suggesting higher

Table 1 Participant characteristics

Girls (n= 18,810)a Boys (n= 10,990)a

Age (years) 11.8 (10.6 – 13.8) 11.4 (9.6 – 12.0)

Body-height (cm) 152.4 (141.9 – 159.8) 145.7 (135.5 – 155.6)

Body-weight (kg) 45.6 (35 – 55.7) 38.0 (30.2 – 49.8)

Wear-time (h/day)b 13.2 (1.3) 13.1 (1.3)

Counts/min 453 (348 – 586) 620 (491 – 768)

Values are median with 25th–75th percentile unless noted otherwise
aUnique individual participants
bMean (SD)

J. Tarp et al.



intensities and bout-durations were associated with larger
effect-sizes in older participants. Weight status (normal
weight versus overweight/obese) modified the associations
as indicated by statistically significant weight status-by-
intensity/bout-duration interaction terms for both the com-
posite risk score and BMI. The magnitude of associations
was stronger in overweight/obese participants than in
their normal weight peers, particularly for BMI (Supple-
mentary File Figs. S9 and S10). The pattern of associations
did not differ across weight status for the composite risk
score.

Meta-regression suggested independent contributions of
intensity for all outcomes except for glucose and triglycer-
ide, wherein CI’s overlapped the null (coefficients shown in
Supplementary File Table S3). No statistical support for
independent effects of bout-duration on outcomes was
found. Each 1000 cpm increase in the activity threshold was
associated with a −0.026 (−0.039 to −0.014) standard
deviations and a −0.064 (−0.09 to −0.038) kg/m2 differ-
ence in the beta-coefficient for the composite score and
BMI, respectively. When adding the intensity-by-bout
duration interaction term, this did not reach statistical sig-
nificance for any outcome (coefficients shown in Supple-
mentary File table S3).

Isotemporal substitution of short for medium and
long bouts of physical activity

Supplementary file Table S4 includes quintiles of residual
variation in bouted physical activity after controlling for
total activity volume (≥1 min bouts), sex, age, and wear-

time. Associations with isotemporal activity substitution
and the composite risk score, non-adiposity risk score and
BMI are shown in Table 3 (other outcomes shown in
Supplementary File Tables S5 and S6). Replacing 10 min/
day of activity accumulated in short bouts with an iden-
tical amount of same intensity time accumulated in med-
ium or long bouts, produced mixed associations with the
cardiometabolic risk factors. E.g., substituting short bout
activity above 500 cpm with physical activity accumu-
lated in long bouts was associated with a −0.032 (95%
CI: −0.047 to −0.018) standard deviation lower compo-
site score, but substituting 10 min of short bout activity
above 3000 cpm with the same amount of activity accu-
mulated in long bouts was associated with a 0.066 (95%
CI: 0.013 to 0.118) standard deviation higher composite
score.

Discussion

These data suggest time spent in physical activity with
increasing intensity is favorably associated with cardiome-
tabolic risk markers in youth irrespective of bout-duration.
Activity accumulated at higher intensities produced pro-
gressively greater magnitude of associations as indicated by
lower levels of risk markers and a favorable body compo-
sition within the range of intensity and bout-duration
examined. Meta-regression and isotemporal substitution
models provided no evidence for an additional benefit of
bouted activity above that of a strong correlation with total
physical activity.

Table 2 Outcome characteristics

No. of
studies

Girls (%) na Medianb 25th–75th
percentileb

ICC
study

ICC
participant

Contributing studies

Composite risk score 6 52 4279 −0.05 −0.65 to 0.61 0.08 0.51 4, 5, 6, 10, 12, 15

Non-adiposity composite
score

6 52 4279 −0.01 −0.66 to 0.66 0.08 0.35 4, 5, 6, 10, 12, 15

Insulin (pmol/l) 7 52 4649 42.78 27.28 to 64.80 0.07 0.65 4, 5, 6, 10, 12, 15, 20

Glucose (mmol/l) 7 52 4685 5 4.70 to 5.30 0.17 0.13 4, 5, 6, 10, 12, 15, 20

Triglyceride (mmol/l) 8 52 5027 0.69 0.51 to 0.95 0.08 0.51 4, 5, 6, 10, 11, 12, 15, 20

Mean arterial pressure
(mmHg)

10 52 13 598 73.8 69.2 to 78.9 0.16 0.35 1, 4, 5, 6, 9, 10, 11, 12,
14, 15

HDL-c (mmol/l) 8 51 7386 1.43 1.22 to 1.68 0.03 0.55 4, 5, 6, 10, 11, 12, 15, 20

BMI (kg/m2) 21 62 29 734 18.7 16.5 to 21.8 0.05 0.86 all

Waist circumference (cm) 14 52 18 992 64.5 58.8 to 72.0 0.07 0.80 1, 4, 5, 6, 9, 10, 11, 12,
13,

Overweight/obese (%) 21 62 29 734 18/8 all

aUnique participants
bFor prospective studies, only study “baseline” data is included in the table. Overweight and obesity defined according to World Obesity
Federation cut-offs. Study indicators (NHANES waves counted separately): 1: ALSPAC, 2: Belgium Pre-School Study, 3: CLAN, 4: CoSCIS, 5:
Danish EYHS, 6: Estonian EYHS, 7: HEAPS, 8: IBDS, 9: MAGIC, 10: NHANES 2005-06, 11: Norway EYHS, 12: NHANES 2003-04, 13:
PEACH, 14: Pelotas, 15: Portugal EYHS, 16: SPEEDY, 17: TAAG, 18: CHAMPS UK, 19: Ballabeina Study, 20: KISS, 21: CHAMPS US
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Physical activity intensity

It is well-established that physical activity improves cardi-
ometabolic risk factors in children and adolescents [4, 6, 48].
In epidemiological studies, physical activity is often oper-
ationalized by MVPA which is frequently derived by
counting time spent at or above 2000 to 3200 cpm in youth
[18]. We show that favorable associations with the cardio-
metabolic risk factors are already present at the lower end of
the intensity spectrum, in the range of what is often con-
sidered light intensity physical activity, but effect-sizes
increase in magnitude as intensity increases. In secondary
models including control for adiposity we observed
attenuation of effect-sizes. However, consistent with pre-
vious reports [49] adding adiposity to models did not fully
attenuate the beneficial associations with physical activity.
Models stratified by weight status supported this finding.
Our operationalization of intensity included all activity
above the respective threshold and did not consider an
isolated intensity range (e.g., light intensity physical activ-
ity, moderate intensity physical activity). As such, our
estimates of e.g., ≥500 cpm would include more than one of
the “conventional” intensity domains without distinguishing
their relative contributions to the estimate. It would there-
fore be premature to promote physical activities within the
lower end of the intensity spectrum for cardiometabolic
benefits based on these data. In young people the role of
light or total volume of physical activity intensity on the
risk markers appears less convincing than that of higher
intensity activities [50, 51]. Intensity-dependent associa-
tions are consistent with the results of randomized-
controlled trials comparing high-intensity interval training

with continuous lower intensity exercise [52]. Our data
supports the recommendation of high intensity intermittent
activity patterns for cardiometabolic benefits in young
people. In children, 3000 cpm corresponds to walking at
approximately 4–5 km/h [53, 54] and physical activity
above this intensity threshold should thus be readily
attained by healthy individuals. As the sample spent on
average ≈3% of their time above 3000 cpm and less than
50% of boys and girls accumulated any 10-min bout above
this intensity threshold, increasing activities at particularly
higher intensities may provide guidance for public health
actions and interventions. An additional argument for
higher intensity activity is potential fitness adaptations as
higher fitness-levels in adolescence are strongly and inver-
sely linked with future risk of cardiovascular disease [55].

Physical activity bouts

Understanding the cardiometabolic benefits associated with
physical activity accumulated in intermittent or continuous
patterns have significant practical implications. For exam-
ple, will the cardiometabolic benefits of activity accumu-
lated in short intervals throughout the day be inferior to
those of a prolonged continuous session? Achievement of
cardiometabolic benefits irrespective of bout-duration
would increase feasibility as some may find it more
appealing to incorporate shorter activity bouts than having
to allocate an extended period of time. It may also be easier
to implement short breaks of high intensity activity into the
school day than to prioritize resources for a longer con-
tinuous session. Consistent with existing literature, a strong
correlation between bouted and total time engaged in

Fig. 1 Activity patterns in
10,990 boys and 18,810 girls.
Box-plot displays percentage of
wear-time spent in intensity/bout
combinations in boys and girls.
Outside values not shown

J. Tarp et al.



physical activity was observed [14, 17]. This suggests a
direct comparison of cardiometabolic risk factor associa-
tions between physical activity accumulated in shorter and
longer bout-durations would be confounded by the amount
of total activity. Therefore, an isotemporal substitution
approach was used to model the impact of replacing short
bouts with medium and long bouts of activity while holding
total activity constant. These models did not suggest phy-
sical activity accumulated in longer bout-durations will
produce more pronounced benefits than shorter bouts (at
least down to a 1 min bout) when the total volume (time and
intensity) of activity are identical. Meta-regression sup-
ported this notion as neither the coefficient for bout-duration
nor the interaction between bout-duration and intensity was
statistically significant. The conclusion of no evidence for
an additional benefit of long bouted activity above that of
short bouted activity on cardiometabolic risk markers was
also reached in a recent systematic review [51]. However,
any additional health benefit from longer bouts of activity is
difficult to extract from the literature as studies are dis-
cordant in their analytical approach for examining this
issue. Any specific biological mechanism favouring longer
bout-durations under identical total volumes of activity also
remain unidentified.

Limitations

The pattern of results for substitution models was counter-
intuitive with conflicting directions of associations. This

could suggest issues with collinearity which was indeed
large. However, residual-analysis indicated meaningful (i.e.,
reasonable intervention target) variation in bouted activity
remained after controlling for total activity and correlations
did not differ substantially in magnitude from what is
reported from e.g., substitution of distinct fatty acids [56].
Accumulation of particularly longer bouts of activity at
higher intensities was low which could also reduce perfor-
mance of the substitution models because of insufficient
information. A min-for-min comparison of short and long
bouts above a certain threshold may in fact be confounded
by the intensity of the underlying behavior if the contrast is
not isocaloric. The direction of this potential bias is likely to
inflate effect-sizes for longer bout-durations [57]. Analo-
gously, the substitution models did not account for activity
below the intensity threshold, which could also be dis-
cordant between individuals engaging in activities of short
and long bout-durations. The applied definition of bouts did
not allow for interruptions in the time-series, and it remains
unclear whether bouted behaviors are better captured by
allowing for interruptions. Children’s physical activity is
sporadic suggesting bout-durations and time above a given
intensity threshold may be misclassified using a 60-s epoch
as compared to a shorter epoch-duration. We expect this
misclassification to be non-differential in relation to out-
comes. Data was cross-sectional so we are unable to infer
the direction of association. Prospective studies are needed
to establish the temporal nature of our findings. It may be
speculated that reverse causation bias is unlikely for

Fig. 2 Forest plot of associations between intensity/bout combinations
and composite risk scores. Beta-coefficients and 95% CI from linear
mixed regression models controlled for age, sex, wear-time including
study and participant as “random-effects”. Non-adiposity composite

risk score additionally controlled for BMI. Physical activity exposure
is based on summarizing all activity exceeding the considered inten-
sity/bout-duration threshold

Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents



cardiometabolic risk factors whereas the association with
BMI or waist circumference may be bi-directional [58]. We
are also unaware of any controlled studies which have
robustly examined the impact of short compared with
longer bouts of habitual physical activity on cardiometa-
bolic risk markers. Finally, we only controlled for age, sex
and study, hence the possibility of bias owing to uncon-
trolled confounding sources such as diet quality and quan-
tity [59], socioeconomic possibilities [60], and sexual
maturity cannot be rejected. Uncontrolled confounding
from these or other sources could significantly influence the
strength and pattern of the observed associations.

Conclusions

In this international observational study including up to
30,000 youth, physical activity intensity appeared a major
determinant of variation in cardiometabolic risk factors
within the ranges of intensity and bout-duration examined.
Greater magnitudes of associations were consistently
observed at higher intensities. These results do not support
the inclusion of specific bout-durations in youth activity
recommendations but suggests that physical activity, pre-
ferably at higher intensities, of any accumulation pattern

should be promoted by authorities, clinicians, and parents to
improve cardiovascular health in young people.
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Table 3 Associations for composite risk score, non-adiposity risk score, and BMI from isotemporal substitutionof short to medium and long bouts
of physical activity

Composite risk score
(n= 4338)

Non-adiposity composite risk score (n
= 4338)a

BMI
(n= 38,232)

Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value

Medium bouts500 cpm −0.06 −0.035 to 0.025 0.68 −0.02 −0.043 to 0.011 0.25 0.103 0.071 to 0.135 <0.001

Long bouts500 cpm −0.03 −0.047 to −0.018 <0.001 −0.03 −0.040 to −0.013 <0.001 −0.02 −0.034 to 0.0002 0.052

Medium bouts1000 cpm −0.04 −0.075 to −0.003 0.03 −0.04 −0.070 to −0.002 0.04 −0.02 −0.061 to 0.019 0.29

Long bouts1000 cpm −0.04 −0.062 to −0.026 <0.001 −0.03 −0.046 to −0.012 0.001 −0.08 -0.100 to −0.058 <0.001

Medium bouts2000 cpm −0.04 −0.091 to 0.015 0.17 0.057 −0.222 to 0.336 0.69 −0.08 −0.136 to −0.022 0.006

Long bouts2000 cpm −0.01 −0.037 to 0.026 0.72 0.172 0.012 to 0.333 0.04 −0.07 −0.104 to −0.036 <0.001

Medium bouts3000 cpm 0.081 0.003 to 0.158 0.04 0.105 0.032 to 0.177 0.005 −0 −0.089 to 0.081 0.92

Long bouts3000 cpm 0.066 0.013 to 0.118 0.01 0.099 0.050 to 0.149 <0.001 0.022 −0.034 to 0.079 0.44

aNon-adiposity composite risk score controlled for BMI

Beta-coefficients with 95% confidence intervals from linear mixed regression models. Coefficients are interpreted as holding the volume of
physical activity above the respective threshold constant, but replacing 10 min of physical activity accumulated in shorter bouts (1-4 min) with 10
min of same intensity physical activity accumulated in the respective bout-duration (≥5–9 (medium) or ≥10 (long) minute bouts). Cpm counts/min,
CI confidence interval, BMI body mass index

Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents

http://www.mrc.ac.uk/research/initiatives/national-prevention-research-initiative-npri/
http://www.mrc.ac.uk/research/initiatives/national-prevention-research-initiative-npri/


submitted and agree to be accountable for all aspects of the work. JT is
the guarantor of this work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. GBD Causes of Death Collaborators. Global, regional, and
national age-sex specific mortality for 264 causes of death, 1980-
2016: a systematic analysis for the Global Burden of Disease
Study 2016. Lancet. 2017;390:1151–210.

2. Glowinska B, Urban M, Peczynska J, Florys B. Soluble adhesion
molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP
selectin, sL selectin) levels in children and adolescents with
obesity, hypertension, and diabetes. Metabolism. 2005;54:1020–6.

3. Koskinen J, Magnussen CG, Sinaiko A, Woo J, Urbina E, Jacobs
DR, Jr. et al. Childhood Age and Associations Between Child-
hood Metabolic Syndrome and Adult Risk for Metabolic Syn-
drome, Type 2 Diabetes Mellitus and Carotid Intima Media
Thickness: The International Childhood Cardiovascular Cohort
Consortium. J Am Heart Assoc. 2017;16;6(8)

4. Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A,
et al. Moderate to vigorous physical activity and sedentary time
and cardiometabolic risk factors in children and adolescents.
JAMA. 2012;307:704–12.

5. Tarp J, Brønd JC, Andersen LB, Møller NC, Froberg K, Grøntved
A. Physical activity, Sedentary behavior, And long-term cardio-
vascular risk in young people: A review and discussion of
methodology in prospective studies. J Sport Health Sci.
2016;5:145–50.

6. Fedewa MV, Gist NH, Evans EM, Dishman RK. Exercise and
insulin resistance in youth: a meta-analysis. Pediatrics. 2014;133:
e163–74.

7. Department of Health (UK). Department of Health (UK). UK
physical activity guidelines. 2018. https://www.gov.uk/
government/publications/uk-physical-activity-guidelines. acces-
sed 27 June 2018

8. World Health Organization. WHO Global Strategy on Diet,
Physical Activity and Health. Global recommendations on phy-
sical activity for health. 2018. http://www.who.int/dietphysicala
ctivity/factsheet_recommendations/en/. accessed 27 June 2018

9. U.S. Department of Health and Human Services. Office of Disease
Prevention and Health Promotion. U.S. Department of Health and
Human Services. Office of Disease Prevention and Health Pro-
motion. Physical Activity Guidelines for Children and Adoles-
cents. 2008. https://health.gov/paguidelines/guidelines/. accessed
27 June 2018

10. Australian Government. Department of Health. Australia’s Phy-
sical Activity and Sedentary Behaviour Guidelines. 2018.
http://www.health.gov.au/internet/main/publishing.nsf/content/
health-pubhlth-strateg-phys-act-guidelines#apa512. accessed 27
June 2018

11. Canadian Society for Exercise Physiology. Canadian 24-hour
movement guidelines for children and youth: An Integration of
Physical Activity, Sedentary Behaviour, and Sleep. 2018. http://
csepguidelines.ca/wp-content/themes/csep2017/pdf/Canadia
n24HourMovementGuidelines2016_2.pdf. accessed 27 June 2018

12. Janssen I. [Guidelines for physical activity in children and young
people]. Appl Physiol Nutr Metab . 2007;32(Suppl 2F):S122–35.
accessed 27 June 2018 (DOI: 10.1139/H07-112)

13. Danish Health Authority. Danish Health Authority. Physical
activity recommendations for children and adolescents (5-17 years
old). 2018. https://www.sst.dk/en/health-and-lifestyle/physical-a
ctivity/recommendations/recommendations-for-children-and-a
dolescents-. accessed 27 June 2018

14. Holman RM, Carson V, Janssen I. Does the fractionalization of
daily physical activity (sporadic vs. bouts) impact cardiometabolic
risk factors in children and youth? PloS One. 2011;6:e25733.

15. Mark AE, Janssen I. Influence of bouts of physical activity on
overweight in youth. Am J Prev Med. 2009;36:416–21.

16. Willis EA, Ptomey LT, Szabo-Reed AN, Honas JJ, Lee J,
Washburn RA, et al. Length of moderate-to-vigorous physical
activity bouts and cardio-metabolic risk factors in elementary
school children. Prev Med. 2015;73:76–80.

17. Stone MR, Rowlands AV, Middlebrooke AR, Jawis MN, Eston
RG. The pattern of physical activity in relation to health outcomes
in boys. Int J Pediatr Obes. 2009;4:306–15.

18. Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using
accelerometers in youth physical activity studies: a review of
methods. J Phys Act Health. 2013;10:437–50.

19. Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage
S. Combined influence of epoch length, cut-point and bout
duration on accelerometry-derived physical activity. Int J Behav
Nutr Phys Act. 2014;11:34.

20. Sherar LB, Griew P, Esliger DW, Cooper AR, Ekelund U, Judge
K, et al. International children’s accelerometry database (ICAD):
design and methods. BMC Public Health. 2011;11:485.

21. Golding J, Pembrey M, Jones R, Team AS. ALSPAC--the Avon
Longitudinal Study of Parents and Children. I. Study methodol-
ogy. Paediatr Perinat Epidemiol. 2001;15:74–87.

22. Niederer I, Kriemler S, Zahner L, Burgi F, Ebenegger V, Hart-
mann T, et al. Influence of a lifestyle intervention in preschool
children on physiological and psychological parameters (Balla-
beina): study design of a cluster randomized controlled trial. BMC
Public Health. 2009;9:94.

23. Cardon G, De Bourdeaudhuij I. Comparison of pedometer and
accelerometer measures of physical activity in preschool children.
Pediatr Exerc Sci. 2007;19:205–14.

24. Gidlow CJ, Cochrane T, Davey R, Smith H. In-school and out-of-
school physical activity in primary and secondary school children.
J Sports Sci. 2008;26:1411–9.

25. Pfeiffer KA, Dowda M, McIver KL, Pate RR. Factors related to
objectively measured physical activity in preschool children.
Pediatr Exerc Sci. 2009;21:196–208.

26. Crawford D, Cleland V, Timperio A, Salmon J, Andrianopoulos
N, Roberts R, et al. The longitudinal influence of home and
neighbourhood environments on children’s body mass index and
physical activity over 5 years: the CLAN study. Int J Obes.
2010;34:1177–87.

27. Bugge A, El-Naaman B, Dencker M, Froberg K, Holme IM,
McMurray RG, et al. Effects of a three-year intervention: the
Copenhagen School Child Intervention Study. Med Sci Sports
Exerc. 2012;44:1310–7.

J. Tarp et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.gov.uk/government/publications/uk-physical-activity-guidelines
https://www.gov.uk/government/publications/uk-physical-activity-guidelines
http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/
http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/
https://health.gov/paguidelines/guidelines/
http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines#apa512
http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines#apa512
http://csepguidelines.ca/wp-content/themes/csep2017/pdf/Canadian24HourMovementGuidelines2016_2.pdf
http://csepguidelines.ca/wp-content/themes/csep2017/pdf/Canadian24HourMovementGuidelines2016_2.pdf
http://csepguidelines.ca/wp-content/themes/csep2017/pdf/Canadian24HourMovementGuidelines2016_2.pdf
https://www.sst.dk/en/health-and-lifestyle/physical-activity/recommendations/recommendations-for-children-and-adolescents-
https://www.sst.dk/en/health-and-lifestyle/physical-activity/recommendations/recommendations-for-children-and-adolescents-
https://www.sst.dk/en/health-and-lifestyle/physical-activity/recommendations/recommendations-for-children-and-adolescents-


28. Riddoch C, Edwards D, Page A, Froberg K, Anderssen SA,
Wedderkopp N, et al. The European Youth Heart Study—cardi-
ovascular disease risk factors in children: rationale, aims, study
design, and validation of methods. J Phys Act Health.
2005;2:115–29.

29. Salmon J, Campbell KJ, Crawford DA. Television viewing habits
associated with obesity risk factors: a survey of Melbourne
schoolchildren. Med J Aust. 2006;184:64–7.

30. Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC,
et al. Physical activity and bone measures in young children: the
Iowa bone development study. Pediatrics. 2001;107:1387–93.

31. Zahner L, Puder JJ, Roth R, Schmid M, Guldimann R, Puhse U,
et al. A school-based physical activity program to improve health
and fitness in children aged 6-13 years (“Kinder-Sportstudie
KISS”): study design of a randomized controlled trial
[ISRCTN15360785]. BMC Public Health. 2006;6:147.

32. Reilly JJ, Kelly L, Montgomery C, Williamson A, Fisher A,
McColl JH, et al. Physical activity to prevent obesity in young
children: cluster randomised controlled trial. BMJ.
2006;333:1041.

33. Center for Disease Control and Prevention. National Health and
Nutrition Examination Survey. 2003-2004 Survey Operations Man-
uals. 2017. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/
manuals.aspx?BeginYear=2003. accessed 27 June 2018

34. Center for Disease Control and Prevention. National Health and
Nutrition Examination Survey. Laboratory Procedures Manual.
2005. https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/LAB.
pdf. accessed 27 June 2018

35. Page AS, Cooper AR, Griew P, Davis L, Hillsdon M. Independent
mobility in relation to weekday and weekend physical activity in
children aged 10-11 years: The PEACH Project. Int J Behav Nutr
Phys Act. 2009;6:2.

36. Victora CG, Hallal PC, Araujo CL, Menezes AM, Wells JC,
Barros FC. Cohort profile: the 1993 Pelotas (Brazil) birth cohort
study. Int J Epidemiol. 2008;37:704–9.

37. van Sluijs EM, Skidmore PM, Mwanza K, Jones AP, Callaghan
AM, Ekelund U, et al. Physical activity and dietary behaviour in a
population-based sample of British 10-year old children: the
SPEEDY study (Sport, Physical activity and Eating behaviour:
environmental Determinants in Young people). BMC Public
Health. 2008;8:388.

38. Stevens J, Murray DM, Catellier DJ, Hannan PJ, Lytle LA, Elder
JP, et al. Design of the Trial of Activity in Adolescent Girls
(TAAG). Contemp Clin Trials. 2005;26:223–33.

39. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Pro-
spective Studies C. Age-specific relevance of usual blood pressure
to vascular mortality: a meta-analysis of individual data for one
million adults in 61 prospective studies. Lancet.
2002;360:1903–13.

40. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a
standard definition for child overweight and obesity worldwide:
international survey. BMJ. 2000;320:1240–3.

41. Patry-Parisien J, Shields M, Bryan S. Comparison of waist cir-
cumference using the World Health Organization and National
Institutes of Health protocols. Health Rep. 2012;23:53–60.

42. Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ,
Andersen LB, et al. Features of the metabolic syndrome are
associated with objectively measured physical activity and fitness
in Danish children: the European Youth Heart Study (EYHS).
Diabetes Care. 2004;27:2141–8.

43. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher
DF, Turner RC. Homeostasis model assessment: insulin resistance
and beta-cell function from fasting plasma glucose and insulin
concentrations in man. Diabetologia. 1985;28:412–9.

44. Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal sub-
stitution paradigm for physical activity epidemiology and weight
change. Am J Epidemiol. 2009;170:519–27.

45. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spie-
gelman D, et al. Dietary fat and coronary heart disease: a com-
parison of approaches for adjusting for total energy intake and
modeling repeated dietary measurements. Am J Epidemiol.
1999;149:531–40.

46. Harbord RM, Higgins JPT. Meta-regression in Stata. Stata J.
2008;8:493–519.

47. Atkin AJ, Ekelund U, Moller NC, Froberg K, Sardinha LB,
Andersen LB, et al. Sedentary time in children: influence of
accelerometer processing on health relations. Med Sci Sports
Exerc. 2013;45:1097–104.

48. Bea JW, Blew RM, Howe C, Hetherington-Rauth M, Going SB.
Resistance Training Effects on Metabolic Function Among Youth:
A Systematic Review. Pediatr Exerc Sci. 2017;29:297–315.

49. Steele RM, Brage S, Corder K, Wareham NJ, Ekelund U. Physical
activity, cardiorespiratory fitness, and the metabolic syndrome in
youth. J Appl Physiol. 2008;105:342–51.

50. Garcia-Hermoso A, Saavedra JM, Ramirez-Velez R, Ekelund U,
Del Pozo-Cruz B. Reallocating sedentary time to moderate-to-
vigorous physical activity but not to light-intensity physical
activity is effective to reduce adiposity among youths: a sys-
tematic review and meta-analysis. Obes Rev. 2017;18:
1088–95.

51. Poitras VJ,Gray CE,Borghese MM,Carson V,Chaput JP,Janssen I,
et al. [Systematic review of the relationships between objectively
measured physical activity and health indicators in school-aged
children and youth]. Appl Physiol, Nutr, Metab. 2016;41(6 Suppl
3):S197–239.

52. Garcia-Hermoso A, Cerrillo-Urbina AJ, Herrera-Valenzuela T,
Cristi-Montero C, Saavedra JM, Martinez-Vizcaino V. Is high-
intensity interval training more effective on improving cardio-
metabolic risk and aerobic capacity than other forms of exercise in
overweight and obese youth? A meta-analysis. Obes Rev.
2016;17:531–40.

53. Romanzini M, Petroski EL, Ohara D, Dourado AC, Reichert FF.
Calibration of ActiGraph GT3X, Actical and RT3 accelerometers
in adolescents. Eur J Sport Sci. 2014;14:91–9.

54. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG.
Calibration of two objective measures of physical activity for
children. J Sports Sci. 2008;26:1557–65.

55. Crump C, Sundquist J, Winkleby MA, Sundquist K. Interactive
effects of obesity and physical fitness on risk of ischemic heart
disease. Int J Obes. 2017;41:255–61.

56. Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB,
et al. Association of specific dietary fats with total and cause-
specific mortality. JAMA Intern Med. 2016;176:1134–45.

57. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U,
Brage S, et al. Physical activity and clustered cardiovascular risk
in children: a cross-sectional study (The European Youth Heart
Study). Lancet. 2006;368:299–304.

58. Richmond RC, Davey Smith G, Ness AR, den Hoed M, McMa-
hon G, Timpson NJ. Assessing causality in the association
between child adiposity and physical activity levels: a Mendelian
randomization analysis. PLoS Med. 2014;11:e1001618.

59. Daniels SR, Pratt CA, Hayman LL. Reduction of risk for cardi-
ovascular disease in children and adolescents. Circulation.
2011;124:1673–86.

60. Lawlor DA, Sterne JA, Tynelius P, Davey Smith G, Rasmussen F.
Association of childhood socioeconomic position with cause-
specific mortality in a prospective record linkage study of
1,839,384 individuals. Am J Epidemiol. 2006;164:907–15.

Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents

https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/manuals.aspx?BeginYear=2003
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/manuals.aspx?BeginYear=2003
https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/LAB.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/LAB.pdf


Affiliations

Jakob Tarp 1,2
● Abbey Child3

● Tom White 2
● Kate Westgate2 ● Anna Bugge1 ● Anders Grøntved1

●

Niels Wedderkopp1,4
● Lars B. Andersen5

● Greet Cardon6
● Rachel Davey7 ● Kathleen F Janz8 ● Susi Kriemler9 ●

Kate Northstone10 ● Angie S. Page11 ● Jardena J. Puder12 ● John J. Reilly13 ● Luis B. Sardinha14 ●

Esther M. F. van Sluijs 2,15
● Ulf Ekelund 16

● Katrien Wijndaele2 ●

Søren Brage2On behalf of the International Children’s Accelerometry Database (ICAD) Collaborators

1 Research Unit for Exercise Epidemiology, Department of Sports
Science and Clinical Biomechanics, Centre of Research in
Childhood Health, University of Southern Denmark,
Odense, Denmark

2 Medical Research Council Epidemiology Unit, University of
Cambridge, Cambridge, UK

3 University of Cambridge, Cambridge, UK

4 Sports Medicine Clinic, The Orthopedic Department, Hospital of
Lillebaelt Middelfart, Institute of Regional Health Research,
University of Southern Denmark, Odense, Denmark

5 Department of Teacher Education and Sport, Western Norwegian
University of Applied Sciences, Sogndal, Norway

6 Department of Movement and Sports Sciences, Ghent University,
9000 Ghent, Belgium

7 Centre for Research and Action in Public Health, University of
Canberra, Canberra, Australia

8 Department of Health and Human Physiology, University of Iowa,
Iowa City, USA

9 Epidemiology, Biostatistics and Prevention Institute, University of
Zurich, Zurich, Switzerland

10 Bristol Medical School, University of Bristol, Bristol, UK

11 Centre for Exercise, Nutrition and Health Sciences, School for
Policy Studies, University of Bristol, Bristol, UK

12 Service of Endocrinology, Diabetes and Metabolism and Division
of Pediatric Endocrinology, Diabetes and Obesity, University
Hospital Lausanne, Lausanne, Switzerland

13 University of Strathclyde, Physical Activity for Health Group,
School of Psychological Sciences and Health, Glasgow, Scotland,
UK

14 Exercise and Health Laboratory, Faculty of Human Kinetics,
Universidade de Lisboa, Lisbon, Portugal

15 Centre for Diet and Activity Research (CEDAR), University of
Cambridge, Cambridge, UK

16 Department of Sports Medicine, Norwegian School of Sport
Sciences, Oslo, Norway

J. Tarp et al.

http://orcid.org/0000-0002-9186-7077
http://orcid.org/0000-0002-9186-7077
http://orcid.org/0000-0002-9186-7077
http://orcid.org/0000-0002-9186-7077
http://orcid.org/0000-0002-9186-7077
http://orcid.org/0000-0001-8456-0803
http://orcid.org/0000-0001-8456-0803
http://orcid.org/0000-0001-8456-0803
http://orcid.org/0000-0001-8456-0803
http://orcid.org/0000-0001-8456-0803
http://orcid.org/0000-0001-9141-9082
http://orcid.org/0000-0001-9141-9082
http://orcid.org/0000-0001-9141-9082
http://orcid.org/0000-0001-9141-9082
http://orcid.org/0000-0001-9141-9082
http://orcid.org/0000-0003-2115-9267
http://orcid.org/0000-0003-2115-9267
http://orcid.org/0000-0003-2115-9267
http://orcid.org/0000-0003-2115-9267
http://orcid.org/0000-0003-2115-9267

	Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents
	Abstract
	Introduction
	Methods
	Study design and participants
	Physical activity data reduction
	Assessment of cardiometabolic risk factors
	Statistical analysis

	Results
	Characteristics of the study sample
	Associations between combinations of intensity and bout-duration with cardiometabolic risk factors
	Isotemporal substitution of short for medium and long bouts of physical activity

	Discussion
	Physical activity intensity
	Physical activity bouts
	Limitations

	Conclusions
	Availability of data and materials

	ACKNOWLEDGMENTS
	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A8




