Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Effectiveness of superconducting fault current limiting transformers in power systems

Elshiekh, Mariam and Zhang, Min and Ravindra, Harsha and Chen, Xi and Venuturumilli, Sriharsha and Huang, Xiaohua and Schoder, Karl and Steurer, Michael and Yuan, Weijia (2018) Effectiveness of superconducting fault current limiting transformers in power systems. IEEE Transactions on Applied Superconductivity, 28 (3). ISSN 1051-8223

[img]
Preview
Text (Elshiekh-etal-IEEE-TOAS-2018-Effectiveness-of-superconducting-fault-current-lilmiting)
Elshiekh_etal_IEEE_TOAS_2018_Effectiveness_of_superconducting_fault_current_lilmiting.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Superconducting devices have emerged in many applications during the last few decades. They offer many advantages, including high efficiency, compact size, and superior performance. However, the main drawback of these devices is the high cost. An option to reduce the high cost and improve the cost-benefit ratio is to integrate two functions into one device. This paper presents the superconducting fault current limiting transformer (SFCLT) as a superior alternative to normal power transformers. The transformer has superconducting windings and also provides fault current limiting capability to reduce high fault currents. The SFCLT is tested in two power system models: A 7 bus wind farm-based model simulated in PSCAD and on the 80 bus simplified Australian power system model simulated in real-Time digital simulator. Various conditions were studied to investigate the effectiveness of the fault current limiting transformer.