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Abstract—This paper studies the optimization problem of
topological active net (TAN), which is often seen in image seg-
mentation and shape modeling. A TAN is a topological structure
containing many nodes, whose positions must be optimized while
a predefined topology needs to be maintained. TAN optimization
is often time-consuming and even constructing a single solu-
tion is hard to do. Such a problem is usually approached by
a “best improvement local search” (BILS) algorithm based on
deterministic search (DS), which is inefficient because it spends
too much efforts in nonpromising probing. In this paper, we pro-
pose the use of micro-differential evolution (DE) to replace DS
in BILS for improved directional guidance. The resultant algo-
rithm is termed deBILS. Its micro-population efficiently utilizes
historical information for potentially promising search directions
and hence improves efficiency in probing. Results show that
deBILS can probe promising neighborhoods for each node of
a TAN. Experimental tests verify that deBILS offers substan-
tially higher search speed and solution quality not only than
ordinary BILS, but also the genetic algorithm and scatter search
algorithm.

Index Terms—Differential evolution (DE), grid deformation,
structure optimization, topological active net (TAN), topological
optimization.

I. INTRODUCTION

OFTEN found in image segmentation and shape model-
ing, a topological active net (TAN) [1] is an example
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Fig. 1. Example of a TAN.

of complex structure which often needs to be optimized
via a time-consuming optimization procedure. A TAN usu-
ally comprises a 2-D elastic mesh of interrelated nodes, whose
construction requires dynamic structural optimization, as nodal
positions must be optimized while maintaining their predefined
topology [2]. As illustrated in Fig. 1, a TAN uses internal
nodes to find the inner structure of a target object and uses
external nodes to reveal boundary information by adjusting
the nodal positions. An energy function defined on the posi-
tion of the nodes is minimized when the TAN fits the target
object best. Such an optimization problem can be challenging
in real time and usually complex due to the large number of
correlated nodes [3].

Several TAN optimization methods have been developed so
far [3], [5], [8]. The “best improvement local search” (BILS)
algorithm [3] is a well-known deterministic search (DS) algo-
rithm for TAN optimization. It is an exhaustive process, during
which each node searches its square neighborhood and moves
to a new position that reduces the energy most. The BILS
iterates this process throughout the net until no movement can
reduce the energy any further. Although, BILS is a generic
framework for searching around the neighbors by defining var-
ious neighborhood structures, it appears that no BILS variant
has made use of historical information to adjust the search.
That is, no matter how large the window, BILS is determin-
istic and exhaustive that no historical information is used to
guide the search or to improve the efficiency.

On the other hand, evolutionary algorithms (EAs)
such as genetic algorithm (GA) [4], [5], differential
evolution (DE) [6], [7], and scatter search (SS) [8] have
also been used for the TAN problem recently. An EA is
a population-based coarse search algorithm and hence can
make use of global information of the TAN. However, due
to the accuracy requirement of the TAN, EAs need to refine
their local search.
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To learn from historical search information, we develop
an efficient EA-based approach to TAN optimization in this
paper. Different from BILS that searches the neighborhood
exhaustively with DS strategy, we propose to use the random
search (RS) strategy in EAs to replace DS so as to improve the
efficiency and speed of BILS. In particular, we propose the use
of DE because it is a very efficient RS algorithm. With DE,
a new BILS algorithm named deBILS for TAN optimization
problem is developed in Section III, following an outline of
DE and the TAN problem in Section II. In Section IV, experi-
ments are conducted to test and verify the proposed algorithm.
The conclusion is drawn in Section V.

II. TOPOLOGICAL ACTIVE NET AND

DIFFERENTIAL EVOLUTION

A. Problem Formulation of TAN Optimization

Here we focus on the extended TAN (ETAN) proposed
in [9], which is a new model extending TAN in the definition
of the energy function used in [8]. The ETAN also consists
of two kinds of nodes, the internal and the external ones. In
the definition of the net energy, there are also two kinds of
energies, the internal and the external ones. The first energy
is used to control the structure of the net while the second
energy is used to fit the net to the target object.

For a 2-D ETAN V, assume its nodes are placed in a nor-
malized grid G = [0, 1]2. For a node (t, s) ∈ G, its position
is v(t, s) = (x(t, s), y(t, s)), where x and y are coordinates and
t and s are indices of the node. The energy of the net is then
defined as

E(v(t, s)) =
∫ 1

0

∫ 1

0
[Eint(v(t, s)) + Eext(v(t, s))]dtds (1)

where Eint is the internal energy and Eext is the external energy.
The internal energy of a node, which controls the net struc-

ture, depends on the first and second order of derivatives of
the node

Eint(v(t, s)) = α
[
|vt(t, s)|2 + |vs(t, s)|2

]

+β
[
|vtt(t, s)|2 + |vts(t, s)|2 + |vss(t, s)|2

]
(2)

where vt and vs are the first order derivatives, vtt, vts, and vss

are the second order derivatives, and α and β are weight
parameters. The computation of the derivatives is estimated
by its nearby nodes [8].

The external energy measures how suitable a node is placed,
as an internal node should be placed inside the target object
while the external node should be placed on the boundary of
the object. Hence, the external energy of node (t, s) is defined
differently

Eext(v(t, s)) = ωf [I(v(t, s)]

+ ρ

|χ(t, s)|
∑

p∈χ(t,s)

1

||v(t, s) − v(p)|| f [I(v(p)]

(3)

where χ(t, s) is the neighbor nodes of (t, s) and f is a function
defined by

f [I(v(p))] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ I(v(p))n +
σ I(Link(v(t, s), p))

for internal nodes

Imax − I(v(p))n

+ ξ(Gmax − G(v(p)))

+ δDGevfc(v(p))

for external nodes
(4)

where I(v(p))n and G(v(p)) in a computer vision application,
for example, are the intensity values of node p in an origi-
nal image and its gradient image. Here, I(v(p))n denotes the
average intensity value of the original image in an n2-sized
window, I(Link(v(t, s), p)) denotes the mean intensity value
along the path from p to v(t, s), which are proposed in this
paper as it leads to better results in optimizing TANs for non-
convex objects. Imax and Gmax denote the maximum intensity
values of the original and the gradient images, respectively,
DGevfc denotes the distance of the node to its nearest edge in
the gradient image, which is computed through an extended
vector field convolution (EVFC) [10]. Detailed computation
of DGevfc can be found in [8].

The objects to detect in computer vision are assumed to be
dark on a bright background here, such that the lower value
of f indicates a better net fitting.

B. Differential Evolution as Efficient EA

The EA is an RS framework with a population and evo-
lutionary operations. It is a collection of nonspecialized
black-box optimization methods like GA and DE. As we incor-
porate a DE procedure in the proposed algorithm, we briefly
introduce DE here as a typical EA.

The DE algorithm has three basic operations for population
reproduction: 1) crossover; 2) mutation; and 3) selection for
reproduction. The mutation operation of DE is very special
in that it uses a linear combination of a base vector and one
(or more) differential vector(s) to generate the mutated vector.
For example, for every individual pi in P, its mutated vector
qi is generated by

qi = pr1 + F · (
pr2 − pr3

)
(5)

where r1, r2, and r3 are three different randomly selected indi-
viduals, and are also different from i. In this mutation scheme,
the difference between individuals r2 and r3 is used as the
mutation step while factor F controls the step scale. After
a mutated population Q is created, it will then go through the
crossover process with the parent population P.

The crossover operation recombines every pair of individu-
als of (qi, pi) in order to generate a new individual ui

uij =
{

qij, if rand(0, 1) ≤ CR|| j == jrand
pij, otherwise

, for j = 1, . . . , D

(6)

where rand(0,1) is a random number uniformly distributed in
the interval [0, 1], D is the number of dimensions, and CR
is the crossover rate which controls how many dimensions of
the newly generated individual come from the mutated vector
qi while jrand is a randomly selected index in order to make
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sure that at least 1-D of the mutated vector will enter into
the newly generated individual. The crossover process creates
a temporary population U which will be evaluated and then
enters into the selection procedure. The selection procedure of
DE uses a pairwise comparison of U and P. As shown in (7),
individual ui and pi are compared and the better one will enter
into the next generation

pnew
i =

{
ui, if fitness(ui) is better than fitness(pi)

pi, otherwise.
(7)

Like other EAs, various studies on the DE framework
have been carried out to improve the efficiency and search
quality [11]. Parameter adaptation methods have been widely
used in DE [12]–[14], [16], [34], [36], which have proved
to be important for DE to perform well on different kinds
of problems. In [32], a bare-bone DE is proposed to solve
the parameter setting problem of DE in a different way.
Using different mutation strategies to improve the per-
formance of DE are also widely studied [13]–[15], [19].
Different ways have been proposed to improve the mutation
operations [17], [18], [20], [22], [26], [28], [35]. The selec-
tion mechanism was studied in [25], while the evolution
path strategy is used to guide the evolution in [33] and
co-evolutionary is used in [37]. A theoretical study on the
convergence characteristics of DE can be found in [23].
Besides, DE based frameworks are also used in constrained
optimization [24] and dynamic optimization [21], [29], [31].

III. DEBILS ALGORITHM

Different from DS in BILS, the deBILS uses RS like in
an EA to make use of historical information to guide the
search more efficiently. That is, deBILS does not probe all
the neighbor points of a node when try to find a better point
for this node. The deBILS can randomly but intelligently probe
some nearby points without necessarily searching all the points
in the square window. Although this may face the risk that
the best neighbor point is missed, the risk can be reduced if
deBILS does the RS for each node by using multiple indi-
viduals instead of only one individual. That is, if a micro-DE
population is used to perform the RS in deBILS, the search
diversity and interactions among different individuals can be
maintained to find promising new point.

The micro-DE is adopted as the RS in deBILS mainly
because that the mutation mechanism in DE is sim-
ple and is proven to be powerful by many benchmark
studies [12]–[18] and applications [27], [30]. At every itera-
tion in the deBILS algorithm, the DE mechanism is used
to search for a better new position for each node. Learning
from historical information, deBILS can thus find certain good
quality positions from fewer trials than the BILS does for
a TAN.

Moreover, after the position of each node has been modified
by the micro-DE, deBILS can further utilize the common DE
search mechanism to optimize the positions of all the nodes
in the TAN as a whole like other EA-based TAN optimizers.
Therefore, deBILS makes use of global information of all the
node to generate more promising TANs efficiently.

Fig. 2. Encoding of an individual in deBILS.

A. Framework of deBILS

The deBILS algorithm retains a framework similar to tra-
ditional BILS in which all the nodes adjust their position
iteratively one-by-one. Each individual in deBILS encodes
a TAN with all the nodes’ position and type, as shown in
Fig. 2. The type indicates whether the node is an internal or an
external node and R×C is the total number of nodes in a TAN
of R rows and C columns. At the beginning, deBILS initial-
izes a micro-population of individuals to present a number
of randomly generated TANs. During the following evolution
process, deBILS uses two procedures to optimize the posi-
tions of the nodes in every generation. The first procedure is a
“node-by-node optimization” procedure and the second is an
“individual-by-individual optimization” procedure.

In the node-by-node optimization procedure, deBILS opti-
mizes the position of the nodes one-by-one. When adjusting
the position of each node, deBILS does not perform a thor-
ough DS as in traditional BILS, but uses an RS mechanism
like the DE mutation to find the next position. With the help
of historical information, trials likely to contain potentially
promising directions to let deBILS offer potentially higher
efficacy and thus efficiency in generating promising positions.
This makes the runtime of deBILS in generating a high-quality
TAN individual much shorter than BILS does.

In the individual-by-individual optimization procedure,
deBILS optimizes the positions of all the nodes simultane-
ously. Each individual represents a whole TAN. During the
process, deBILS optimizes the individuals one-by-one through
the common DE evolutionary mechanism.

A generic flowchart of the deBILS algorithm is shown
in Fig. 3. The T1, T2, T3 are the three individuals which
are initialized to a same basic solution net0. The updated is
a variable to denote if any progress is made in a generation.
Details of the node-by-node optimization procedure and the
individual-by-individual optimization procedure are described
in the following sections.

B. Node-by-Node Optimization

The node-by-node search pattern in BILS is enhanced with
a heuristically guided RS mechanism. Moreover, multiple indi-
viduals are used in the search of each node in deBILS to reduce
the risk of missing the best neighborhood point. In each gen-
eration, the search loop is going from node-to-node, as shown
in Fig. 4. It should be noticed that the outer loop of Fig. 4 is
the node-by-node process. For each node, there is an inner
loop controlled by each individual, as lines 3)–6) in Fig. 4.
That is, deBILS does not let each node probe the entire win-
dow exhaustively but uses several individuals to probe certain
positions according to historical information. As such, target-
ing TAN optimization, deBILS is a problem specific design
that embeds EA operations into the BILS framework.
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Fig. 3. Flow chart of deBILS. T1–T3 are the three individuals in the pop-
ulation which are initialized to a same basic solution net0 while updated is
used to record whether a new better solution is found or not.

Fig. 4. Node-by-node optimization procedure.

1) Reading and Updating Historical Information: As
shown in Fig. 4, node-by-node search is set to be the outer con-
trol loop as in the BILS algorithm, which makes it easy to uti-
lize useful historical information left by the neighboring nodes.
Each node searches for the next better position by its individ-
uals (that is, the individuals in the inner loop of this node).
Herein, a successful step vector (initially zero) of node i last
made by individual j is denoted as Vstep(nodei, indj), which
stands for a step toward an improved direction. Otherwise indi-
vidual j of node i will not make such a move. Therefore, when
each node searches for its next better position, the successful
step vectors of its neighborhood nodes can be used as his-
torical search direction information to guide the search. The
reason is that nearby nodes are highly likely to move along
similar directions (like in Fig. 5) and the same nodes of other
individuals can also make similar steps. Hence, it is useful to
learn from other individuals.

Specifically, when make the search for each node i [step 1)
in Fig. 4], the candidate mutation vector pool named Vpool

Fig. 5. Neighborhood historical information.

is generated first [step 2) in Fig. 4]. Specifically, at step 2),
if Vstep of all the individuals in the neighbor nodes are
not zero, Vpool is initialized as Vpool = {Vstep(nodei, indj)},
where i ∈ {1, . . . , size of current neighborhood} and j ∈
{1, . . . , popsize}. For a node at row t and column s, its neigh-
bor node set is defined as the set of nodes with (row, column)
index of {(t−1, s−1), (t−1, s+1), (t+1, s−1), (t+1, s+1)}.
At step 5), Vstep and Vpool are updated dynamically if a new
better position is found at step 4).

2) Search Steps: Following the historical information based
mutation vector pool Vpool generated at step 2), node optimiza-
tion then goes through each individual as in step 4). The search
of each individual for each node is based on two kinds of
mutation vector generation methods, noted as methods 1 and 2.

Method 1 uses a vector randomly selected from Vpool if it is
not empty. The step vector vm1 of the current node is generated
based on a randomly selected vector from Vpool and is scaled
by a random factor

vm1 = (3 · rand + 0.5)Vpool(r) (8)

where Vpool(r) is a random vector selected from Vpool and
3 · rand+0.5 is the random scale factor, with rand being a ran-
dom number within the interval [0, 1]. Increasing the scale
factor too much will lead the algorithm to wastefully ventur-
ing outside the original search window while decreasing the
factor too much will miss out a potentially promising direction.
The scale factor is hence set empirically with a good tradeoff
between searching inside and outside the window, which has
worked well as seen in the experiments.

Method 2 generates a mutation vector, i.e., the step vector
vm2, from a square window of size 2n + 1 centered at the
current node’s position, as

vm2 = WindowStep(random) (9)

where WindowStep(random) indicates the vector from the
node’s current location to a randomly selected position from
the square window (the same as the search window of BILS).

Here, two kinds of mutation vectors are used in the fol-
lowing fashion: vm1 is used, if Vpool is not empty and the
times of using method 1 is smaller than a maximum try num-
ber heu_try; otherwise, vm2 is used before the total try number
achieved a maximum try number total_try, as shown by Fig. 6,
which is the detail of step 4) in Fig. 4.

Due to that both vm1 and vm2 are generated randomly,
a searched mask is initialized before the search in order to
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Fig. 6. Search step generation procedure.

Fig. 7. Heuristic search window cut.

avoid searching the same point. If a new step vector might
lead the node to a point that has been marked or out of the
range of the image, the step vector will be regenerated (the step
marked ∗ in Fig. 6). The search will stop if all the vectors in
WindowsStep have been tried (the step marked ∗∗ in Fig. 6).

The usage of the pool Vpool in method 1 is very helpful
in finding good search directions of the node quickly while
method 2 maintains the search diversity.

A simple heuristic is also used in mutation method 2 to
focus on more promising areas with the help of Vpool vec-
tors as shown in Fig. 7. As the search window in (9) is
a square window centered at the current node’s position, bet-
ter move steps should be at a similar direction to vectors from
Vpool. Hence, almost half of the window is helpless. We can
use a vector vtest randomly chosen from Vpool as a guidance
vector. If the vm2 generated by mutation method 2 has a large
angle (>π/2) with vtest, we will regenerate vm2 with a high
probability, e.g., 0.9 used in our experiments. The vm2 regen-
eration condition (∗∗) in Fig. 6 for method 2 is then added by
“angle(vm2, vtest) > π/2 and rand < 0.9.” Note that a prob-
ability of 0.9 is used here because vtest based useful vector
judgment is not always right. Such a pruning method cannot be
used in a DS algorithm because it requires that the guided half
of the opposite vtest direction must be strictly proved useless.

Following the step vector is generated, a net topology test
is carried out in order to make sure that the move step will
not destroy the net topology. The area test method of [8] is

used here. If the step vector (vm1 or vm2) passes the test, the
local energy of the node after moving with the step vector is
computed. If it is smaller than the original energy, the posi-
tion will be recorded. Like the BILS algorithm, after all trials
have been exhausted, the best trial will be used to update
the position of this individual for this node. The step vector
which generates the new position will be used to update Vstep
and will be added to search candidate pool Vpool immediately.
Vstep and Vpool are thus dynamically updated during the search
process so that the algorithm can use the most recent progress
information in the search as the historical information. Such
a mechanism makes the communication among individuals in
the population more efficient than a normal DE mutation by
taking the TAN as a whole.

C. Individual-by-Individual Optimization

After all the nodes have been optimized by the above pro-
cess, a normal DE mutation will be performed to optimize
each TAN as a whole in the following way.

As each individual represents a whole TAN, each individual
stores the positions of all the nodes of the whole TAN. The
global energy of each individual (a whole TAN) in the popu-
lation is computed and the individual with the best energy is
denoted by ibest.

For each individual T(i) in the population, the common DE
mutation is applied so as to generate a new TAN T ′(i)

T ′(i) = T(ibest) + (0.5 + 0.3 · rand)[T(r1) − T(r2)] (10)

where T(r1) and T(r2) are two randomly selected individu-
als (TANs) from the current population.

Then, we compute the energy of T ′(i) and compare it with
the energy of T(i). If the former is better, it will replace
T(i) and ibest will also be updated if T(i) is better than the
original ibest individual.

Mutation is then performed for each individual of the pop-
ulation. If a better solution is found during this process, it
means that the mutation as (10) is helpful. In this case, the
mutation for the entire TAN, as (10), will be carried out one
more time for all individuals. The loop terminates until it fails
in generating better individuals. The TAN as a whole mutation
is a fast TAN generation method which is useful in the early
stage of the search process.

The generation of a new TAN T ′ by the normal DE mutation
in the above optimization process results in some conflicting
nodes that occupy the same point. In this case, we find a near-
est legal point (which can retain the topology of the TAN and
is not occupied by any other nodes) for each of the conflicting
nodes to make sure that they are not placed at the same point.

D. Notes

1) Comparison of BILS and deBILS on Their Search
Methodology: A fundamental difference between BILS and
deBILS is that BILS is a DS algorithm while deBILS is a ran-
dom heuristic search algorithm based on micro-DE. Historical
information is useful when one chooses not to carry out a thor-
ough search like BILS, hence making the search much faster,
although risk exists that the best step may not be found.
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Incorporating historical information in RS, deBILS can also
search points outside the basic window, whilst BILS only
searches inside. If the historical information is carefully used,
it is highly possible that deBILS can find with a high prob-
ability a step of a high quality. Then with the help of
multiple individuals, the probability will be further improved
toward better or similar steps, which will enhance robust-
ness of the random algorithm. Interaction among individuals
can provide learning from better ones for a promising search
direction. Hence, deBILS runs faster and can yield better
results compared with BILS because of the micro-evolutionary
framework.

2) Link-Cut Procedure: The link-cut procedure can be used
to divide the net into more than one subnets to fit more than
one target objects. The link-cut procedure itself is not studied
in this paper because it relates to the problem model but not
the algorithm design itself. However, it can be directly added
to the deBILS procedure in the same way as BILS. After all
the individuals in the population stopped improving, the link-
cut operation will be carried out and the best individual will go
through the process. Following that, the topology of the net
will be changed and the nodes are able to optimize further.
This is an optional operation that can be used in both BILS
and deBILS. For a detailed method of link-cut, refer to [8].

IV. EXPERIMENTS

In this section, we present experimental results on the com-
parison between the existing BILS approach and the proposed
deBILS. We also compare the performance of deBILS with
other EA-based TAN optimization approaches including the
GA-based approach and SS-based approach.

All experiments are carried out on a PC with an Intel Core
i5-2300 CPU running MATLAB 2013a. The deBILS is first
compared with BILS on ten single target test images with
a TAN grid size of 15 × 15. To focus on the nodes’ position
optimization procedure in these tests, we compare the two
algorithms on images with only one target object without link
cutting procedure. In fact, the nodes’ position optimization
process is the most time-consuming part of TAN optimiza-
tion. Therefore, if a proposed algorithm can achieve better
efficiency on the nodes’ position optimization without link
cutting procedure, it also should be useful to replace the orig-
inal BILS algorithm when link cutting procedure is used. To
prove the above analysis more clearly, we further provide tests
with a link cutting procedure on ten more test cases with
multiple targets. Note that all the test images used here are
binary images. This is reasonable because like in [8], the BILS
(and deBILS) are used to optimize a TAN after the original
image has gone through preprocessing and been transformed
into a binary image.

The parameters used specifically in the deBILS algorithm
are set to be the same for all test images as shown in
Table I. For parameter window size n and population size,
we carry out experimental studies on different settings in the
following parameter studies Section IV-A. Apart from the
algorithm parameters, different test images require different
energy function parameter settings, as in [8]. Herein, we set

TABLE I
PARAMETERS SETTINGS USED IN THE FOLLOWING TESTS

TABLE II
ENERGY FUNCTION PARAMETERS USED FOR DIFFERENT IMAGES

TABLE III
SEARCH RESULTS COMPARISON ON TAN ENERGY

these parameters as in Table II, which are optimized for BILS.
Note that, as we focus on the optimization algorithm, we do
not show more analysis on these parameters because they are
pertinent to the TAN problem per se. Interested readers are
referred to [8] for more information.

The stop condition for BILS and deBILS is when no node’s
position can be further improved. Both TAN energy and true
error rate (ER) of the resulted TAN are compared, where the
TAN energy is as described in (1) in Section II and the ER is
defined as

ER = No.of pixel swrongly classified by the TAN

No.of pixel soft he ground truth target
. (11)

A. Parameter Studies

We study key parameters for deBILS, including the basic
search window size n used both in BILS and deBILS, the
population size, and the split number for total_try and heu_try,
i.e., the number like 4 and 8 in Table III that split the points
in the window.

The basic search window size used in BILS and deBILS is
set to 5 according to experimental studies, as shown in Fig. 8.
It can be seen that with a larger n, both BILS algorithm
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Fig. 8. Comparison of time used (second) and ER between BILS and deBILS on different search window sizes n.

Fig. 9. Comparison of time used (second) and ER on different population sizes for deBILS.

Fig. 10. Comparisons of time used (second) and ER with different settings of split numbers for total_try and heu_try. (a) CPU time with different split
number of total_try. (b) ER values with different split number of total_try. (c) CPU time with different split number of heu_try. (d) ER values with different
split number of heu_try.

and deBILS algorithm are able to find better quality TANs
while the time consumed is increasing rapidly. On both ER
and time indicators, deBILS outperforms BILS when n is
larger than 2. To balance the solution quality and time cost,
we set n to 5, which is also sufficient to offer much of
the advantages of deBILS. Note that, Fig. 8 also reveals
that the relative advantages of deBILS can increase with n
increasing.

Fig. 9 shows typical results when different population sizes
are used in deBILS. As can be anticipated and seen in the
figure, the quality of the solution improves with a larger pop-
ulation size while the search time increases almost linearly
with the population size. Yet again to strike a balance of the
solution quality and time cost, we set the population size to 3.
Fig. 9 also reveals that the size can be even smaller when

the solution quality is good enough for a prespecified vision
application.

Fig. 10 shows how the split number of total_try and heu_try
in Table I affect the search performance. For the total_try,
a larger split number means smaller trial number. Therefore,
the time will be less, as shown in Fig. 10(a). However, large
split number causes the ER increases, as can be seen from
Fig. 10(b). To achieve a balance, therefore, we set the split
number for total_try to 4 as shown in Table I. For heu_try, it
controls how many trials use historical information to gen-
erate the mutation vector. A too small or too large value
will decrease its usefulness. For example, a too small heu_try
value (i.e., the split number for heu_try is too large) will
render too little historical information and hence too little
search efficiency as suffered by BILS. Fig. 10(c) confirms this.
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Fig. 11. TANs generated by BILS and deBILS on single target test images 1–10 (without link cutting procedure). For each pair of the same shape, the left
TAN is generated by BILS and the right by deBILS.

However, a too small split number for heu_try (i.e., the tries
with historical information become more) will cause the search
unnecessarily random and hence will result in too large ER
value, as confirmed by Fig. 10(d). Therefore, a medium value 8
is a good split number for heu_try, as given in Table I.

B. Experiments on Single Target Test Images

For a typical population size of 3, the TANs optimization
results from BILS and deBILS on single target test cases are
compared in Fig. 11. For each pair of the object images, the
left TAN is generated by BILS and the right is generated by
deBILS, which is seen to offer a better vision. Table III shows
the average search results (energy and ER of the best TAN)

of deBILS compared with those of BILS under the same con-
ditions. Table IV shows the time used by BILS and deBILS
to obtain the results in Table III. The obvious better results in
the two tables are marked in boldface.

First, from the search quality comparison in Table III, we
can see that only on two examples deBILS performs slightly
worse than BILS, but on the other eight images deBILS out-
performs BILS. Fig. 11 also shows that deBILS can generate
better TANs than BILS does on nonconvex shapes, e.g., the
star (image 2) and “T” (image 6) objects. This is due to
that deBILS is capable of searching not only in a square
window but also outside the square window along a poten-
tially promising direction, as generated from the DE historical
information.
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TABLE IV
SEARCH TIME COMPARISON

Fig. 12. Energy convergence curves against time of deBILS, GA, and SS
on (a)–(c) images 1–3.

Second, as shown in Table IV, the search time used by
deBILS is much less than BILS, offering a 28% improve-
ment. This reduction can be further improved to about 70%
for simple cases like images 1 and 4. The comparisons also
show that the deBILS is more flexible than BILS because we
can choose different population sizes depending on whether
we need a higher quality TAN and/or faster optimization.
deBILS is seen to be able to offer both in most single
target cases.

C. Comparisons Between deBILS and TAN EAs

In order to verify that deBILS indeed achieve a balance
on search quality and time, we also compare the results of
deBILS with those of two EA-based TAN optimization algo-
rithms: 1) a GA without BILS [5] and 2) a SS with BILS
refinement [8]. The comparisons are based on the above sin-
gle target test images. For the GA, a large population with
500 individuals was used, as suggested by Ibanez et al. [5].

TABLE V
ER COMPARISON OF deBILS, GA, AND SS

TABLE VI
ENERGY COMPARISON OF deBILS, GA, AND SS

TABLE VII
TIME COMPARISON OF deBILS, GA, AND SS

TABLE VIII
ENERGY FUNCTION PARAMETERS USED FOR MULTIPLE IMAGES

In our experiments, the GA was terminated after it consumed
more 1 h for a single image. For the SS, the population was set
to 8 to be time efficient as suggested by Bova et al. [8]. The
SS procedure is terminated after two generations. Tables V–VII
show the final results of the corresponding ERs, final energies,
and absolute time consumed, respectively, for each algorithm.
All results are based on ten independent runs. The results of
the GA and SS that are significantly different from deBILS
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Fig. 13. TANs generated by BILS and deBILS on multiple target test images C1–C10 (first row: C1, C2, and so forth). For each pair of the same image,
the left TAN is generated by BILS and the right by deBILS.

are highlighted in shade (with a Wilcoxon rank-sum test at
significance level of 0.05) and the better results are marked in
boldface.

From the results in Tables V and VI, we can see that deBILS
is far better than GA and comparable with SS. Without BILS
refinement, a standalone GA (even with some application-
specific operators and a very long runtime) cannot optimize
a TAN to a satisfactory degree, because the complex nature of
a TAN makes it extremely inefficient to generate a good can-
didate by the coarse evolutionary operators. For the SS, we
see two generations can achieve good enough results, com-
pared with deBILS, especially the energy optimization results

shown in Table VI. However, Table VII shows that SS con-
sumed much more time than deBILS did even though SS ran
only two generations. This indicates that the RS strategy used
in deBILS does accelerate the search speed and enhance the
global search ability.

Fig. 12 shows the curve of energy against CPU time for
deBILS, GA, and SS on some selected tested images. The
curves show the energy of the best TAN found by each algo-
rithm during the running time. The figures clearly show that
deBILS can achieve good quality in very short CPU time
and terminates much earlier than both GA and SS. SS often
consumes much more CPU time but can obtain better final
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TABLE IX
SEARCH RESULTS COMPARISON WITH LINK CUTTING

results than GA. Overall, compared with GA and SS, deBILS
achieves a good balance on speed and quality.

D. Experiments on Multiple Targets Test Images

Here, we compare the TAN optimization efficiency of BILS
and deBILS on test images with multiple targets. The link cut-
ting method used in [8] is adopted in these multitarget tests.
Both BILS and deBILS apply the same link cutting process
and the resultant TANs are shown in Fig. 13. The search
results contain some fragments that can be repaired with cer-
tain TAN reparation procedures as advocated in [8]. However,
we omit the reparation procedure here, so as to focus on com-
parisons between the direct search results. Parameter settings
in Table I are also used here. Table VIII shows the energy
function parameter settings used in these tests. However, these
parameters are slightly changed from the previous ones in
Table II so as to let BILS work better on multiple targets.
Table IX shows the optimization results of both algorithms
on the resultant TAN energy and time costs in the search
process. Results in Fig. 13 show that deBILS is able to gener-
ate better TANs than BILS does, with less miss-placed nodes
and fragments. Results in Table IX show that the time con-
sumed to find a good TAN by deBILS is reduced by up to
nearly 40%.

V. CONCLUSION

In this paper, a new micro-DE-based optimization algorithm
has been developed and applied to TAN optimization. If a stan-
dalone EA is used for TAN optimization, the solutions must
be well refined after they are generated by evolutionary repro-
duction. This has been the main reason that a DS algorithm
is used in existing TAN algorithms as the refinement method.
For these problems, the existing DS methods are inefficient
due to the lack of learning from historical information, as it
is hard to use such information in a deterministic manner. We
have therefore proposed the use of the micro-DE with a small
population and incorporating historical information in a ran-
dom and flexible manner for improved performance in speed
and robustness. Interactions among individuals are seen useful
in learning from historical information and hence help speed
up optimization and enhance quality. This is especially signif-
icant when a region contains a large number of unpromising
search points.

Test results have shown that the micro-DE-based deBILS
approach developed in this paper is able to offer improved
performance in both recognition speed and vision quality in
most single and multiple target cases. For the future study,
we believe that the deBILS framework can also be useful for
other complex structural optimization problems in machine
intelligence for time-consuming applications, especially where
normal EAs are inefficient at generating good candidates
or where it is hard for DS to learn from useful historical
information.
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