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Abstract—It is well known, present day theory of switched 
systems is largely based on assuming certain small but finite time 
interval termed average dwell time. Thus it appears dominantly 
characterized by some slow switching condition with average 
dwell time satisfying a certain lower bound, which implies a 
constraint nonetheless. In cases of nonlinear systems there may 
well appear non-expected complexity phenomena of particularly 
different nature when switching becomes no longer. A fast 
switching condition with average dwell time satisfying an upper 
bound is explored and established. A comparison analysis of 
these innovated characterizations via slightly different overview 
yielded new results on the transient behaviour of switched 
nonlinear systems, while preserving the system stability. The 
multiple-Lyapunov functions approach is used in the analysis 
and switched systems framework is extended shading new light 
on the underlying, switching caused system complexities.  

Keywords—arbitrary switching; average dwell time; lower bound 
condition; multiple Lyapunov functions; switched nonlinear 
systems; stability; upper bound condition. 
 

I.  INTRODUCTION  

The behaviour of hybrid systems, to which also switched 
systems also belong, may have remarkably different system 
dynamics from either of their components [4, 7, 14, 20, 23, 25, 
27]. For example, one switched system can be stable although 
all its components are unstable, also, some inappropriate 
switching signal may destabilize the overall switched system 
even though all of its components are stable [4, 5, 8-12, 14, 
21]. Naturally, the analytical studies via the approach relying 
on Lyapunov stability theory and its extensions [1, 3, 4, 7, 8, 
14, 17-20, 22, 27-29] were instrumental for building the theory 
of switched systems and switching based control [6]. 

Naturally, the issue of system stability is the crucial one, 
and moreover in the case of switched systems a rather delicate 
one [8, 12, 15, 16, 17, 22, 23, 27]. Thus, most of the existing 
literature is focused on the problem of stability under arbitrary 

switching [16, 14, 28-31. In due times, many important results 
have been obtained during a few of the past decades since the 
pioneering contributions of A. S. Morse (1996, 1997); for 
instance, see [2, 4, 14, 15, 20, 21, 24, 26, 28, 29, 30]. In order 
to guarantee stability under arbitrary switching, the common 
Lyapunov function method plays a rather important role (if not 
the central role because of its conservatism). This is because 
the existence of a common Lyapunov function implies the 
global uniform asymptotic stability of the switched system. 
The importance of common Lyapunov function has been 
further consolidated by a converse theorem, due to Molchanov 
and Pyatnitskiy [17], that asserted if the switched system is 
globally uniformly asymptotically stable (GUAS), then all the 
subsystems ought to have a common Lyapunov function.  

Over time and in particular more recently, the approach 
exploiting multiple Lyapunov functions [2, 12, 13, 26] and the 
associated dwell time [17, 18] or average dwell time [9] are 
recognized as another rather efficient tool in stability studies of 
switched systems [10-12, 20, 24-28, 27, 29-31 ]. The concept 
of average dwell time switching, which was introduced by 
Hespanha and Morse (1999) in [9], appeared more general than 
the standard dwell time switching for both stability analysis 
and related control design and synthesis problems; for instance, 
see [10-13, 15, 16, 22-26, 31]. It does imply that the number of 
switching actions in a finite interval is bounded from above 
while the average time between two consecutive switching 
actions is not less than a constant [6, 8, 9, 14, 29]. It is believed 
the multiple Lyapunov function approach per-se reduces the 
inherent conservatism of the common Lyapunov function 
approach.  

In fact, when confining to linear dynamic systems only, 
some well-known design procedures for explicit construction 
of multiple Lyapunov functions have been developed among 
which the S-procedure and the LMI [1, 3, 14] and the 
hysteresis switching action [9, 13, 304] have been particularly 
fruitful as most of references in this paper on control synthesis 
design and the references therein clearly demonstrated. In 
multiple Lyapunov functions approaches, it is generally 



assumed that each Lyapunov-like function associated for each 
subsystem is increasing (with the first time-derivative 
decreasing) with time as time elapses. For the first time, Ye and 
co-authors (1998) in their stability theory for hybrid systems 
[28] have also studied an approach allowing for a Lyapunov-
like function to rise to a limited extent and have established 
rather interesting property of a class of such functions called 
weak Lyapunov.  

Inspired by the work of Ye and co-authors (1998), recently 
in 2016 in [6] and [26] the authors extended considerably their 
findings so as to shade new lights on the underlying switching 
caused system complexities. This extension of the switched 
systems theory is considerably interesting as such and 
appealing too, since intuitively it may well yield reduced 
conservatism of stability results, which may not be amenable 
even to the multiple Lyapunov functions approach. They have 
shown that both slow switching and fast switching can be 
studied within an appropriately redefined framework. In 
addition, the implications were further worked out in producing 
novel results on stability of switched nonlinear systems. 

Notation: The notation used in this paper is fairly standard, 
which may well be inferred from: n  represents the n-
dimensional Euclidean space; 2C  denotes the space of twice 
continuously differentiable functions; 1C  once differentiable 
piece-wise function. 

II. BACKGROUND AND PRELIMINARIES 

A. A Preliminary Note 

It is important to notice that in this paper the advanced 
Lyapunov stability theory, the full account of which is found in 
Khalil’s monograph (2002) [7] employing both class K and 
class KL functions (additional to classic Lyapunov functions) 
as well as his Comparison Principle. The concepts of these 
functions are re-stated first for readability reasons. 

Definition 1 [7] A continuous function :[0, ) [0, )k a    is 
aid to belong to class K  if it is strictly increasing and has 
value (0) 0k  . It is said to belong to class K if the upper 

bound of domain is a   and if lim ( )k




  , i.e. if it is 

: [0, ] [0, ]k    . 

Definition 2 [7] A continuous mapping ( , )k k    defined 

by function :[0, ) [0, ) [0, )k a      is said to belong to class 

KL  if, for each fixed  , the mapping ( , )k k    belong to 
class K functions with respect to   and, for each fixed  , the 

mapping ( , )k k    is decreasing with respect to   such that 

lim ( , ) 0k

 


 .  

B. On Basics of Switched Systems Theory  

It is well known that, in general terms [5, 7, 14], a 
controlled nonlinear dynamic system can be represented by 
means of the state transition and output measurement equations 
(1). In order such a system to have sustained operability 

functions its state transition mechanism must have the property 
f (0,0) 0 and output measuring mechanism must have h(0) 
0 on the grounds of basic natural laws.  

   (1) 

In here, the system’s quantities denote: 
nx X  the state 

space, the input space, 
my Y  the output space; 

: , :n r n n mf h       . Upon the synthesis design of 
a certain controlling infrastructure then it appears 

 0 0 0; , , [ , )u u t t u t t    .  

 
 
Fig. 1 An illustration of controlled general nonlinear systems in accordance to 
the fundamental laws of physics [5]; although input, state and output spaces in 
terms of involved classes of functions can be mathematically defined by a 
chosen measuring norm, at any fixed time instant all vector-valued variables 
become real-valued vectors that may be Euclidean ones. 

 
Notice that Figure 1 which depicts a relevant illustration, 

which is related to this class of systems and the quoted notions. 
For, it depicts controlled general nonlinear systems in 
accordance to the fundamental laws of physics on rigid-body 
energy, matter and momentum of motion, i.e. evolution in time. 

Furthermore a controlled nonlinear dynamic system 

,    (2) 

where subsystems ( ) ( ),t i t if f h h    with i M  in an index 

set M are fixed given models, and the control input u u(t) is 
also given (upon its synthesis) is called a switched system. An 
autonomous switched nonlinear dynamic system thus appears 
to be defined as follows: 

      (3) 

For a causal signal 0: [ , ),t   if it is 



      (4) 
a piece-wise constant time-sequence function such that 

  lim ( )
t

t


  


 , for 0   in continuous time case, and 

  ( 1)t t    , for 0t   in discrete time case, is called a 

switching signal.  
 

      A switching signal is said to be a switching path if it is 
defined as mapping of finite, semi-open time interval into the 
index set M such that 0 1: [ , )t t M   for every 0 1[ , )t t  with 

0 1t t   . A switching law is called a time-driven 
switching law if it depends only on time and its past value 

   , ( )t t t   . A switching law is called a state-

feedback switching law if it depends only on its past value an 
on the values of state variables at that time 

   ( ), ( )t t x t    for 0[ , )t t   . A switching law is 

called a output-feedback switching law if it depends only on 
its past value an on the values of output variables at that time 

   ( ), ( )t t y t    for 0[ , )t t   . At present, no other 

concepts and notions about feasible switching signals matter. 
 

      The concept of average dwell time is given below and the 
respective rather important result is cited too. 
Definition 3 (Hespanha & Morse, 1999): For a switching 

signal   and any 012 ttt  , let ),( 21 ttN  be the 

number of switching over the interval ),[ 21 tt . If the condition 

attNttN  /)(),( 12021   holds for 10 N , 

0a , then 0N  and a  are called the average dwell time 

(ADT) and the chatter bound, respectively. 
 
Theorem 1 (Hespanha & Morse, 1999): Consider the switched 
system (3), and let  and   be given constants. Suppose that 

there exist smooth functions  N
tV :)( , )(t , 

and two K  functions 1k  and 2k  such that for each 

it )( , the following conditions hold: 

)()()( 21 ttit xkxVxk  , )()( titi xVxV  , and 

for any ),( ji , ji  , )()( tjti xVxV  ; then 

the system is globally uniformly asymptotically stable for any 

switching signal with ADT 

 ln*  aa . 

Theorem 1 considers multiple Lyapunov functions with 
“jump” on switching boundary. An extension due to (Ye et al, 
1998) in [29], the underlying essentialities of which were 
further highlighted by Zhang and Gao (2010) in [31], allows 
the Lyapunov-like function to rise to a limited extent, in 
addition to the jump on switching boundary. This is the so-
called week Lyapunov functions, and it allows both the jump 

on the switching boundary and the increase over any interval. 

Now consider it )(  and within the interval ),[ 1ii tt , 

denote the unions of scattered subintervals during which the 
week Lyapunov function is increasing and decreasing by 

),( 1iir ttT  and ),( 1iid ttT , respectively. Hence 

),(),(),[ 111   iidiirii ttTttTtt  . Further use )( 1 iir ttT   

and )( 1 iid ttT   to represent the length of ),( 1iir ttT  and 

),( 1iid ttT  correspondingly. Then the following important 

result can be obtained: 
 

Then the following important result has been derived: 
 
Theorem 2 (Ye et al, 1998; Zhang & Gao, 2010): Consider the 

switched system )( tt xfx  , and let 0 , 0 and 

1  are prescribed constants. If there exist smooth 

functions  n
tV :)(  and two K  functions 1k  and 

2k  such that for each it )( , the following conditions 

hold: 

)()()( 21 ttit xkxVxk  , 













),()(

),()(
)(

1

1

iirti

iidti
ti ttTtoverxV

ttTtoverxV
xV


 , 

 jtitxVxV tjti   )(&)()()(  , 
 

Then the system is GUAS for any switching signal with ADT 





ln)( max 


Ts

aa , ittTT iir   ),,(max 1max . 

        It may well be seen that the result above actually includes 
Theorem 1 as a special case. Namely, β0 implies no 
increase over the interval and hence 0max T , then the ADT 

condition reduces to the ADT condition 

 ln*  aa
, (5) in 

Theorem 1. It is this generality of the weak Lyapunov 
functions that has given incentives to explore the alternatives 
on fast and slow switching rules (Wang and co-authors, 2016). 

 

III. ON FAST AND SLOW SWITHING: RECENT DICOVERIES 

In the sequel the subsequently derived novel results, which 
are subject to further exploration in this paper, are presented 
first. In what follows, following notations from Branicky 
(1998) are adopted throughout [2]. In particular, a general 
arbitrary switching sequence is expressed by  

0 0 0 1 1{ ;( , ),( , ), ,( , ), ,| , }j j jx i t i t i t i M j N         (5) 

in which 0t  is the initial time, 0x  is the initial state, ( , )k ki j  

means that the ki -th subsystem is activated for  1,k kt t t  . 



Therefore, when  1,k kt t t  , the trajectory of the switched 

system (1) is produced by the ki -th subsystem. Thus, for any 

j M , the set  

  


1 1 2 21 1 1

1

( ) , , , , , , ,

                      ( ) , ,

n n

k k

t j j j j j j

j j

j t t t t t t

t j t t t k N

  



     

   

 
          (6) 

denotes the sequence of switching times of the j -th 

subsystem, in which the j -th subsystem is switched on at 

kj
t and switched off at 1kj

t  . 

 

A. Novel Insights into the Complexity of Switcing 

It should be noted, Theorem 2 is a slow switching result in 
the sense that it is characterized by a lower bound on the 
average dwell time. The three recent results have emanated 
from the novel insights into the switching complexity. 

Theorem 3 [6, 26] Consider the switched 

system )( tt xfx  , and let 0 , 0 and 1  are 

prescribed constants. If there exist smooth functions 

 n
tV :)(  and two K  functions 1k  and 2k  such 

that for each it )( , the following conditions hold: 

)()()( 21 ttit xkxVxk  , 

 jtitxVxV tjti   )(&)()()(  , 

1

1

( ) ( , )
( )

( ) ( , ).
i t d i i

i t
i t r i i

V x over t T t t
V x

V x over t T t t








 
  

  

Then the system is GUAS for any switching signal with ADT 





ln)( min 


Tf

aa
, ittTT iid   ),,(min 1min . 

 

       Intuitively, a switched nonlinear will achieve induced 
stability by arbitrary switching if the upper bound for the fast 
switching is larger than the lower bound for slow switching,  
which is the essence of the subsequent theorem.  
 

Theorem 4 [6, 26] Consider the switched 

system )( tt xfx  , and let 0 , 0  are prescribed 

constants. If there exist smooth functions  n
tV :)(  

and two K  functions 1k  and 2k  such that for each 

it )( , the following conditions hold: 

)()()( 21 ttit xkxVxk  , 

 jtitxVxV tjti   )(&)()()(  , 

1

1

( ) ( , )
( )

( ) ( , ).
i t d i i

i t
i t r i i

V x over t T t t
V x

V x over t T t t








 
  

  

Then the system is GUAS for arbitrary switching signal if the 
following condition are fulfilled: 





min

max

T

T
, ),(max 1max iir ttTT  , ittTT iid   ),,(min 1min . 

 

       Theorem 5 [6, 26] Consider the switched system 

)( tt xfx   and let 0 , 1  be given constants. 

Suppose that there exist 
1C  functions N

tV :)( , 

)(t , and two K  functions 1k  and 2k  such that 

it  )( , )()()( 21 ttit xkxVxk  , 

)()( titi xVxV  , and  ),( ji , ji  , 

)()( tjti xVxV  ; then the system is GUAS for any 

switching signal if and only if the ADT satisfies the condition 


 ln*  aa

. 

 

The poof details of these results are found in [6]. Notice that 
the slow switching condition reduces to the average dwell time 
of Hespanha and Morse (1999).  

B. Further Supporting Evidence via Simulations 

At this point, let recall the expression of a general arbitrary 
switching sequence (5): 

0 0 0 1 1{ ;( , ),( , ), ,( , ), ,| , }j j jx i t i t i t i M j N         (5) 

Also, notice that 0t  is the initial time, 0x  is the initial state, 

( , )k ki j  means that the ki -th subsystem is activated for 

 1,k kt t t  . Duplicate the template file by using the Save As 

command, and use the naming convention prescribed by your 
conference for the name of your paper.  

Next, let recall that by means of Jacobians the basic 
linearization of general nonlinear systems, such as the class of 
time-varying nonlinear plant processes to be controlled, is as 
follows:  

( ) ( ( ), ( ); )x t f x t u t t
   , 00 )( xtx


 , ( ) ( ( ); )y t g x t t

  
.(6) 

Upon linearization of nonlinear functions ,f g
 

 in the vicinity 

neighborhood of a certain operating state, e.g. such as a 

steady-state operating point EP ( cu


, cx


, cy


)  with the 

steady-states ,c cx y
 

 which may happen under some steady 

control input cu


, model (6) yields  
 

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),
n n n r

m n

x t A t x t B t u t

y t C t x t
 



  




  
   00 )( xtx


 ,    (7 a) 



where matrices 
,( ) /

c cn n x uA t f x   
 

, 
,( ) /

c cn r x uB t f u   
 

,  

,( ) /
c cn r x uC t g x   

 
. Should the steady-state operating point 

EP ( cu


, cx


, cy


)  is an desired equilibrium (which usually is 

in practice) that can be achieved under a certain synthesized 

equilibrium control vector e
c cu u const 
 

 defining the 

desired equilibrium state vector e
c cx x const 
 

 hence the 

desired steady-state equilibrium output vector 
e

c cy y const 
 

, then model (6) yields 

( ) ( )n n n rx A x t B u t  
   , 00 )( xtx 


; )()( txCty mn


 . (7 b) 

       It is therefore that the Lyapunov asymptotic stability 
requirement on the system’s steady-state equilibrium is 
indispensable and rigorous requirement. It is this requirement 
precisely which is being enhanced by involving a switching 
law in addition to the synthesized feedback control. The 
presented illustrations by mean of simulated time-responses 
further below, along with the above theoretical results, 
highlight the concepts essence of both the fast and slow 
switching as well as the average dwell time and the 
importance of achieving asymptotic Lyapunov stability under 
arbitrary switching. In any case, these finding guarantee in the 
close loop the ultimately uniform bounded operation of the 
plant at desired equilibrium steady-state shall be reached 
despite the possible uncertainties of the plant.   

For this purpose let consider the application of the arbitrary 
switching sequence (5) a second-order two-input-two-output 
uncertain nonlinear plant system of class (6) whose states are 
detectable and measurable (if they are not, then state estimator 
ought to be employed). It is assumed its Jacobian-linearized 
system is both observable and controllable. Thus, consider 
example for which a uncertain plant of class (6) yields system 
(7 b) having the following system matrices:  

11

5 4

0 2
A

 
  
 

, 
12

15 1

0 10
A

 
  

, 
21

2 0

1 5
A

 
   

,  
22

15 0

5 4
A

 
   

,  

11 12

1 1

1 1
B B

 
   

 
, 

21 22

3 1

1 5
B B

 
   

 
, 

11 12

1 1

1 1
C C

 
   

 
,

11 12

1 1

1 1
C C

 
   

 
. 

Next, let define 

}0)(,0)()()()({ 21
T

1  txtxPPtxRtx n  , 

}0)(,0)()()()({ 12
T

2  txtxPPtxRtx n  , 

where matrices 1P , 2P  are designed in the course of 

stabilizing state feedback control synthesis. It is therefore that 
system’s state space is such that }0{\21

nR  . Thus 

the closed-loop system should asymptotically stable or at least 
uniformly bounded due to the switching law 









12

1

\)(2

)(1
)(

tx

tx
t  

regardless of the plant uncertainty. The simulation results (via 
Matlab-Simulink of MathWorks, Inc. 2000 [1], [32]) for the 
state and the control vectors, when the initial condition on 

states are  (0) 3,1
T

x   , are found depicted in Figures 1 and 2, 

respectively. Figure 3 depicts three switching sequences. 
 

(a)  

 

(b)  

Fig. 2 Fast evolution of the time responses of both the state (a) and the control 
(b) vectors in closed loop under switching based state feedback control. 

(a)  

 

(b)  

Fig. 3 Evolution of the time responses for three cases of the considered class of 
switching sequences demonstrating the fast (a)  and the slow switching modes 
with the average-dwell-time strategy in conjunction with the state feedback 
control. 



IV. CONCLUDING REMARKS 

This paper has further supported the novel characterization 
of nonlinear switched systems via adopting constrained 
switching through slow switching and fast switching in [6], 
[25]. A fast switching rule may even guarantee globally 
uniform asymptotic stability of the desired steady-state 
equilibrium to which some synthesized state-feedback control 
has driven the plant.  Thus these finding prove that the standard 
average dwell time condition associated with the multiple 
Lyapunov functions, in fact, appears to be an if and only if 
condition. The three results thus have extended the existing 
stability theory of switched nonlinear systems. 
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