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Abstract 

Understanding contact networks are important for modelling and managing the spread and 

control of communicable diseases in populations. This study characterizes the swine shipment 

network of a multi-site production system in southwestern Ontario, Canada. Data were extracted 

from a company’s database listing swine shipments among 251 swine farms, including 20 sow, 

69 nursery and 162 finishing farms, for the two-year period of 2006 to 2007. Several network 

metrics were generated. The number of shipments per week between pairs of farms ranged from 

1 to 6. The medians (and ranges) of out-degree were: sow 6 (1–21), nursery 8 (0–25), and 

finishing 0 (0–4), over the entire two-year study period. Corresponding estimates for in-degree of 

nursery and finishing farms were 3 (0–9) and 3 (0–12) respectively. Outgoing and incoming 

infection chains (OIC and IIC), were also measured. The medians (ranges) of the monthly OIC 

and IIC were 0 (0–8) and 0 (0–6) respectively, with very similar measures observed for intervals 

of two-weeks. Nursery farms exhibited high measures of centrality. This indicates that they pose 

greater risks of disease spread in the network. Therefore, they should be given a high priority for 

disease prevention and control measures affecting all age groups alike. The network 

demonstrated scale-free and small-world topologies as observed in other livestock shipment 

studies. This heterogeneity in contacts among farm types and network topologies should be 

incorporated in simulation models to improve their validity. In conclusion, this study provided 

useful epidemiological information and parameters for the control and modelling of disease 

spread among swine farms, for the first time from Ontario, Canada. 
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Introduction 

The shipment of animals between farms is one of the main mechanisms of spread of infectious 

disease among livestock (Gibbens et al., 2001; Mansley et al., 2003; Kiss et al., 2006a; Ortiz-

Pelaez et al., 2006; Poljak et al., 2008). Recently, network analyses have been applied to describe 

and quantify animal shipments between farms, and to study their implications for disease spread 

and control (Bigras-Poulin et al., 2006; Kiss et al., 2006b; Ortiz-Pelaez et al., 2006; Bigras-

Poulin et al., 2007; Dubé et al., 2008; Kiss et al., 2008; Martinez-Lopez et al., 2009a; Vernon 

and Keeling, 2009; Lockhart et al., 2010; Volkova et al., 2010; Nöremark et al., 2011). Analyses 

of animal shipment networks help identify heterogeneity in contact frequency and the 

connectedness of the network. They also identify whether these contacts are permanent (for 

example, through trade agreements between farmers) or differ over time or distance. Knowledge 

of these network characteristics is useful to assess disease spread in a population (Kiss et al., 

2006a; Martinez-Lopez et al., 2009b; Dubé et al., 2011; Nöremark et al., 2011). Furthermore, it 

can provide guidance for targeted tracing, surveillance and disease control measures. Farms with 

high out-degree (number of off-farm links) can act as a key source of disease spread, whereas 

farms with high in-degree (number of onto-farm links) are at relatively greater risk of disease 

introduction since they receive shipments from many farms. Farms with both high out-degree 

and in-degree can act as hubs for disease spread in a network. For example, once a disease 

infects so called hub farms, it can spread rapidly in a scale-free network (Shirley and Rushton, 

2005b; Ortiz-Pelaez et al., 2006). Strategically applying control measures at such hubs (including 

quarantine, vaccination or stamping out) will be more effective than similar control measures 

applied randomly. For risk-based surveillance, farms with low in-degree but high out-degree 

(low probability but high consequences) can be targeted to mitigate high impact of exotic disease 



introduction (Cameron, 2012). Whereas farms with high in-degree (high probability of infection) 

can be targeted for high surveillance sensitivity and demonstration of freedom from disease 

(Cameron, 2012; Frossling et al., 2012).  Disease spread may be relatively slower in a small-

world network, but it can spread to topologically more distant clusters and facilitate more 

persistent infection in the population, than in random or scale-free networks (Rahmandad and 

Sterman, 2008; Rahmandad et al., 2011). 

 

Network component analyses (where components are more highly connected sub-regions of a 

network), have been used to estimate the likely lower and upper limits of epidemic-sizes (Bigras-

Poulin et al., 2006; Kao et al., 2006; Kiss et al., 2006b; Robinson et al., 2007). However, Dubé et 

al. (2008) argued that “infection chain” measures (which take into consideration the temporal 

sequence of livestock shipments between farms) may provide better estimates of a potential 

epidemic size. Furthermore, understanding animal movement networks can support 

regionalization and compartmentalization approaches to disease control, as encouraged by the 

World Organization for Animal Health (OIE). This would allow the identification of groups of 

regions or farms that behave as a single epidemiological unit (referred to as a compartment) in 

terms of risk for disease transmission, as well as risk-free groups with no links to infected 

groups. This can facilitate resumption or continuation of trade from disease-free regions, or even 

from risk-free herds within an infected region (Bigras-Poulin et al., 2007; Martinez-Lopez et al., 

2009b). 

 

Knowledge of contact networks facilitates more realism in simulation modelling of the spread 

and control of disease in human (Eubank et al., 2004; Longini et al., 2005; Aparicio and Pascual, 



2007; Hsu and Shih, 2010; Rahmandad et al., 2011), and animal populations (Green et al., 2006; 

Kiss et al., 2006a, 2008; Sharkey et al., 2008; Vernon and Keeling, 2009; Dubé et al., 2011). 

Examples of input parameters required for such models include: the number of contacts each 

farm has, topologies of contact networks, frequency and size of shipments, as well as movement 

distances between farms (Morris et al., 2001; Garner and Beckett, 2005; Harvey et al., 2007). 

 

Pork production is a major industry in Canada. Accordingly, an outbreak of a highly contagious 

disease among Canadian swine would have a significant negative socioeconomic impact. 

Analyses of swine shipment networks have been reported from several jurisdictions, but not yet 

from Canada (Bigras-Poulin et al., 2007; Martinez-Lopez et al., 2009a; Nöremark et al., 2011; 

Rautureau et al., 2012; Buttner et al., 2013). Therefore, the objectives of this study were to 

generate farm and network level contact measures, from the swine industry of the Province of 

Ontario, Canada, that are important for the development of simulation models and to support 

disease management strategies. 

 

Materials and Methods 

Study population 

Data used in this study described shipments of pigs among 251 farms (20 sow, 69 nursery and 

162 finishing farms), from January 2006 to December 2007. The study data were provided by a 

large swine health and management company, which serviced the above described farms, located 

across 15 counties in southwestern Ontario, Canada. Sow farms comprised a mixture of farrow-

to-wean and farrow-to-finish operations. Nursery farms consisted of a mixture of farms rearing 

pigs of approximately three to 10 weeks of age (nursery) and approximately three weeks to 



market age (wean-to-finish). Finishing farms housed pigs at approximately 10 weeks to market 

age. Information recorded in the database included unique identity numbers (IDs) of the farms, 

owners, managers, and of batches of swine managed and moved as groups. In addition, shipment 

dates, IDs of source and destination farms, production type, number of animals on the farms, the 

number of animals in shipments, and types of animals shipped were also recorded in the 

database. The management company did not own any of the farms but provided health and 

management services, including the maintenance of swine shipment data for the swine 

producers. The farms were owned by 33 different owners with some owners owning multiple 

farms. Each farm was located on a unique land parcel and was managed by a different farm 

manager. Shipments of pigs from one farm to another were not limited to farms belonging to a 

same owner. Not all farms located in the area were serviced by this one company. Therefore, the 

data did not include all swine shipments during the study period, among all farms in the 15 

counties. However, the data were considered to be representative of the Ontario swine industry 

because the vast majority of the swine farms in the province employ intensive multi-site 

production systems, similar to the farms managed by this company. The emphasis of this study 

was the network of swine movements influencing spread of disease between farms. Accordingly, 

a detailed analysis of the network of swine shipments from farms to abattoirs was not included. 

 

Descriptive statistics 

Statistics were generated describing the number of swine-shipments per week between different 

farm types, for the two-year period of 2006 and 2007. Also, distributions of the sizes of farms 

and shipments were generated. Farm size represented the number of sows (excluding piglets), 



nursery or finishing pigs that a farm can accommodate. The median value for shipment size was 

used in cases of multiple shipments between any specific pair of study farms. 

 

Network analysis 

Patterns of swine shipments among farms were characterized using network analysis 

(Wasserman and Faust, 1994; Newman, 2003). A network consists of collections of nodes or 

vertices (the unit of interest) which may or may not be connected to others by links (also known 

as edges or arcs). In this study, nodes represented farms and links represented shipments of pigs 

between source and destination farms. Links can be treated as weighted or binary depending on 

whether or not multiple shipments between pairs of farms are taken into consideration. Each 

shipment event included a batch of one or more pigs from a source to a destination farms. All 

links were treated as directed (arcs), involving directional shipments of pigs between farms. 

 

Contacts (shipments) between the 20 sow, 68 nursery and 157 finishing farms were analyzed 

using a one-mode directed binary network matrix. One nursery and five finishing farms that 

received shipments before January 2006 but shipped pigs to abattoirs only during the study 

period were excluded from this network. A one-mode network represents the links between the 

same set of entities (the row and column elements in the matrix relate to the same set of farms). 

In the binary network links were assigned a value of one or zero based on whether or not there 

was at least one shipment of pigs between a pair of farms. The intensity of off-farm (out-degree) 

and onto-farm (in-degree) shipments between pairs of farms were assessed by treating links as 

weighted, taking into consideration the number of shipments of animals between pairs of farms. 

 



The network was characterized in terms of: (i) Network size: number of nodes, number of 

directed links; (ii) Farm-level centrality measures: out-degree, in-degree, betweenness, 

eigenvector, including normalized indices of these measures; (iii) Network-level measures: 

density, centralization indices of out-degree, in-degree, and betweenness, diameter, geodesic 

distance, clustering coefficient and fragmentation index (Wasserman and Faust, 1994). 

Descriptions of the network terminology used in this paper are outlined in Table S1 of 

supplementary tables, and were based on the definitions adopted by Dubé et al., (2009), 

Martinez-Lopez et al., (2009b) and Newman, (2003). 

 

Infection chain analysis 

It has been proposed that measures referred to as the outgoing infection chain (OIC) and the 

incoming infection chain (IIC) are particularly relevant when considering the epidemiology of 

disease spread and control measures (Dubé et al., 2008; Nöremark et al., 2011). Therefore these 

measures were assessed in this study. OIC and IIC count all direct and indirect (contacts through 

other farms) off-farm and onto-farm contacts respectively, accounting for the time sequence of 

shipments. These measures were generated for each two-week and one month periods, along 

with corresponding in-degree and out-degree measures for the same time intervals. These 

intervals were chosen based on the plausible range of infectious periods of most common 

infectious diseases and plausible lengths of a “silent phase”, after an outbreak has started but 

before official detection occurs. For instance, an outbreak detection delay up to three weeks for 

foot-and-mouth disease has been reported in the literature (Keeling et al., 2001). These measures 

were generated using the EpiContactTrace package (version 0.6.9, http://cran.r-

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dub%C3%A9%20C%22%5BAuthor%5D
http://cran.r-project.org/web/packages/EpiContactTrace


project.org/web/packages/EpiContactTrace) of R software version 2.15.1 (R Foundation; 

http://www.r-project.org). 

 

Scale-free and small-world topologies  

Since many networks of livestock shipments have been observed to exhibit scale-free or ‘small-

world’ topologies (Christley and French, 2003; Webb, 2005; Bigras-Poulin et al., 2006; Kiss et 

al., 2006b; Webb, 2006; Bigras-Poulin et al., 2007; Lockhart et al., 2010), the network in this 

study was also examined for these properties. A scale-free network is characterized by a right 

skewed, long-tailed, power-law distribution of the number of links (degrees) to nodes, where a 

large number of nodes have a few links, but a few nodes have relatively large numbers of links. 

Such networks are hypothesized to evolve through preferential attachment (Barabasi and Albert, 

1999; Barabasi and Bonabeau, 2003). Accordingly, power-law (P(k)~k
-
) distributions were 

fitted to out-degree, in-degree and total degree data, using statistical approaches described by 

Clauset et al., (2009). Specifically,  and k were estimated by fitting the power law distributions 

to the data using maximum likelihood methods and goodness-of-fit tests based on the 

Kolmogorov-Smirnov statistics, where k was based on a kmin recommended by Clauset et al. 

(2009). The power-law distribution fitting and hypothesis testing were conducted using R 

software, including the routines: plfit.R, ConfidenceIntervals.R and GoodnessOfFit.R (available 

at: https://sites.google.com/site/beyondmicrofoundationscoderepo/home/r-code-

repository/power-laws). 

 

Small-world networks are characterized by clusters of nodes that are connected to each other 

through a few long range links. They tend to have a relatively high clustering coefficient and 

http://cran.r-project.org/web/packages/EpiContactTrace
http://www.r-project.org/
https://sites.google.com/site/beyondmicrofoundationscoderepo/home/r-code-repository/power-laws
https://sites.google.com/site/beyondmicrofoundationscoderepo/home/r-code-repository/power-laws


shorter geodesic distance than an equivalent size random network. As there is no formal 

statistical test for detecting small-world characteristics in a network, the clustering coefficient 

and geodesic distance of the observed network were compared with a set of randomly generated 

networks using the equivalent number of nodes and links (Newman, 2003; Opsahl and 

Panzarasa, 2009). The observed network was compared with 500 Erdös-Renyi random graphs 

generated using the same numbers of farms and links. In the literature, a network demonstrating 

at least a 6-fold increase in the clustering coefficient, in comparison to the analogous random 

network, has been classified as small-world (Watts and Strogatz, 1998; Lockhart et al., 2010). 

 

Statistical analyses 

Differences in the sizes of farms and shipments among three farm types were compared using a 

Kruskal-Wallis (KW test) with Bonferroni post hoc adjustment for multiple comparisons. A 

critical value of the post hoc adjustment was calculated as α/(k*(k−1)), where α=0.05 and k is the 

number of groups compared. Associations between means of various network measures, 

including out-degree, in-degree, betweenness, and eigenvector with farm type, farm or shipment 

sizes, were compared using a network adapter ANOVA and t-test (for pairwise comparisons), 

that are based on bootstrapping and permutation approaches (Hanneman and M, 2005). These 

methods were used because the network measures violate the random sampling and 

independence assumptions, and are robust to violation of assumptions of normality and equal 

variance of residuals. For comparisons, farm sizes were categorized into four groups (A = 250 to 

999; B = 1,000 to 1299; C = 1,300 to 2,099; and D = 2,100 to 4,000) based on 25
th

, 50
th

, and 75
th 

percentile distribution. The records of farm sizes were missing for three sow farms and two each 

of the nursery and finishing farms. They were estimated for these farms using a multivariate 



normal regression imputation method based on their respective median shipment size, out-

degree, in-degree, and betweenness values. The median of 100 imputed values was used for each 

of these seven farms. Similarly, sizes of shipments were categorized into four groups as: A = 1 to 

54; B = 55 to 100; C = 101 to 208; and D = 209 to 2,598. The numbers of relevant links 

identified through infection chain analysis, as compared to the number of links identified by 

simple degree counts, were assessed using the same two-week and monthly time intervals 

applied to the infection chain analysis. Differences in two-week and monthly OIC vs. out-degree 

and IIC vs. in-degree measures were compared among the three farm types as well as the four 

groups of farm size or shipment size, using the KW test with Bonferroni post hoc adjustment 

described above. In addition, the distributions of both OIC and out-degree, and IIC and in-

degree, were compared (for each of the two-week and monthly time intervals), using the KS 

goodness-of-fit test, because this test takes into consideration the whole distribution. 

 

Cluster analysis 

Cluster analysis was used to examine whether there were distinct groups of farms based on the 

farm and shipment sizes, together with key network measures (out-degree, in-degree, 

betweenness and eigenvector measures). Agglomerative hierarchical cluster analysis using the 

weighted average linkage method with a stopping rule based on the Duda and Hart index as 

described by Everitt et al., (2011) was used for this analysis. A Euclidean distance measure with 

all variables rank standardized was used for the analysis. 

 

All network and statistical analyses, unless specified previously, were carried out using UCInet 

v6.360 for Windows (Borgatti et al., 2002) and Stata version 11.2 (StataCorp. 2009. Stata 



Statistical Software: Release 11. College Station, TX: StataCorp LP), respectively. For multiple 

comparisons using Kruskal-Wallis test, a kwallis2 package in Stata 

(http://fmwww.bc.edu/RePEc/bocode/k) was used. The significance of all statistical tests was 

assessed at the 5% significance level. 

 

Results 

Descriptive statistics 

Descriptive statistics of swine shipments between farms are summarized in Table 1. Shipments 

from sow to nursery farms accounted for 64% (3,690/5,760) , while shipments from nursery to 

finishing farms accounted for 27% (1,527/5,760) of movements. Each farm shipped pigs to 1–4 

other individual farms per week. The number of shipments per week between pairs of farms 

ranged from 1–6. Limited number of shipments between farms of the same type (nursery or 

finishing) were also observed. Considerable variations in the frequency of weekly and monthly 

shipments were noted within each year and between the two years (Figure S1 of supplementary 

materials). The medians (ranges) of farm sizes by farm type were: sow 1,200 (500–2,700), 

nursery 2,100 (450–4,000) and finishing 1,060 (250–2760). The farm sizes varied significantly 

by farm types (P<0.001; Figure S2). The distribution of shipment size also varied widely with an 

overall median (range) of 101 (1–2,930) pigs per shipment (Table S2). A significant difference in 

the size of shipments among the three farm types was observed with larger size shipments from 

nursery to finishing farms (P<0.001). Furthermore, a positive association between farm size 

groups and shipment size groups was evident (Pearson’s chi-squared test P value of <0.001). 

 

Network of swine shipments among farms  

http://fmwww.bc.edu/RePEc/bocode/k


The network consisted of 245 farms (nodes) with 810 links. A total of 5,760 shipments was 

observed from 147 individual sources to 211 individual destination farms. Detailed farm and 

network level measures are presented in Table 2. The overall difference in the out-degree among 

the three farm types was significant (P<0.001). Sow and nursery farms shipped pigs to a median 

of six nursery and eight finishing farms respectively (with the exception of limited shipments to 

other nursery farms) (Table 2). The difference in out-degrees between these two farm types was 

not statistically significant (when assessed against a post hoc test’s critical value). Except for the 

63 finishing farms that shipped pigs to 1–4 other finishing farms, most finishing farms (94) 

shipped pigs only to slaughterhouses for processing. Since those shipments to slaughterhouses 

were excluded from the analysis, most finishing farms had out-degrees of zero in this network of 

farm-to-farm animal shipments. Similarly, three nursery farms were wean-to-finish farms (sent 

shipments off-farms only to abattoirs) and therefore had out-degrees of zero for this network. 

Significant positive associations between out-degree and farm size groups and shipment size 

groups were evident (P<0.001; Figure S3).  

 

The difference of in-degree distributions between nursery and finishing farms was not significant 

(when assessed against a post hoc test’s critical value). In-degree values presented a borderline 

signficant association with farm size groups (P = 0.055), but they had a significant association 

with the shipment size groups (P <0.001; Figure S4). None of the sow, eight nursery and six 

finishing farms in this data received any shipments (in-degress of zero). Most of these farms 

sourced replacements from within their own farms, but some may have had other sources who 

were not clients of the swine management company involved in this study and were therefore not 

included in the study data.  



 

Yearly network measures were also estimated (but not provided in Table 2). The overall median 

(range) of out-degree values for both the yearly networks was 0 (0–15), and the in-degree values 

were 2 (0–7) and 2 (0–8) for 2006 and 2007, respectively. Sow and nursery farms had similar 

values of out-degree with an overall median (range) of 4 (0–5) for the yearly networks (not 

including shipments from finishing farms to abattoirs). The in-degree values for the nursery and 

finishing farms were similar, with an overall median (range) of 2 (0–8). The medians (ranges) of 

the overall total-degree of 2006 and 2007 yearly networks were 4 (1–17) and 4 (1–18), 

respectively. 

 

Only nursery and finishing farms had betweenness centrality scores greater than zero. In 

particular, four nursery farms had the highest betweenness score of 93 (farm K), 102 (farm J), 

104 (farm D), and 106 (farm G) (Figure 1(b)). These farms also had relatively high out-degree, 

in-degree and eigenvector scores (Figure 1(a) and (b)). The betweenness scores of nursery farms 

were significantly higher than for finishing farms (P<0.001). Betweenness scores were 

significantly associated with farm size and shipment size groups (P<0.001; Figure S5). 

 

No significant differences in eigenvector scores among farm types or farm size groups were 

observed (P value of 0.121 and 0.163 respectively; Figure S6(a)). However, eigenvector scores 

differed significantly among shipment size groups (P<0.001; Figure S6(b)). A plot of 

eigenvector and betweenness scores shown in Figure 1(b) identified key farms with high scores 

of these measures, indicating their influential role in the flow of swine shipments among the 

farms. 



 

Cluster analysis 

Cluster analysis identified five clusters (Table S3). Cluster #1 included a range of farm 

characteristics. Cluster #2 consisted primarily of finishing farms with high in-degree, small farm 

and shipment sizes, and the lowest out-degree, betweenness, and eigenvector scores. Cluster #3 

consisted of an equal proportion of sow and nursery farms with large farm size, intermediate 

values of shipment size, out-degree, betweenness and eigenvector scores, and lowest in-degree. 

Cluster #4 consisted of only nursery farms with the highest out-degree, betweenness and 

eigenvector scores and largest farm and shipment sizes, and relatively high in-degree (see Figure 

1(a) and (b)). Cluster #5 consisted of a single nursery farm with the largest shipment size and 

larger farm sizes, but with lowest network measures.  

 

Infection chain analysis 

The medians for each of the OIC, IIC, out-degree and in-degree measures, were not significantly 

different within each measure-type, based on two-week vs. one-month time intervals. However, 

the maximum values of out-degree, IIC and OIC, were higher for monthly vs. two-week 

intervals. Accordingly, for brevity, only results for the monthly network measures are presented 

here. The overall medians (ranges) of monthly measures were: out-degree 0 (0–7), OIC 0 (0–8), 

in-degree 0 (0–5), and IIC 0 (0–6). These measures differed significantly among farm types 

(P<0.001). Sow farms had relatively higher out-degree and OIC with median (range) values of 2 

(0–7) and 3 (0–8) respectively, and zero in-degree and IIC. The median values of all these 

measures were zero for both nursery and finishing farms. However, the nursery farms had 

relatively higher ranges of out-degree (0–5) and the OIC (0–6) than the finishing farms (out-



degree of 0–2; OIC of 0–3). While the nurseries had higher in-degree range (0–5) than finishing 

farms (0–3), IIC range was lower for nursery (0–5) than finishing farms (0–6). The percentages 

of three farm types likely to have ranges of monthly OIC and IIC are shown in Figure 2(a) and 

(b) respectively. It shows that 88% of the sow farms, 36% of the nursery and 4% of the finishing 

farms shipped pigs to at least one farm in a month (Figure 2(a)). Similarly, 39% of the nursery 

and 21% of the finishing farms received pigs from at least one farm in a month (Figure 3(b)). No 

differences in these measures were observed between 2006 and 2007 years ((P>0.05). 

Significant positive associations between monthly OICs or IIC measures with farm size groups 

or shipment size groups were evident (all P<0.0001). 

 

Scale-free topology  

The out-degree and in-degree distributions had power law scaling parameters () of 1.97 (95% CI 

1.82 – 2.14) and 4.34 (95% CI 3.65–5.15) for farms with the out- and in-degree >2 and >6, 

respectively. There were 147 and 79 farms above these threshold limits, respectively. The total 

degree distribution had a power law scaling exponent () of 2.69 (95% CI 2.40–3.02) for farms 

with the degree >6 (consisted of 116 farms). The KS test failed to reject the power law model as 

a plausible model for out-degree and total degree (P>0.05). However this test was significant for 

the in-degree distribution (P <0.001). 

 

Network-level measures 

In general, the network density and clustering coefficient were low. The high fragmentation 

index indicated that the proportion of unreachable pairs of farms was high in the network. The 



network’s out-degree, in-degree and betweenness centralization indices were also low, 

illustrating a relatively low reliance or concentration of off- and onto-farms shipments from/to a 

few nodal farms at the macro-level of the entire network. A median geodesic distance of two 

indicates the presence of only one farm on the most efficient pathway between any two farms in 

general. 

 

Small-world topology  

The overall median geodesic distance of 500 simulated random graphs of equivalent network 

size of the observed network was five with the overall median (5
th

 and 95
th

 percentiles) of 

clustering coefficient of 0.013 (0.011–0.012). The relatively shorter geodesic distance (two) and 

larger clustering coefficient (0.09) of the observed network compared with random graphs of 

equivalent size demonstrated small-world topology of the swine shipment network. A network 

graph showing farms, where the size of the nodes was made proportional to the total degree is 

shown in S7. 

 

Discussion 

This study described the network characteristics of swine shipments among 245 farms, in 15 

counties, in the province of Ontario, Canada. As a non-random sample, the study data were not 

fully representative of all swine farms in Ontario. However, it did include swine shipment events 

over a two-year period, from 6.2% (251/4070) of all swine farms in Ontario (Statistics Canada, 

2007). The majority of Ontario swine farms participate in multi-site production systems, where 

individual farms specialize in a specific production type (breeder, farrow-to-wean, nursery, or 



finishing).. Most of these farms also operate under a single integrator or on the basis of fairly 

permanent trade partnerships, where a farrowing farm supplies a specific, relatively fixed set of 

nursery farms, etc. Thus data obtained for this study  described a sub-network, within the overall 

network of swine shipments in Ontario. Considering this farming structure, we can assume that 

estimates of farm-level centrality measures of this network represent reasonable estimates of the 

typical commercial multi-site production systems in Ontario. Furthermore, since these data 

captured all swine shipments of participating farms, including those shipments to and from farms 

outside the enrolment of this company (except for the supply of replacement sows), the 

magnitude of bias in the farm-level measures are likely small. However, network level measures 

observed in this study, such as density and fragmentation indices will be subject to some degree 

of bias, because such measures depend on the total number of farms present in the network.  

This study provided useful preliminary information on the characteristics of multi-site 

commercial swine shipment networks in Ontario. It illustrated the types of farms that tend to be 

more centrally connected and could thus guide the prioritization of control measures, and provide 

some indication of the potential size of epidemics in such networks. It also provided preliminary 

parameters required for modelling disease spread among swine farms, such as contact 

frequencies, the number of links between farms, and the structure of network topologies. As a 

caution, the network statistics observed during normal trading may change once quarantines or 

movement controls are implemented during the outbreak response phase (Shirley and Rushton, 

2005a). 

 

The frequency of off-farm shipments per week (ranging from 1 to 6, Table 1), can be used as 

input parameter for the contact rate in simulation models. However, such simple statistics are 



much more informative when combined with the network information such as: the number of 

links over which those shipments occur, which types of nodes are involved, or the contact 

structure of the network. 

 

The high and similar out-degree distributions observed for sow and nursery farms compared with 

finishing farms illustrated the similar risk these two farm-types present as disease sources, once 

they become infected. However, when one also considers the higher in-degree of nursery farms 

(relative to sow farms), it is clear that nursery farms present a greater overall risk through their 

ability to act as hubs in the spread of disease. In general, finishing farms may present a lower risk 

to the spread of disease from farm-to-farm by animal shipments. The similar in-degree 

distributions of nursery and finishing farms implied similar vulnerability to, or risk of, 

introduction (receipt) of diseased animals. However once again, considering the higher out-

degree of nursery farms, they will likely be more influential in the spread of disease in the 

network. The out-degree measures of sow and finishing farms, and in-degree measure of 

finishing farms in this study were similar to those observed by Buttner et al., (2013).  

Their higher betweenness scores means that targeting nursery farms for disease control measures 

can be more effective and efficient at the network population level (although this may be 

infection-specific and nursery-specific) than similar controls applied to sow or finishing farms. 

The eigenvector scores for individual farms provided additional insights into their respective 

centrality, because this score is weighted by the centrality scores of farms connected to the farm 

being assessed. Farms with both high betweennesss and high eigenvector scores are certainly 

hubs that will likely act as ‘super-spreaders’ if infected. In this study, all such farms were 

observed to be nursery farms (Fig 1 (b)) and belonged to a single cluster. Farms with high 



betweenness and low eigenvector scores act as central bridges connecting farms to the core of a 

network, which would otherwise be isolated. Removing these farms from the network increases 

the fragmentation index of a network. Farms with low betweenness scores but high eigenvector 

are well-connected and lie at the core of the network, but they have very few connections outside 

the core region. Identifying such farms can be useful for disease surveillance and disease 

outbreak management. 

 

The positive associations observed for farm-size and shipment-size, with out-degree, and 

measures of centrality indicated that, in addition to large farms receiving and making more 

shipments to more farms, the probability of at least one infected animal being included in any of 

those shipments is greater for any given prevalence of disease within the source herd at the time. 

Some of the disease spread modelling tools explicitly model the disease transmission probability 

per shipment as a function of farm size, within-farm prevalence of an infection, and shipment 

size (Morris et al., 2001; NAADSM Development Team, 2011). It should be cautioned that other 

factors such as the biology of the disease agent, biosecurity and management practices of farms, 

and other factors governing between-farm linkages should also be considered in estimating the 

overall risk of disease transmission. 

 

Cluster analysis provided a useful holistic picture of important aspects of the network. Most 

notably, it identified a group of specific nursery farms (cluster #4) with combined characteristics 

of large farm and shipment sizes and high measures of centrality. Given that individual farm 

characteristics may change over time (e.g. farm size, shipment size, frequency or degrees); if 

contemporary farm-specific data of such characteristics are not available at the time of an 



outbreak, then a reasonable precautionary policy would be to give higher priority to nursery 

farms in general, as targets for control measures. 

 

Normally infection chains analyses (OIC and IIC) are used for contact tracing during response to 

an outbreak of an emerging disease .. However, knowledge of the characteristics of infection 

chains in a given network, before an outbreak, is also useful. Such knowledge can be used to 

prepare for and mitigate an outbreak, as well as estimate its likely magnitude, before an outbreak 

even starts. This is because infection chain analyses take into account direct and series contacts 

(through other farms), and the temporal sequence of these contacts (Dubé et al., 2008; Nöremark 

et al., 2011). Estimates of the OIC and IIC of two-week and monthly interval networks were 

similar to out-degree and in-degree estimates in this study. This suggested that estimates based 

simply on out-degree and in-degree provide an equivalent estimate of the likely magnitude of 

disease spread for a duration of up to one month. Since sow farms had significantly higher OIC 

than other farm types, the consequence component of the risk of disease spread from sow farms 

was higher than for other farm types. Similarly, since finishing farms had significantly higher 

IIC, the risk of them becoming infected was greater than for other farm types. Thus, farms with 

high IIC can be targeted for surveillance to increase the probability of detecting the infection, 

relative to random surveillance sampling of the population (Nöremark et al., 2011; Frossling et 

al., 2012; Rautureau et al., 2012; Buttner et al., 2013). 

 

The scale-free topology of the network observed here was consistent with the findings of other 

studies of livestock shipments (Bigras-Poulin et al., 2007; Dubé et al., 2008; Lockhart et al., 

2010; Nöremark et al., 2011; Rautureau et al., 2012; Buttner et al., 2013). This scale-free 



topology indicated that the degree distributions of farms were heterogeneous and that hubs 

(highly connected farms) were present.. Knowledge of the scale-free topology and highly 

connected farms is useful for prioritizing risk-based surveillance, tracing and control measures 

(Martinez-Lopez et al., 2009b; Dubé et al., 2011). It is particularly important because the speed 

of disease spread is faster in scale-free than in non-scale-free networks due to the presence of 

‘super-spreaders’ (Shirley and Rushton, 2005b; Rahmandad and Sterman, 2008). Also, the speed 

of detection and control is faster if one takes into account the scale-free nature of the network by 

targeting hubs, than if only random surveillance and routine contact tracing is used to control an 

outbreak in a scale-free network (Shirley and Rushton, 2005b; Kiss et al., 2006a; Dube et al., 

2011). The power-law scaling exponent for the total degree in this study was similar to other 

studies (Bigras-Poulin et al., 2007; Rautureau et al., 2012; Buttner et al., 2013). The out-degree 

and the scaling exponent are important parameters required for constructing a realistic scale-free 

network structure for network-based disease spread simulation models.  

 

Low density and low clustering coefficient, and high fragmentation index of swine shipments 

networks in general indicate that the likelihood of a disease spreading to every farm may be 

relatively low. The small-world properties observed in this network indicated the presence of 

localized clusters that were connected to topologically distant clusters through a few long range 

connections. This kind of topology makes it possible for a disease to spread between distant 

clusters in the network. Small-world properties observed in this network were consistent with 

those reported in swine (Nöremark et al., 2011; Rautureau et al., 2012) and other livestock 

species (Leon et al., 2006; Dubé et al., 2008; Lockhart et al., 2010). 

 



General comments 

These results should  be extrapolated cautiously. Nevertheless, this study provided 

epidemiologically relevant and reasonable estimates of farm-level measures, particularly for 

southwestern counties of Ontario. Future studies should consider incorporating such indirect 

contacts and shipment distances between farms as these are important parameters to consider in 

spatially-explicit diseases spread models (Morris et al., 2001; Garner and Beckett, 2005; Green et 

al., 2006; Harvey et al., 2007). 

Conclusion 

This study provided insights into a large swine shipment contact network in southwestern 

Ontario in Canada. Nursery farms are the high-risk farms in terms of risk of disease introduction 

as well as a potential source of spread to other farms (for infectious diseases that affect all age 

groups alike), and should be accorded high priority for disease prevention and control measures. 

The study found heterogeneity in the frequency of contacts among farm types. Also the network 

demonstrated small-world and scale-free topologies, consistent with livestock shipment networks 

reported in several other countries. Any attempt to incorporate disease transmission dynamics 

within simulation models should take these into consideration. 
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Table 1: Descriptive statistics of swine shipments among three farm types for 2006 and 2007 in southwestern 

Ontario, Canada. 

 

Farm type 

 

No. of source 

farms 

No. of destination 

farms 

Total no. of 

links  

Total no. of 

shipments 

Median (range) 

of weekly off-

farm links  

Median (range) 

of weekly 

shipments/ pair 
Source  Destination  2006 2007 2006 2007 2006 2007 2006 2007 

Sow  Nursery 19 20 47 47 121 113 1787 1903 1 (1–3)   2 (1–6) 

Nursery  Nursery 21 39 20 36 23 51 26 82 1 (1) 1 (1) 

Nursery  Finishing 46 46 107 110 295 294 696 831 1 (1–4) 1 (1–3) 

Finishing  Finishing  49 57 48 61 61 89 232 203 1 (1–2) 1 (1–6) 

 

 

Table 2: Descriptive network metrics of swine shipments among three farm types for the 2-year period (2006–2007) 

in southwestern Ontario, Canada. 

 

Network metrics Overall Sow Nursery Finishing 

A. Network size 

i) Number of nodes (farms) 245 20 68 157 

ii) Number of directed links 810 - - - 

iii) Total number of  shipments  5,760 - - - 

iv) Network size (all possible pair-wise links) 59,780 - - - 

B. Node level centrality measures -  values reported are median ( minimum and maximum range) 

i) Out-degree 1 (0–25) 6 (1–21) 8 (0–25) 0 (0–4) 

ii) Normalised out-degree 0.41 (0.00–10.25) 2.46 (0.41–8.61) 3.28 (0.00–10.25) 0.00 (0.00–1.64) 

iii) Frequency of off-farm shipments  1 (0–409) 203 (9–409) 16 (0–279)  0 (0–260)  

iv) In-degree 3 (0–12) - 3 (0–9) 3 (0–12) 

v) Normalised median in-degree 1.23 (0.00–4.92) - 1.03 (0.00–3.69) 1.23 (0.00–4.92) 

vi) Frequency of onto-farm shipments  8 (0–363) - 48 (0–215) 7 (0–363)  

vii) Total degree 5 (1–29) 6 (1–21) 9 (1–29) 4 (1–13) 

viii) Betweenness score 0 (0–106) - 8 (0–106) 0 (0–52) 

ix) Normalised betweenness score 0.00(0.00–0.18) - 0.01 (0.00–0.18) 0.00 (0.00–0.09) 

x) Eigenvector score 0.01 (0.00–0.23) 0.03 (0.00–0.18) 0.02 (0.00–0.23) 0.01 (0.00–0.14) 

xi) Normalised Eigenvector score 1.72 (0.00–32.39) 3.94 (0.00–24.68) 2.74 (0.00–32.39) 1.13 (0.00–20.01) 

C. Network level measures 

i) Density 0.014 - - - 

ii) Out-degree centralisation index 8.9% - - - 

iii) In-degree centralisation index 3.6% - - - 

iv) Betweenness centralization index 0.17% - - - 

v) Diameter  5.0 - - - 

vi) Median geodesic distance (mode) 2.0 (2.0) - - - 

vii) Clustering coefficient 0.09 - - - 

viii) Fragmentation  0.96 - - - 

 



 

 

Figure 1: Scatter plot distributions of: (a) in-degree versus out-degree of nursery (red circle) and 

finishing (blue triangle) farms where size of marker is proportional to the betweenness centrality scores 

(sow farms are not shown as they have zero in-degree and betweenness score); and (b) Eigenvector versus 

betweenness scores of sow (green diamond), nursery (red circle) and finishing (blue triangle) farms 

involved in the swine shipment network in southwestern Ontario. Labeled farms belonged to cluster 4 

groups that may play a central role in terms of vulnerability to disease introduction and spread to other 

farms as they have high key network measures; particularly farms K, J, D, and G with highest 

betweenness centrality measure. 

 

 

 



 

 

Figure 2: Percentage of farms with a given number of monthly: (a) outgoing infection chain, and (b) 

incoming infection chain values for each of the three production types described in the network analysis 

of swine shipments in southwestern, Ontario, Canada. 

 

 

 



 

Table S1: Description of network terminology used in the main text. 

Terminology Description 

Betweenness  The number of times that a node falls on the shortest path between other pairs of nodes in the 

network. 

Betweenness centralization 

index 

The sum of differences between largest betweenness of most central node with all other nodes 

divided by the maximum possible values, and expressed in percentage terms. 

Clustering coefficient The proportion of closed triplets out of the total number of triplets (both open and closed) present 

in the network. A triplet is formed when three nodes are connected by either two (open triplets) or 

three (closed triplets) undirected links [1]. 

Density  Density is the proportion of links (L) present out of all possible links in the network. For a 

directed network density is equal to L/(N(N-1)), where N is the number of nodes present.  

Diameter The longest geodesic distance between any pair of nodes of a network. 

Eigenvector  A relative centrality score of a node assigned as an increasing function of the sum of all the 

centralities of all the nodes to which it is connected. A node connected to other nodes with high 

centrality scores will have higher Eigenvector score than another node with equal connections, 

but connected to nodes with low centrality scores. Therefore this measure not only accounts for a 

node’s degree but also for the degree of the other nodes to which it is connected.  

Fragmentation The proportion of pairs of nodes in a network that are unreachable either through direct or 

indirect pathways and provide measure of network’s disconnectedness. 

Geodesic distance  The shortest possible path between two nodes and is the most efficient connection between them. 

In-degree  In the directed network, in-degree is the number of nodes from which a particular node received 

shipments of animals. For weighted directed network, in-degree represents number of shipments 

received by a node irrespective of the node from which the shipment originated. 

In-degree centralization 

index 

The sum of the differences between largest in-degree of most central node with all other nodes 

divided by the maximum possible values and expressed in percentage. 

Links  The connection between pairs of nodes established through shipments of animals. 

Network size  The total number of possible unique pairs of nodes. If N is equal to the number of nodes, then 

network size is equal to N (N-1). 

Normalized betweenness  The proportion of betweenness of a node to a maximum possible betweenness of the network and 

expressed in percentage. 

Normalized in-degree It is the in-degree of a node divided by the maximum possible degree of the network and 

expressed in percentage. 

Normalized out-degree It is the out-degree of a node divided by the maximum possible degree of the network and 

expressed in percentage. 

Nodes/vertices Premises such as farms and PUs in the network. 

Out-degree In the directed network, out-degree of a node is the number of out-going links to other nodes 

(number of premises to which a farm sent its swine shipments). In a weighted directed network, 

out-degree of a node is the number of shipments sent to other premises. 

Out-degree centralization 

index  

The sum of the differences between largest out-degree of most central node with other nodes 

divided by the maximum possible values, and expressed in percentage. 



 

Table S2: Distribution of the number of pigs shipped by farm types for the period 2006 to 2007 in 

southwestern Ontario, Canada. 

Premises type Median (5th & 95th percentiles) 

of shipment size 

 

Shipment size  

(minima – maxima) 

Source  Destination  

Sow  Nursery 203 (64–590) 9–1190 

Nursery  Nursery 28 (1–218)  1–1580 

Nursery  Finishing 243 (30–1943)  1–2355 

Finishing  Finishing  15 (1–274)  1–2598 

 

 

 

Table S3: Clusters identified by hierarchical cluster analysis using weighted-average linkage method 

based on farm-level variables and measures of centrality of the swine shipments network analysis in 

southwestern Ontario, Canada. 

Variable Cluster 1 

(n = 159)  

Cluster 2 

(n =62) 

Cluster 3 

(n = 10)  

Cluster 4 

n=13) 

Cluster 5 

(n=1) 

Farm sizea  1,406 (250–2,700) 1,060 (360–2,760) 1,965 (1,000–4,000) 2,000(1,235– 2,540) 1,950 

Shipment sizea   39 (0–1,166)  0 (0–145)  346 (124–232)  467 (232–600)  2,352 

Out-degreea  1 (0–15 )  0 (0–3)  15 (12–21)  17 (13–25) 1 

In-degreea  2 (0–6)  7 (4–12)  1 (0–3)  6 (4–9) 1 

Betweennessa  0 (0–36)  0 (0–52)  4 (0–21)  58 (34–106)  0 

Eigenvectora 0 (0–0.09) 0.01 (0– 0.14)  0.15 (0.10– 0.18) 0.16 (0.13–0.22) 0 

Sow (%) 9.4 0 50.0 0 0 

Nursery (%)  30.2 1.6 50.0 100 100 

Finishing (%) 60.4 98.4 0 0 0 

a Values reported are median and interquartile range. 
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1. Opsahl T., Panzarasa P. 2009 Clustering in weighted networks. Social Networks 31, 155-163. 
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Figure S1: Frequency of weekly shipments of swine for 2006 and 2007 in southwestern Ontario, Canada. 

A lowess smoothing line was generated using locally weighted regression of frequency of shipments on 

weeks of each year with a bandwidth of 0.095. 

 

 

 

 

Figure S2: Distribution of the number of farms according to the total number of animals recorded in the 

database for the period 2006 to 2007 by farm type in southwestern Ontario, Canada. 
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Figure S3: Out-degree distributions by: (a) farm size groups and (b) shipment size groups of a swine 

shipment network in southwestern Ontario, Canada. 

 

0
5

1
0

1
5

in
-d

e
g
re

e

250-999 1000-1299 1300-2099 2100-4000

farm size groups

(a)

   

0
5

1
0

1
5

in
-d

e
g
re

e

1-54 55-100 101-208 209-2598

shipment size groups

(b)

     

Figure S4: In-degree distributions by: (a) farm size groups and (b) shipment size groups of a swine 

shipment network in southwestern Ontario, Canada. 
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Figure S5: Betweenness centrality score distributions by: (a) farm size groups and (b) shipment size 

groups of a swine shipment network in southwestern Ontario, Canada. 
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Figure S6: Eigenvector centrality distributions by: (a) farm size groups and (b) shipment size groups of a 

swine shipment network in southwestern Ontario, Canada. 

 

 

 

 

Figure S7: Network of swine shipment among three farm types in southwestern Ontario, Canada. Node 

sizes and width of links are proportional to the total degree and three categories of frequency of shipments 

(1, 2–10 and 11–258). Key: sow herd (pink); nursery (red); finishing (blue). 


