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A B S T R A C T

Offshore and marine renewable energy applications are governed by a number of uncertainties relevant to the
design process and operational management of assets. Risk and reliability analysis methods can allow for sys-
tematic assessment of these uncertainties, supporting decisions integrating associated consequences in case of
unexpected events. This paper focuses on the review and classification of such methods applied specifically
within the offshore wind industry. The quite broad differentiation between qualitative and quantitative methods,
as well as some which could belong to both groups depending on the way in which they are used, is further
differentiated, based on the most commonly applied theories. Besides the traditional qualitative failure mode,
tree, diagrammatic, and hazard analyses, more sophisticated and novel techniques, such as correlation failure
mode analysis, threat matrix, or dynamic fault tree analysis, are coming to the fore. Similarly, the well-practised
quantitative approaches of an analytical nature, such as the concept of limit states and first or second order
reliability methods, and of a stochastic nature, such as Monte Carlo simulation, response surface, or importance
sampling methods, are still common practice. Further, Bayesian approaches, reliability-based design optimisa-
tion tools, multivariate analyses, fuzzy set theory, and data pooling strategies are finding more and more use
within the reliability assessment of offshore and marine renewable energy assets.

1. Introduction and outline

Offshore wind turbines are exposed to severe environmental con-
ditions. Occurring failures could have environmental impacts, but de-
finitely would lead to considerable financial losses. This is not only due
to the lost production output because of the failure, but is especially
amplified by the limited accessibility of offshore assets, located some
distance from the coast and sometimes even in quite remote areas.
Transport of offshore engineers and work on the asset can only be
performed in acceptably safe sea states and at medium wind speeds.
These prescribed working weather windows imply quite long delays
sometimes, until the asset can operate in normal mode again. This

moves the point of focus towards risk management and reliability as-
sessment of offshore wind turbines.

According to BS ISO 31000, risk is the “effect of uncertainty on
objectives…[and] is often expressed in terms of a combination of the
consequences of an event (including changes in circumstances) and the
associated likelihood…of occurrence” [1], p. 1. The latter can be in-
fluenced by the level of reliability. Reliability itself is defined, based on
BS 4778 [2], as “the ability of a component or a system to perform its
required functions without failure during a specified time interval” [3],
p. 12, but “can also be denoted as a probability or as a success ratio”
[4], p. xxvi. Several different techniques for obtaining qualitative or
quantitative measures of reliability exist; however, not every method is
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suitable to be applied to the assessment of offshore energy systems.
Some may be more useful than others, and some have to be adjusted or
combined to obtain valuable results.

The aim of this paper is to classify reliability methods used in the
offshore and marine renewable energy industry. Other objectives are
the analysis of these methods with respect to their applicability to
offshore wind turbine systems, their benefits and limitations, as well as
the elaboration of existing trends and further approaches required to
overcome those limits still remaining. The paper is structured in such a
way that first a classification of common reliability methods is given in
Section 2. After this general overview, qualitative and quantitative re-
liability assessment procedures, specifically applied within the offshore
wind and marine renewable energy industry, are presented and cate-
gorised (Sections 3 and 4). This is based on a systematic literature re-
view, which primarily used the specific words “reliability” and “off-
shore”, focused on the latest research work done, preferably from 2010
onwards, and aimed to concentrate on offshore wind turbines; however,
some examples of other offshore industries and structures were also
included due to the still low information density on offshore renewable
energy devices. In total, more than 100 papers have been reviewed and
further information was taken from recent conferences, as well as in-
dustrial experiences. Section 5 points out how offshore wind turbine
systems challenge common reliability assessment methods, in which
way and how far the presented techniques are already able to cope with
this, as well as which limits are still existing and which theories will
potentially develop further. Finally, a conclusion is provided in Section
6.

2. Classification of reliability methods

Reliability analyses (RAs) can be performed for different systems
and components, such as mechanical, electronic, or software, as well as
at various stages of the engineering process, for example design or
manufacture [4]. Due to the broad application of reliability, attempts at
categorisation are being made. Stapelberg [5] for example focuses on
reliability in engineering design and distinguishes between reliability
prediction, assessment, and evaluation, depending on the design stage
conceptual, preliminary/schematic, or detailed, respectively. Further-
more, two different levels at which reliability can be applied are de-
fined: component and system level. These already introduce the
bottom-up and top-down approaches, which can be found in some re-
liability methods as well.

Considering the different reliability methods themselves, there are
two main categories into which they can be grouped: qualitative
methods and quantitative methods, depending on the availability and
quality of data [5]. However, a comparison of different literature, such
as O'Connor et al. [4] or Rausand and Høyland [6], shows some dis-
crepancies in the assignment of certain reliability methods and in-
dicates the need for a third intermediate category for such semi-quan-
titative reliability methods. The methods covered in the following, as
well as the chosen categorisation, are visualised in the form of a Venn
diagram, presented in Fig. 1. The abbreviations used will be explained
in the following sections and are listed at the beginning of the paper.

Furthermore, it has to be noted that some of the presented methods
are rather risk assessment tools than reliability methods. However,
these risk assessment techniques are still included, as the awareness of
the existing risks is the decisive basis for RAs. In the following, it is just
stated whether the tool is strictly speaking used for risk or reliability. A
detailed list of risk assessment methods can be found in BS EN 31010
[7].

2.1. Qualitative reliability methods

Missing or insufficient data does not allow for quantitative assess-
ment of reliability. Nevertheless, relations within the system, covering
hazards, failure causes, events, failure modes, faults, effects, and

consequences, can be shown and this way an estimate of reliability,
failure probability, and consequence can still be obtained by using
qualitative methods.

Before performing any qualitative RA, first the system structure and
functions have to be identified and classified [6]. On this basis, a
qualitative reliability assessment can be carried out. Some of the most
common methods are briefly explained in the following, grouped into
sheet-based, table-based, and diagrammatic techniques.

2.1.1. Sheet-based qualitative reliability methods
Typical sheet-based qualitative methods are checklists; they are

used to assist engineers [6] in determining and examining influencing
factors, and thus identifying risks, for design operation, maintainability,
reliability, safety, and availability. Thus, for each stage there are dif-
ferent question sets, on which basis the contributing parameters can be
studied [5].

2.1.2. Table-based qualitative reliability methods
The table-based qualitative methods focus either on hazards or

failure modes (FMs).
The aim of hazard identification (HAZID) analysis is to determine

potential hazards, as well as their causes and consequences. This risk
identification method should be applied as early as possible, so that
changes and adaptions, which may avoid the hazard or at least reduce
the effects to the system, can be integrated in the early system design. A
typical HAZID worksheet starts by naming the investigated component
or area, followed by the potential incident. Then, the potential causes
and consequences are determined and the severity of the latter is ca-
tegorised. Finally, recommendations for corrections or precautions are
given [5].

A hazard and operability (HAZOP) study, another risk assessment
tool, is also used for the identification of hazards, their potential causes
and effects; however, this analysis rather focuses on deviations from the
normal operation mode as initiating event. Special guide words, such as
NO or NOT, MORE, LESS, LATE, or BEFORE, are used for describing
these deviations. The HAZOP procedure itself could either start with the
guide word or the considered element. A HAZOP worksheet contains,
besides the guide word and element, the explicit meaning of the de-
viation, the potential causes and consequences, already existing safe-
guards, as well as recommended necessary actions and further com-
ments [8].

More adaptable tools for identifying risks are the what-if analysis or
structured what-if technique (SWIFT). The SWIFT starts with collecting
potential hazards and uses in addition a checklist, containing typical
errors and failures that could also make up hazards. The hazards are
then organised in a worksheet, comprising the hazard itself, mentioned
in the column headed What-if?, its potential causes and effects, as well
as presenting safeguards and giving recommendations, similarly to
HAZID and HAZOP [9].

Not only focusing on hazards, the failure mode and effects analysis
(FMEA) aims to identify FMs in the system function or equipment, their
potential impacts and causes, as well as determining existing controls
and precautions. Thus, while being originally a risk assessment tool,
FMEA can also be used for RA. Three different types of FMEA exist:
concept/functional FMEA, design/interface FMEA, and detailed/up-
dated FMEA, implying that FMEA can be used throughout the entire life
cycle of an asset [6].

2.1.3. Diagrammatic qualitative reliability methods
Qualitative reliability methods in the form of a diagram can be

structured from the top down or the bottom up. Such a top-down ap-
proach is used in the cause and effect diagram, which is also called the
fish-bone diagram due to its shape. The top event, a failure or incident,
makes up the head of the fish on the right side. Different cause cate-
gories, containing several specific factors, are then added in form of
fish-bones to the diagram, allowing a structured risk assessment [6].
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The same deductive (top-down) approach is used in the fault tree
analysis (FTA), strictly speaking a risk assessment tool, which is vi-
sualised in a fault tree diagram (FTD). The tip of the tree is the incident
or failure which is then broken down into immediate, intermediate, and
basic causes. The relationship between causes and the top event are
represented by logical gates, such as AND and OR [6].

An event tree analysis (ETA), also a risk assessment technique, is
performed in the opposite direction, meaning from the bottom up. Such
an inductive approach uses the incident or failure as the starting point
for identifying all potential event sequences which may result from the
initial event. The different levels in the corresponding event tree dia-
gram (ETD) can directly represent safeguards and the two branches of
that part of the tree are the options for the success or failure of this
safety barrier [5].

A combination of risk assessment methods FTA and ETA is given in
the bow-tie analysis (BTA). The diagrammatic form of such a BT has the
failure or incident in the middle, which is then broken down to the left
into its causes, representing the FTA, and to the right into its con-
sequences, such as in the ETA. In both directions safety barriers can be
included, safeguards for control and precaution in the FT-part, and
safety functions for mitigation in the ET‐part [10].

Besides those linear diagrammatic methods, the strengths, weak-
nesses, opportunities, and threats (SWOT) technique analyses influence
factors and identifies risks in two dimensions. Based on the shape of a
compass rose or four-quadrant format, the internal factors i.e. strengths
and weaknesses are in the north, while the external factors i.e. oppor-
tunities and threats are in the south. In the east-west direction, the
factors are distributed such that the positive factors lie in the west and
the negative ones in the east [11].

2.2. Semi-quantitative reliability methods

Some of the qualitative reliability methods can be extended with
some quantitative approximate measures and thus also be used for
quantitative reliability assessment. These tools can again be grouped
into table-based and diagrammatic methods, as presented in the fol-
lowing.

2.2.1. Table-based semi-quantitative reliability methods
In Section 2.1.2, FMEA has already been introduced as a qualitative

risk assessment methods, which however can also be used for RA. If this
is combined with a criticality analysis, a semi-quantitative reliability
method, the so-called failure mode effects and criticality analysis
(FMECA), can be obtained. The additional parameters are three rating

values: for the severity of the effects, the occurrence of the FM, and the
detectability of the failure cause. Different tables with recommenda-
tions for rating those parameters and assigning a ranking number to
them do exist but can also be defined individually. Having determined
the severity, occurrence, and detection ratings, the risk priority number
(RPN) is computed as a product of these three rating values. This can
finally be used to rank the criticality of risks and FMs. As for the FMEA,
the worksheet for the FMECA can also either be focused on the com-
ponent/equipment or on the requirement/function. Furthermore, it is
possible to distinguish between product and process FMEA, depending
on the items or system under consideration [6,12].

2.2.2. Diagrammatic semi-quantitative reliability methods
The tree-shaped risk assessment techniques FTA, ETA, and BT,

mentioned in Section 2.1.3, can also be used for a quantitative assess-
ment of reliability if probability values are added to the branches.
Those numbers indicate the occurrence probability of a causal event, in
the case of an FT, and the conditional probability of a safety function
being functional or not, in an ET, respectively. Multiplication of all
probability values along one cause or consequence path yields the total
probability of this happening. This calculation can be performed in
measures for either failure or success; the latter directly represents the
reliability value, while in the first case the reliability has to be com-
puted as complementary to the failure probability [6].

Comparable to FTDs and cause and effect diagrams, however, more
general are the Bayesian belief networks (BBNs). Similar to the FTA, a
BBN uses the top-down approach, starting with the initiating event and
breaking this down into different causes or cause categories. Arrows
indicate the relationships between the undesired event and the causes,
which could result in a quite complex network [6]. By assigning
probabilities to the contributing factors, BBNs can not only be used for
risk identification, but also for quantitative reliability assessment. With
the help of the Bayes theorem, existing data can be inter- or extra-
polated, but also newly available information can be incorporated in
the BBN and the reliability estimation updated [5].

An alternative way of presenting an FTD or ETD is a reliability block
diagram (RBD), which is - as the name already suggests - a reliability
assessment tool. The different components are more or less aligned on
one common line with the input on the left end and the output on the
right end. This way, systems with a flow can also be represented very
well. Instead of the AND and OR gates, used in FTDs and ETDs, parallel
and series connections are incorporated in the RBD to describe the re-
lationships of the single components, as well as to represent de-
pendencies. If the probabilities of each event or system function,

Fig. 1. Venn diagram for the classification of the presented reliability methods.
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illustrated by the blocks in the diagram, are known, the system relia-
bility can be computed based on the algebraic rules for parallel and
series systems [5].

2.3. Quantitative reliability methods

For a detailed assessment of the reliability, including ranking of
risks as well as the prioritisation of where to focus on and thus integrate
corrections or precautions, quantitative methods are needed. Typical
techniques for quantitative reliability assessment are presented in the
following, grouped into analytical, stochastic, and some sophisticated
methods.

2.3.1. Analytical quantitative methods
Analytical approaches for quantitative reliability assessment are

based on load-strength interference. The difference between the re-
sistance of the system and the acting load is known as performance or
also called limit state function (LSF). Some guidelines, e.g. DNV-OS-
C101 [3] and DNVGL-CG-0128 [13], provide definitions of LSs and
analytical expressions for certain failure criteria. Some of the para-
meters used in these expressions are uncertain and thus have to be
represented by stochastic or random variables. The performance func-
tion is used to show the area of failure, which is the case for negative
results. For evaluating the reliability, the LSF has to be solved, which
can be done in different ways [4].

As the computation of the reliability, based on the condition that the
LSF must be positive, could be very complex, the first order reliability
method (FORM) or second order reliability method (SORM) are often
used for simplifying the analytical expression by applying a first or
second order Taylor expansion [14]. Based on FORM, an iterative ap-
proach for determining the reliability index (RI) is given by Hasofer and
Lind (HL). The cumulative distribution function relates the RI to the
probability of failure (PoF); the latter is just complementary to the re-
liability [15].

2.3.2. Stochastic quantitative methods
As in the analytical quantitative methods, described in Section

2.3.1, the stochastic Monte Carlo simulation (MCS) reliability assess-
ment technique is based on the equation for the LSF. In the MCS, several
cases are simulated, in which the uncertain variables are randomly
sampled based on the defined probability distribution functions and
corresponding key parameters, such as mean value and variance. Using
direct MCS, conditional expectation, or importance sampling reduction
methods (ISRMs) [16], the reliability or PoF can be estimated based on

the results of the iterated simulation calculation [5].
Unlike in the previous techniques, surrogate modelling methods,

such as kriging, or stochastic response surface methods (SRSMs) only
use an approximated LSF instead of the real one. While SRSM just uses
some sample points for interpolating and approximating the response
surface, surrogate modelling methods meet all initial data points and
are therefore a more accurate method for approximating the LSF, which
is then solved for the PoF and reliability by means of FORM, SORM, or
MCS. Besides the advantage of SRSMs to reduce the computational ef-
fort for solving the iterations, obtained by simplification of the simu-
lation expressions, SRSMs can also link input and output variables
[17,18].

2.3.3. Sophisticated quantitative methods
Even more sophisticated system conditions can be handled with

quantitative reliability methods. Multi-attribute decision making
(MADM), also called multi-criteria decision analysis (MCDA), can sup-
port selecting the best option when having multiple criteria within an
analysis process, whereas fuzzy set theory (FST) can deal with in-
complete information or fuzzy data. Both tools can also be combined in
the case of several alternatives being vague in nature. [19]

Finally, dynamic systems can be approached using Markov Analysis
(MA). This diagrammatic risk and reliability assessment method allows
the inclusion of transitions between different states [4].

3. Qualitative approaches for the analysis of offshore wind
turbine systems

The qualitative reliability assessment methods, applied to offshore
and marine energy devices, which are presented in this chapter are
categorised, based on the classification given in Section 2, into FM
analyses, tree and diagrammatic analyses, and hazard analyses. The
techniques and their grouping are shown in Fig. 2.

3.1. Failure mode analyses

FM analyses are already frequently applied to offshore wind tur-
bines and used in both qualitative and quantitative ways, but also in
other variations.

3.1.1. FMMA, FMEA, and FMECA
An entire RA of the 5MW wind turbine REpower 5 [20] was per-

formed in [21]. This consisted of a failure mode and maintenance
analysis (FMMA) for determining the system components that required

Fig. 2. Venn diagram for the presented qualitative reliability approaches.

M. Leimeister, A. Kolios Renewable and Sustainable Energy Reviews 91 (2018) 1065–1076

1068



focused monitoring, a semi-quantitative FMEA including a criticality
rating indicating the risk, based on the two factors of probability and
consequence, and an FMECA for identifying those system components
which are very prone to failures.

Failure mode identification, based on FMEA, FMECA, as well as
FTA, is performed in [22] to analyse different end of life scenarios for
offshore wind turbines.

3.1.2. Quantitative FMEA
Similarly to the work of Bharatbhai [21], mentioned in Section

3.1.1, Arabian-Hoseynabadi et al. [23] deal with FMEA for wind tur-
bines; however, they focus on a quantitative FMEA. The three factors
(severity, occurrence, and detectability) of a traditional FMECA were
adhered to, but the rating scales were modified and adapted to a wind
turbine system. Furthermore, the software Relex Reliability Studio
2007 V2 [24] was also adjusted and the component FMEA was chosen
to be the most suitable type of FMEA for performing a reliability as-
sessment of a wind turbine. Finally, the benefits of an FMEA, especially
for offshore wind turbine systems but also for further improvements
towards higher economic efficiency and competitiveness of wind en-
ergy, are pointed out.

Shafiee and Dinmohammadi [25], as well as Kahrobaee and As-
garpoor [26], elaborate the limitations of a traditional FMEA or
FMECA, when being applied to the assessment of a wind turbine or
wind farm, especially offshore. The RPN, used for prioritisation, has
very little informative value when comparing different wind turbine
types and is also difficult to determine accurately due to deficient
failure data. Furthermore, economic aspects, which are becoming more
relevant offshore, are not considered in the standard approaches. Thus,
a modified FMEA, or in [26] called risk-based FMEA, is proposed which
includes both qualitative and quantitative measures. In addition, the
cost priority number (CPN) is computed based on the PoF, the cost
consequences of a failure, and the detectability. This economic measure
is more tangible than the abstract and poor RPN, and allows a better
and more realistic comparison of different wind turbine systems with
respect to criticality.

3.1.3. Correlation-FMEA
When dealing with complex systems, such as a floating offshore

wind turbine, FMEA could be extremely extensive due to the amount of
FMs and the prioritisation could become more difficult as many RPNs
could have the same order of magnitude. Furthermore, if some FMs are
correlated, a direct isolated analysis of each single FM would be more
difficult but also less accurate. Thus, Kang et al. [27] and Bai et al. [28]
propose a correlation-FMEA for the risk assessment of offshore assets.
While [27] applies just the traditional FMECA and uses those FMs with
the highest RPN, [28], modifies the FMECA and determines the RPN
based on the ALARP (as low as reasonably practicable) principle, which
is also mentioned in [29] as a common approach for defining target
safety levels. In both procedures by Kang et al. [27] and Bai et al. [28],
the correlation of different FMs is then incorporated by means of the
reliability index vector (RIV) method. The RIV contains the reliability
indices and correlation coefficients of the FMs. The final ranking of
these correlated FMs happens through the probability network eva-
luation technique (PNET) and the most crucial FMs can be determined
in this way.

3.1.4. Threat matrix and FMECA
A preparatory action for an effective FMECA is described in [30]:

the threat matrix. This is meant to be used to estimate the operational
expenditure early in the design stage, to identify the most critical
components with respect to reliability and maintainability, as well as to
be able to optimise the design with respect to cost-efficiency. Using the
example of a wave or tidal energy system, a threat matrix is set up by
collecting all potential threats or FMs and corresponding failure me-
chanisms, which are listed on the x-axis, while the y-axis contains all

components obtained by a system breakdown. Within the matrix it is
marked which threats could occur to which component. This can be
used afterwards as a basis for an FMECA in which the possibility of a
failure mechanism is supplemented by the probability measure.

3.2. Tree and graphical analyses

Just like FM analyses, tree and diagrammatic reliability methods are
applied in many cases for the assessment of offshore energy devices;
however, these methods are rarely used separately but rather in com-
bination with other tools or in a modified version.

3.2.1. FTA, ETA, and BBN
Several techniques are integrated in a complete risk analysis for

collision impact on offshore wind turbines, performed in [31]. First, the
causes or sequence of events are determined based on FTA or ETA,
respectively. Secondly, data for frequencies and probabilities are re-
quired. At this stage it is emphasised that in the offshore renewable
energy industry sufficient data are often missing; however, existing data
from other similar industries, such as offshore oil and gas, with already
long-lasting experiences can be taken as a basis. In the third step, po-
tential risk influencing factors (RIFs) affecting event or barrier failure
probabilities need to be estimated. With these RIFs, complex BNs can be
created, on which basis the RIFs can be ranked. Finally, the prob-
abilities of undesired events are computed based on the RIFs. For fur-
ther evaluation of the risk, the consequences and their severity have to
be analysed and then both proactive and reactive actions can be pro-
posed and ranked according to their importance and degree of ne-
cessity.

3.2.2. Dynamic FTA
A qualitative RA with additional quantitative assessments for com-

plex systems with dynamic characteristics, such as floating offshore
wind turbines, is presented in [32]. System grading for dealing with the
complex composition of the asset is performed in two respects: focused
on the system function, and based on the structure. For the qualitative
assessment of the FMs, dependencies, sequences, and redundancies are
taken into account by adapting the traditional FTA to a dynamic FTA,
which uses special dynamic logic gates. The quantitative analysis, based
on the dynamic FTDs, requires failure rates data, which however are
not or just insufficiently available for such a floating wind turbine
system. Based on databases for onshore wind turbines and offshore
energy assets, which will be covered in more detail in Section 4.6.1, the
failure rates for a floating wind turbine are approximated by the in-
clusion of marine environmental influences.

3.2.3. BTA
The combination of FTA and ETA, in the form of a BTA, is used in

[33] for the assessment of offshore terminals and ports. In the first step,
the risk factors are determined by means of HAZID. However, due to
vague and imprecise data for failure rates and event occurrences, FST
using the fuzzy analytical hierarchy process method with triangular
fuzzy numbers is applied for prioritising these identified risk factors.
The highest ranked risk factors are then assessed via BTA.

Adjusted BTAs for quantitative and dynamic reliability assessment
can be found in [34–37]. The quantitative aspect is covered by FST or
evidence theory for dealing with uncertain and vague data, and is ap-
plied after the creation of the BT based on expert knowledge as input
for the event probabilities [34]. With such a quantitative BTA, the
likelihood of consequences can be set in relation to failure rates of
system components and safety barriers [35]. But in order to include
dynamics, dependencies, and common causes [37] as well, or also up-
date the probability estimates based on newly available data [34,35],
Bayesian updating approaches [35,34] and BNs [36], which could also
be object-oriented [37], are also used.
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3.3. Hazard analyses

Contrary to FM, tree, and diagrammatic analyses, hazard analysis
techniques are more rarely found to be applied for the reliability as-
sessment of offshore and marine renewable energy assets. HAZID was
mentioned once in [33] for identifying the risk factors of an offshore
system. HAZID is more likely to be used preparatory to an FMEA,
compared to HAZOP, as the latter requires that the entire design is
already fixed and everything is in place. Thus, those two hazard ana-
lysis tools are more suitable for reviewing the final design [38] or
within integrity management for scheduling inspection and main-
tenance, based on the determined hazards [39].

4. Quantitative approaches for the analysis of offshore wind
turbine systems

The quantitative reliability assessment methods, applied to offshore
and marine energy devices, which are presented in this chapter are
categorised, based on the classification given in Section 2, into analy-
tical methods, stochastic methods, Bayesian approaches, reliability-
based design optimisation methods, multivariate analyses, and data
foundations. The techniques and their grouping are shown in Fig. 3.

4.1. Analytical methods

The analytical quantitative reliability methods, found to be used for
the assessment of offshore wind turbines, are mainly based on perfor-
mance functions and focus on the determination of the RI.

4.1.1. Concept of LSs
LSFs, RI, and PoF are mentioned frequently as a basis for assessing

the reliability of whole offshore systems or single components [40–48].
Furthermore, the hazard rate function is used in [49] for developing an
availability growth model, which accounts already in the early design
stage for innovations and later changes.

In the IRPWind-project [46], safety factors are used for creating the
equations for the LSFs in a study into the reliability of support struc-
tures for offshore wind turbines, focusing on degradation due to op-
erational and environmental impact. The benefits of partial safety fac-
tors, thus the LS method, are also emphasised in [47] by pointing out
the applicability of this reliability-based design concept to novel off-
shore structures, where existing standards may only be used to a limited
extend, as well as the upside of having optimisation possibilities and
other advantages over global safety factor approaches.

4.1.2. Analytical probabilistic analyses
FORM and/or SORM are frequently applied for the reliability as-

sessment of different assets, such as floating offshore wind turbines
[40,41], mooring lines for a floating device [45], offshore support
structures [43,44], or the welded tubular joints of an offshore structure
[50]. Kolios et al. [41] emphasise the capability of those indirect
methods to estimate joint probability density functions, as well as their
advantage over MCS regarding the computational effort. A direct
comparison in [51] of the results from FORM and SORM with those
obtained by MCS was satisfactory. Furthermore, Rendón-Conde and
Heredia-Zavoni [45] applied FORM to show how the reliability is af-
fected by uncertainties in system parameters. Finally, Kolios et al. [40]
indicate the HL method as an example for FORM and point out the
higher accuracy of SORM, which can also handle non-linear LSFs.

Different methods, however, related to FORM and SORM, as they
are also based on derivatives of the LSF, are the first order second
moment approach [42] and the method of moments [48]; the latter was
used for estimating the reliability sensitivity. The computational effi-
ciency of the moment-based reliability assessment, and its applicability
to systems with several FMs is underlined by Lu et al. [48]. Further-
more, Llado [52] mentions the advanced mean value method as a tool
for reliability assessment and reliability-based design optimisation.

4.2. Stochastic methods

Besides the above mentioned analytical quantitative reliability
methods (Section 4.1), stochastic techniques, such as MCS, ISM, or
SRSM, are also applied for the reliability assessment of offshore wind
turbine systems.

4.2.1. MCS
Kolios et al. [40,41], Llado [52], Lee et al. [53], Yang et al. [54],

and Scheu et al. [55] all refer to MCS as a method for assessing system
reliability. One reason for using this method is the demanding ap-
proximation of the PoF, as stated in [40], especially when complex
systems such as floating offshore wind turbines are considered. How-
ever, Kolios et al. [41] also point out the corresponding disadvantage of
MCS, which often comes with high computational effort. The number of
iterations is lower for Latin hypercube sampling (LHS) [53], while
uncertainties can still be accounted for in the design [54].

A specific category within MCS is ISM, which only samples a se-
lected region of interest. Thus, Thöns et al. [56] first identifies the
converged design point based on an adaptive RS algorithm, which will
be introduced in Section 4.2.2, and then carries out the RA with the

Fig. 3. Venn diagram for the presented quantitative reliability approaches.
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help of an IS Monte Carlo scheme to determine the PoFs. Due to the
preceding RS-based approach, this IS algorithm only requires the LSs
and corresponding uncertainties as input. Similarly, IS follows the
surrogate modelling within the stochastic simulation in [57] to quantify
the importance of uncertain parameters.

4.2.2. SRSM
RAs of offshore (wind turbine) support structures are also conducted

by means of SRSM, as for example in [43] for obtaining the RI. A special
approach in this reliability assessment has to be mentioned: due to the
time-consuming analysis of systems with dynamic characteristics, as pre-
vailing in the environmental conditions of an offshore wind turbine sup-
port structure, the dynamic response is approximated by applying a peak
response factor for the dynamic amplification to the static response.

Similarly to [43], Thöns et al. [56] examine the reliability of an
offshore wind turbine support structure. An adaptive RS algorithm is
proposed for obtaining the design point, which is later used for the RA
based on IS, covered in SubSection 4.2.1. First, an experimental design
is created, which is used for finite element computations. Afterwards, a
regression analysis is performed and the design point is determined.
This is an iterative process until the design points converge.

RSM and regression analysis are also used in [58], while Yang et al.
[54] apply the kriging RSM for building an approximate model in-
cluding uncertainties, and Taflanidis et al. [57] use moving least
squares response surface approximations within the surrogate model-
ling approach for obtaining higher computational efficiency.

4.3. Bayesian inference

The system reliability can be investigated in more detail by means of
the Bayesian approach. This combines and processes expert knowledge,
providing prior distributions, and test data, representing sample dis-
tributions [59]. Bayesian inference can also be used for dealing with
uncertainties or conflicts in the prior probability distributions [60–62].

4.3.1. Bayesian updating
In [63], the Bayesian approach is used for updating the reliability

and the resulting maintenance schedule of a floating offshore structure.
However, not all parameters are updated after each inspection - only
those which are very prone to uncertainties. Nielsen and Sørensen [64]
also make use of previous experiences, inspections, and Bayesian pre-
posterior decision theory in order to optimise maintenance planning.

A non-parametric Bayesian updating approach is presented in [65]
for the reliability assessment of a support structure for an offshore wind
turbine. For integrating uncertainties in the RA, a polynomial chaos
expansion approximation, based on Hermite polynomials and Gaussian
variable, is applied. Furthermore, discrete semi- or non-conjugated
updating is recommended for multi-parametric updating.

4.3.2. Survival/system signature
A kind of Bayesian inference can also be obtained by combining the

survival signature, which is equal to the system signature if only one
type of component exists, with non-parametric predictive inference
(NPI). NPI does not provide exact probabilities, but a lower and upper
bound for the survival probability function [59].

The survival signature can also be used within optimisation models
for more efficient opportunistic condition-based maintenance strategies
[66].

4.4. Reliability-based design optimisation

Several quantitative reliability methods are used together in relia-
bility-based design optimisation (RBDO) processes. The structure of
RBDO is always quite similar. However, three different approaches for
the design optimisation of offshore wind turbine support structures are
presented in the following.

4.4.1. RBDO vs. deterministic optimisation
The comparison of RBDO and deterministic optimisation (DO) is

shown in [53]. The optimisation procedures aim at reducing the mass of
the structure by taking reliability into account. For both approaches,
first, design loads are determined by conducting a dynamic response
analysis with a finite element model. The DO, based on progressive
quadratic RSM optimises the mass and fulfills the LS requirements;
however, the reliability of the structure is not necessarily ensured. In
contrast, RBDO yields an optimised design and achieves the target re-
liability at the same time. In the RBDO procedure, the mean values of
the random design variables are processed. The boundary conditions for
the computations are given by the LSFs and required reliability. The
iterative calculation procedure consists of an inner loop for the relia-
bility and structural analyses, applying LHS, and the outer optimisation
process, including RA and using a micro genetic algorithm. With this
RBDO procedure, a reliable and cost-effective design is aimed to be
obtained.

4.4.2. Dynamic RBDO
A dynamic RBDO is elaborated in [54]. Due to the integrated dy-

namics, these RBDO processes have a quite high computational effort.
Commonly, deterministic techniques are used in optimisation proce-
dures; however, these do not account for uncertainties, for which
probabilistic methods are required. The proposed dynamic RBDO pro-
cess also starts with a finite element model of the considered structure.
With the focus on the inclusion of uncertainties in the RBDO approach
and the reduction of computational effort, an approximate metamodel
is created by means of kriging RSM or LHS, based on the generated
finite element model. This approximate model is used within the
iterative optimisation process, incorporating uncertainties and focusing
on the weight of the structure. For comparative purposes, MCS is used
to estimate the reliability of the resulting optimum design. This shows
higher reliability values than are obtained by deterministic optimisa-
tion.

4.4.3. Integrated RBDO
For the realisation of RBDO, an integrated algorithms system is

presented in [67]. This integrated RBDO algorithm consists itself of
three interacting numerical algorithms for structural analysis, RA, and
the optimisation process. By means of the structural analysis, which is
based on a finite element model and performed with the stochastic
analysis program for offshore structures, the LSF, as well as the cost or
weight and their gradients are computed as function of the design
variables. LSF and its gradient, as well as the probabilistic data are
given as input to the RA algorithm. Using FORM, the RI is determined
iteratively and for the converged value also the gradient is calculated.
These parameters, together with the cost/weight function and its gra-
dient from the structural analysis, are integrated into the optimisation
process, using sequential quadratic programming. The iterative loop
computes the objective function, thus cost/weight, based on the pro-
vided design variables, proves the requirements for reliability, and is
iterated until convergence, and thus the optimised design is achieved.
This integrated RBDO algorithm requires an initial estimate for the
optimisation design variables as input and then runs in a closed loop
until the final optimum design variables are found. Despite the func-
tionality and applicability of this integrated RBDO algorithm, it also
brings the disadvantage of high computational effort.

4.5. Multivariate analyses

The category of multi-variate quantitative reliability assessment
methods comprises analyses, which contain various criteria, handle
several hazards, or deal with complex systems.

4.5.1. FST in MADM
MADM is commonly used to find a preferred solution from a pool of
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alternatives. Different MCDA methods are applied and compared in
[68] for determining the most suitable support structure for wind tur-
bines at specific locations, while Lozano-Minguez et al. [69] focus on
the technique for order preference by similarity to ideal solution
(TOPSIS), which is one typical method within MADM [70]. This was
also applied in [71] to select the best barrier for offshore wells with
respect to costs and benefits. In order to deal with fuzzy data, a fuzzy
analytical hierarchy process is integrated in MADM. Similarly, an in-
tuitionistic fuzzy entropy method within an MCDA model allowed to
choose the most appropriate wind energy technology for a specific site
under consideration of vagueness and uncertainties in environmental,
economic, and social factors [70]. Kolios et al. [72] apply as well a
fuzzy-TOPSIS method for prioritisation of FMs of a subsea control
module, while Kolios et al. [73] and Martin et al. [74] extend the
TOPSIS method to take stochastic inputs and uncertainties into account.

Besides these more traditional applications of MADM, Okoro et al.
[75] use TOPSIS for risk-based prioritisation of offshore energy asset
components. The proposed multi-criteria risk assessment approach is
similar to FMEA; however, it overcomes the disadvantageous subjective
ranking of FMs within FMEA, as each single variable of one FM is
weighted instead. The entire risk assessment contains, as usual, risk
identification, risk analysis (with collection of information, multi-cri-
teria analysis, and final integration to an overall ranking), and risk
evaluation. Within the multi-criteria RA, first, all FMs are investigated
and broken down into all risk parameters, which are finally weighted,
as already mentioned. In a second step, all relevant FMs of each system
component are determined. Based on these estimates, FMs and risk
parameters are ranked by means of the TOPSIS method.

Apart from TOPSIS, the analytic hierarchy process (AHP) and the
analytic network process (ANP) are two further MCDAs which can be
applied within risk and reliability assessments. While the hierarchical
approach in AHP only shows the relation between elements, the net-
work view in ANP provides a more sophisticated analysis which takes
dependencies and feedbacks into account [76]. This capacity benefits
the utilisation of ANP in multi-criteria decision tasks within complex
systems, for which reason it was applied in [77] in the field of offshore
wind energy in order to find the best strategy for mitigating operational
risks.

4.5.2. Multi-hazard reliability assessment
Also, for supporting the decision-making process within the plan-

ning and design of offshore wind energy projects, Mardfekri and
Gardoni [78] present a multi-hazard reliability assessment method. A
finite element model for an offshore wind turbine is set up to represent
the dynamic response by taking aero-elastic coupling and soil-structure
interaction into account. Probabilistic demand models for the support
structure are obtained in a deterministic procedure, which is supple-
mented by adjustment terms to consider uncertainties in the statistics,
as well as model errors and uncertainties. These demand models are

updated by incorporating existing data, using the Bayesian approach.
With wind and seismic hazard data for a particular site, the fragility
curves are estimated, based on LSFs. These fragility curves give in-
formation about the expected structural damage, but also the degree of
sensitivity of single random variables, which could then provide a
measure of importance.

4.5.3. Artificial transfer function
Structural RA of offshore structures, evaluated with respect to fa-

tigue behaviour and considering each single failure scenario, could be
computationally intensive and time-consuming. To deal with this, an
artificial transfer function (ATF) is used in [79]. The real transfer
function, used in the fatigue calculations, is approximated by a two-
parameter ATF with a predefined shape, similar to the Pierson-Mos-
kowitz spectrum. The two parameters are determined by evaluating the
real and ATF at two points. With these parameters and the eigenperiod
of the structure, the wave scatter, and the in-service life time, the RIs of
different components can be determined and thus used as a measure of
the structural reliability.

4.6. Data foundations

Quantitative reliability methods depend, as their name suggests, on
quantitative measures. The required data do not always exist, are
complete, or accurate enough. Thus, data often have to be modelled
based on available information or estimates.

4.6.1. Databases
Several long-term surveys have been performed in different coun-

tries for collecting data on installed wind turbines, as summarised in
Table 1. These could be of various types, such as fixed or variable speed
wind turbines, with geared or direct drives. Furthermore, the amount
and concrete type of collected data depend on the specific survey [80].

These data, however, are only for onshore wind turbines and thus
show an example for a case where data of similar, but not the finally
considered, assets are available. Faulstich et al. [81] already mentioned
a transfer of the existing data to offshore wind turbines, which are
however affected by the concrete type of asset, as well as the different
environmental conditions, and thus require a very rich database. WMEP
is quite extensive but not broad enough, therefore a new research
project for an Offshore-WMEP has been undertaken in Germany. In
accordance and cooperation with the Offshore-WMEP, Great Britain has
set up the offshore wind data platform SPARTA, which focuses on
availability and reliability to improve the system performance [82].
Within another recent research project, WInD-Pool [83], a broad da-
tabase is provided by amalgamating compatible data, including among
others also the Offshore-WMEP. Similar to the databases presented in
Table 1, however, considering offshore wind turbines, Carroll et al. [84]
have analysed and collected failure rate, repair time, and operation and
maintenance data of around 350 offshore wind turbines in Europe.

The need for a database for offshore wind turbines is also empha-
sised in [85]. With respect to offshore energy industries, there is a re-
liability, availability, maintainability, and safety (RAMS) database ex-
isting for the oil and gas industry, called offshore reliability data
(OREDA). However, comprehensive data collections for reliability and
safety of offshore and marine renewable energy assets are lacking.
Thus, it is proposed to make use of already existing databases, such as
OREDA, and transfer this knowledge to other industries for setting up
RAMS databases for offshore renewable energy systems, such as off-
shore wind turbines. The structure of the RAMS database, proposed in
[85], is inspired by the concept of the offshore-WMEP presented in
[81]. Thus, Hameed et al. [85] construct a RAMS database, which uses
operational, equipment, failure, and maintenance data, as well as
condition monitoring information as input. Furthermore, already ex-
isting experiences from OREDA, as well as from onshore and offshore
wind turbines, are used as information sources. Directly linked to the

Table 1
Wind turbine databases, based on [80,81].

Name Country Period # Turbines Reliability-relevant
collected data

WMEP Germany 1989–2006 1500 Maintenance and repair
events, disruptions,
malfunctions, failures,
downtimes

LWK Germany 1993–2006 241 Failures, downtimes
Windstats

WSD
Germany 1995–2004 4285 Failures, downtimes

Windstats
WSDK

Denmark 1994–2003 904 Failures, downtimes

VTT Finland 2000–2004 92 Failures, downtimes
Elforsk Sweden 1997–2004 723 Failures, downtimes
ReliaWind Europe 2004–2010 ∼350 Failures, downtimes, FMEA
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RAMS database is the analysis of the data, which provides outputs that
are valuable for design and manufacturing, self-maintenance machines,
operation and maintenance strategies, life cycle cost and profit esti-
mates, as well as the assessment of qualifications for new technologies.
Despite the suspected powerfulness of this RAMS database, Hameed
et al. [85] also mention challenges which come with the data collection.
Besides cost factors, information protection and specific client needs, as
well as data quality and management, technological changes, and op-
timisation strategies have to be faced.

The method of using existing reliability databases from other energy
industries as a basis for assessing reliability data for offshore wind
turbines has already been applied in [86]. By transferring the existing
data to the specific offshore environmental and operational condition of
the considered asset, a so-called surrogate data portfolio is generated.
The factor of dealing with different environmental conditions is con-
sidered by applying a failure rate estimate approach. By means of re-
liability modelling and prediction analysis, which is a combination of
diagrammatic and analytical models, the reliability of the system and
its components can be assessed.

4.6.2. Statistical modelling
In case of a lack of failure rate data, statistical modelling techniques

can be applied. The Weibull distribution is commonly used [59,87] for
estimating the failure rate of a system. By changing the shape para-
meter of the Weibull distribution, the entire life cycle can be covered
and the bathtub curve of the failure rate represented. As this power law
process is very suitable for complex repairable systems, it can also be
utilised to assess the reliability of large (offshore) wind turbines [87].

4.6.3. Markov chain approach for data modelling
The capability of MA to deal with transitions between states, men-

tioned in Section 2.3.3, can be utilised for modelling developing data
such as environmental conditions or degradation and maintenance
processes. Thus, Hagen et al. [88], Castro Sayas and Allan [89], as well
as Scheu et al. [90], used the Markov chain for modelling the sea state
parameters of wave height and wind speed. In [88,91], Markov chain
weather models, also representing seasonal characteristics, are gener-
ated. Furthermore, deterioration processes are sometimes modelled by
using the Markov property, as done in [92]. This presented Markov
chain maintenance model considers degradation of components, but
also includes inspection processes. An alternative to this are Petri net
models combined with MCS, which can also take degradation, inspec-
tion, and maintenance into account, and provide information about
condition, failure estimates, as well as basic details helpful for planning
maintenance strategies [93].

Alternative applications of the Markov property can be found in
[94,95]. Strauss [94] uses a Markov chain model and semi-Markov
chain model for assessing the fatigue reliability of concrete structures,
including Bayesian updating for considering actual information from
monitoring activities. Broader capabilities of the Markov property are
opened up with a piecewise deterministic Markov process (PDMP), as
applied in [95]. With PDMP, discrete failure events, as well as con-
tinuous processes, can be modelled. Due to this ability, PDMP combined
with MCS can make a quite powerful tool for the reliability assessment
of offshore systems.

5. Discussion

Some challenges that come with the reliability assessment of off-
shore wind turbine systems are already mentioned in Sections 3 and 4.
The main ones, as well as the customised proposed solution methods,
are collated and presented in the following.

• RPN and ranking of FMs:
The ranking of FMs within an FMECA is often quite subjective [75]
and the RPN does not always provide meaningful information,

especially when different technologies and types of wind turbine
systems have to be compared [25]. Thus, Okoro et al. [75] re-
commend subdividing the FMs into their risk factors and applying
the weights directly to these parameters, and Kolios et al. [72] use a
fuzzy-TOPSIS MCDA method in addition to FMEA and RPN to
prioritise FMs. Shafiee and Dinmohammadi [25], as well as Kahro-
baee and Asgarpoor [26], on the other hand, introduce the CPN for
inclusion of economic aspects and in order to work with a more
tangible monetary ranking value within the prioritisation process.

• Complex and novel systems:
Offshore wind turbines are often very complex systems and prone to
several different, correlated, and dynamic FMs. Kang et al. [27], Bai
et al. [28], and Onoufriou and Forbes [29] propose a correlation-
FMEA, based on the ALARP principle and using RIV as well as PNET,
to cope with this difficulty, while Zhang et al. [32] use system
grading and a dynamic FTA. An additional challenge, especially
within the relatively recent offshore renewable energy technologies,
is that of novel designs, to which existing standards can only be
applied to a limited extend. The concept of LSs [47], as well as
RBDO procedures (Section 4.4) could be a helpful support.

• The problem with the data:
Missing, insufficient, and vague data, especially in the offshore wind
energy industry, is a big issue in detailed and meaningful reliability
assessment of such assets. FST and evidence theory can help dealing
with vague data [33,34]. However, this does not replace the need
for a RAMS database for offshore wind turbines. Existing data from
other offshore industries, such as oil and gas, or even onshore re-
newable energy equivalents, which already have long-lasting ex-
perience, can serve as a basis for setting up a useful RAMS database
for these assets [31]. Besides the need for modifications to take
different (environmental) conditions into account [32], further
challenges, such as cost aspects, richness of data, or fast developing
technologies, have still to be faced [85].

These above mentioned challenges are still current working areas
within the reliability assessment of offshore wind turbines. The most
recent theories show that computational simplifications, through FORM
or SORM, are still of interest; however, the main research focus has
shifted towards more comprehensive and adjusted approaches for
complex, dynamic systems with correlated FMs, multivariate problems,
as well as data collection and modelling. Based on this existing trend
and including the characteristics of offshore wind turbine systems, as
well as the specific capabilities of different reliability methods,
Bayesian approaches, MCDMs, Markov analyses, and especially com-
bined theories, are likely to come more to the fore.

A summary of the presented methods, their applicability with re-
spect to stage, specific challenges, and aimed outcomes, as well as their
limitations, is presented in Table 2. The considered stages are divided
into design (D), construction (C), operation (O), maintenance (M), and
life cycle planning (LC).

It can clearly be seen that for the early stages of the process life
cycle qualitative methods are more suitable than quantitative methods,
as not sufficient data is yet available. However, when proceeding to-
wards later stages in which more and more data is already gained and
available, more quantitative methods can be used and are also favoured
due to their more comprehensive capabilities. Thus, qualitative
methods are mostly used in the design stage and some also in the
construction stage. Only a few qualitative methods, such as dynamic
FTA or BTA, are utilised in operation and maintenance when it comes to
monitoring. Furthermore, advanced qualitative methods, such as cor-
relation-FMEA, threat matrix, and FMECA, can support life cycle
planning. On the other hand, quantitative methods are mostly used in
operation, maintenance, and life cycle planning, while only a few, e.g.
analytical methods, RBDO, and some multi-variate analyses, can be
applied in the design stage for the purpose of design optimisation.
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6. Conclusion

This paper presents a review of reliability-based methods for risk
assessment, which have been most used so far for the assessment of
offshore wind and marine renewable energy systems. Based on the
current practices in offshore applications, a comprehensive sub-cate-
gorisation of qualitative and quantitative techniques is carried out. The
represented qualitative methods are mainly structured as failure mode
analyses, tree and graphical analyses, as well as the more rarely used
hazard analyses. The quantitative methods are differentiated between
analytical and statistical as well as Bayesian approaches, reliability-
based design optimisation tools, multivariate analyses, and strategies
for data pooling.

It should be noted that offshore wind turbine systems are very
complex with dependent, repairable, or redundant components, dy-
namic characteristics, and non-linearities; furthermore, they require
special consideration regarding the severe offshore site conditions,
implying several uncertainties in the motion and stress response of the
system due to unknown and complex environmental effects, as well as
non-linearities; though, there is little experience with novel structures
and lack of reliability data; and last but not least, ethical and economic
aspects, such as data confidentiality, as well as time and computational
efficiency, have to be preserved. These factors challenge the reliability
assessment of offshore wind turbines.

The trend towards more complex, efficient, and flexible tools, as
well as the approach of combining different techniques is developing
and should advance further, also including more advanced sensitivity
analysis tools to systematically consider uncertainties which will
govern the design and operation of offshore wind turbine systems.
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