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Abstract: There is a range of problems where repeated rolling or sliding contact 

occurs. For such problems shakedown and limit analyses provides significant 

advantages over other forms of analysis when a global understanding of deformation 

behaviour is required. In this paper, a recently developed numerical method. Ponter  

and Engelhardt (2000) and Chen and Ponter (2001), for 3-D shakedown analyses is 

used to solve the rolling and sliding point contact problem previously considered by 

Ponter, Hearle and Johnson (1985) for a moving Herzian contact, with friction, over a 

half space. The method is an upper bound programming method, the Linear Matching 

Method, which provides a sequence of reducing upper bounds that converges to the 

least upper bound associated with a finite element mesh and may be implemented 

within a standard commercial finite element code. The solutions given in Ponter, 

Hearle and Johnson (1985) for circular contacts are reproduced and extended to the 

case when the frictional contact stresses are at an angle to the direction of travel. 

Solutions for the case where the contact region is elliptic are also given. 
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1. Introduction 

The problem of the deformation of surfaces subjected to repeated rolling and 

sliding contact is a significant problem in number of areas of engineering design. For 

metallic surfaces rolling contact occurs in bearings and in the contact region of 

railway wheels and lines. The failure of such surfaces is often associated with the 

growth of strain near the contacted surface. A particularly effective way of gaining 



insight into the combination of loads at which such strain growth initiates is to 

evaluate the loads corresponding to the shakedown limit for the problem, using the 

upper and lower bound shakedown theorems for an elastic perfectly plastic material.  

Ponter Hearle and Johnson (1985) discussed the application of the upper bound 

shakedown theorem to such problems and showed that, for a von Mises yield 

condition, mechanism of deformation consisted of slip surfaces that surrounded the 

contact area and allowed a region of the surface to slide forward in the direction of 

travel of the rolling contact. Such mechanisms are capable of providing the exact 

solution under the assumption that the associated displacements, in the exact solution, 

were only in the direction of travel, i.e. there was no �ploughing� component to the 

deformation field. With this insight, it is then possible to calculate optimal upper 

bounds corresponding to the particular slip surface that produces the least upper 

bounds. The problem discussed by Ponter Hearle and Johnson (1985) is shown as 

Figure 1 where Hertzian contact pressure due to a normal load P is applied to a 

circular or elliptical region on a half space, together with a friction tangential force fP 

in the direction of travel of rolling contact. The contacting loads repeatedly travel 

along a straight line in the x direction. The results of their calculations for circular 

contact produced the interaction diagram shown in Figure 2 with axis given by P, in 

non-dimensional form, and f. The diagram is subdivided into a number of regions. In 

the Elastic region, purely elastic behaviour occurs and there is no plastic deformation, 

assuming the body was initially stress free. In the Elastic Shakedown region there will 

be some plastic strains during the first few traverses but subsequently the behaviour is 

purely elastic. In the Plastic Shakedown region local reverse cycles of plastic strains 

occur beneath the surface but there is no overall cyclic growth of strain. In the 

Ratchetting region cyclic growth of strain occurs. The region of primary interest in 

design is bounded by the line that surrounds the Elastic shakedown region and it is the 

direct determination of this boundary that forms the subject of this paper. 

The approach of Ponter, Hearle and Johnson (1985) has subsequently been applied 

to pavement design problems by Boulbibane and Collins (2000) using a wider range 

of mechanisms of deformation. There is, however, an inherent weakness in the 

approach, the need to make assumptions about the particular classes of deformation 

modes that occur in these various cases. 

In this paper we discuss a numerical method that seeks the mechanism, from 

within a class of mechanisms described by a finite element mesh, that minimises the 



upper bound shakedown limit. The method, the Linear Matching Method , (Ponter 

and Engelhardt (2000), Chen and Ponter (2001), Ponter et al (2002)), is essentially a 

programming method that seeks mechanisms that produce a reducing sequence of 

upper bounds, converging to a least upper bound. At each iteration a linear problem is 

solved that matches the conditions of the non-linear problem in two respects. The 

material coefficients of the linear problem are chosen so that the linear material and 

the yield condition give rise to the same stress at the current estimate of the plastic 

strain rate history and the load is chosen as the current least upper bound. The basic 

idea, as an ad hoc method, has been applied in pressure vessel design for some years 

and developed by Mackenzie, Boyle et al (Mackenzie et al (1996), Boyle et al (1997)) 

and Seshadri and Mangalaramanan (1997) and most widely known as the Elastic 

Compensation method. 

The Linear Matching method is here applied to the same class of rolling contact 

problems as discussed by Ponter, Hearle and Johnson (1985) with the following 

objectives; to develop a general method capable of solving rolling contact problems; 

to verify the correctless of the solution given by Ponter et al; to explore the effect of 

frictional force direction on the shakedown limit and to obtain shakedown limits for 

elliptical contact area. 

 

2. The Upper Bound Shakedown Theorem 

The material considered is assumed to be isotropic, elastic-perfectly plastic and 

satisfies the von Mises yield condition. The problem consists of a body V with 

boundary S, which experiences a history of cyclic load ),( txP jiλ  on TS  (and possible 

a temperature history ),( tx jλθ  within V). λ  is a load parameter. The displacement 

rate 0=iu&  is applied on uS . Both TS  and uS  are complementary parts of the 

boundary S. The linear elastic solution to the problem is denoted by ijσλ � .  

The upper bound shakedown theorem is expressed in terms of an incompressible 

and kinematically admissible strain rate history c

ijε& , which need not be compatible but 

associated with a compatible strain increment c

ijε∆  such that 
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In terms of the load history described above the upper bound shakedown limit is given 

by 
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where c

ijσ  is the stress at yield associated with c

ijε&  and ijσ�  is the linear elastic solution 

associated with the load history P and θ . sUB λλ ≥  is an upper bound to the 

shakedown load parameter sλ . For the von Mises yield condition equation (3) can be 

simplified as  
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where ijijεεε &&&
3
2=   is the effective strain rate and yσ denotes the uniaxial yield 

stress. For a given load history, we seek the kinematically admissible strain rate 

history that minimises the upper bound (4) within a class of displacement fields 

described, for example, by a particular finite element mesh. 

 

3. The Linear Matching Method 

The general programming method described by Ponter and Engelhardt (2000)  

consists of defining a sequence of linear problems where the linear coefficients are 

chosen so they match the yield condition. For a von Mises yield condition the relevant 

linear material is incompressible with a shear modulus µ . A single step in the method 



begins with a kinematically admissible history of plastic strain rate i

ijε& , in terms of 

which the following linear problem is posed for a new history f

ijε& ; 
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subject to the condition that f

ijε& is also a kinematically admissible strain rate history 

and f

ijρ  is a constant equilibrium residual stress field. The equation for µ  comes 

from matching the linear material to the perfectly plastic material so that they both 

give the same effective stress corresponding to i

ijε& . Here 
′f

ijε& refers to the deviator 

component of f

ijε&  and this notation is used throughout. Note that i

UBλλ = , the upper 

bound (4) corresponding to i

ijε& .  Integration of (5) over the cycle of loading produces 

the following equation relating 
′

∆ f

ijε  and 
′f

ijρ , 
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The solution to this incompressible linear problem yields a new upper bound f

UBλ by 

substituting f

ijε& into (4) which satisfies (Ponter and Engelhardt (2000)), 

i

ij

f

ij λλ ≤       (8) 

with equality if and only if i

ij

f

ij εε && ≡ . Hence the repeated application of this algorithm 

produces a monotonically reducing sequence of upper bounds that converges to a 

minimum upper bound. A general discussion of the method has been given by Ponter 

et al. (2002). If the linear problems are solved using a finite element method then the 

sequence converges to the least upper bound associated with the finite element mesh. 

In this, very general, statement of the method the solution is an intrinsic property of 

the entire elastic stress history ijσ� . There are many problems where it is possible to 

identify instants during the cycle when inelastic strains occur and the relationships (7) 

may be reduced to a finite sum with a predetermined number of terms, (Ponter and 



Engelhardt (2000), Chen and Ponter (2001)). For rolling contact problems this is not 

generally the case and the integrals (7) need to be made over the entire elastic stress 

history. 

 

4. Application of the Method to Rolling Contact Problems 

The most common rolling contact problem consists of a body of infinite extent in 

a cartesian axis direction x. The body is then defined by its geometry shape in the 

orthogonal (y,z) plane. A rolling or sliding contacting body passes, quasi-statically, 

along a line of travel in the x direction. As a typical material element in each (y,z) 

cross section of the body experiences an identical history of elastic stress, any 

resultant deformation field  will vary within a (y,z) plane but will be independent of x. 

Hence c

ijε&  , c

ijε∆  and c

iu∆ are all independent of x and depend only on y and z. The 

history of linear elastic solution at a fixed material point ix  may be written in the 

general form; 

),,(�),(� zyvtxtx ijiij += σσ     (9) 

where v  is the velocity of travel of the contacting body. A single cycle of loading for 

a material element in the plane 0=x  consists of 00 ttt ≤≤−  where 0t is sufficient 

large for the elastic stress at ),,( 0 zyvt± to be negligibly small. In the following we 

apply these characteristics of the problem directly to the finite element solution 

method.  

Although the upper bound (4) is expressed in terms of the entire history of the 

elastic stress, at each point in the (y,z) plane the contribution to the total accumulated 

strain c

ijε∆  usually occurs at one or two instants during the cycle when the extremes 

of the elastic stress history occurs. We descretise the problem by dividing up the cycle 

of loading into r-1 equal time intervals and hence r instants when plastic strains may 

potentially occur. The integral (1) becomes the finite sum; 
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Hence the linear problem for a new kinematically admissible strain rate f

ijε∆  and a 

time constant residual stress field f

ijρ  may be defined by (5) where  
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Convergence of the method with respect to r then consists of increasing the 

number of time intervals until there is a negligible change in the solution. 

 

5. Implementation of the Method 

A very significant advantage of the method comes from the ability to use standard 

commercial finite element codes that have the facility to allow the user to define the 

material behaviour. This has been done in the code ABAQUS (2000) of HKS Ltd 

using a method devised by Engelhardt (1999). Essential, ABAQUS carries out a 

conventional step-by-step analysis and, through the use of user routines, each 

increment is reinterpreted in terms of an iteration of the method. 

The iteration step in ABAQUS is achieved by a user subroutine UMAT that 

allows material characteristics to be defined at each Gaussian integration point. 

Access to the output of each iteration is provided by a user subroutine  URDFIL. The 

sequence of calculations is as follows: 

1. For the first iteration, k=1,  the linear elastic solution )(�
nij tσ  is evaluated for r 

instants of the load history at each Gauss point and we take, arbitrarily, 

1
1

=nµ . The elastic stress solutions )(�
nij tσ  may be generated by solving a 

linear elastic problem separately for the same mesh. In the following examples 

we use know analytic solutions. 

 

2. For the ( k+1) iteration we define:  
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From the calculated values of 1+kµ  we can obtain 1][ +k
J , the Jacobian that relates 

increments of stress and strain in UMAT but reinterpreted as the relevant Jacobian 

for the linear problem of the iterative process. We define 
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The constant residual stress then can be calculated by the standard form required 

for input to UMAT, 
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The strain increments associated with the r instants of the load history are given 

by 
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where [ ] 1+k

nC is the stiffness matrix derived from 1+k

nµ . 

And further we can calculate the effective strain for each strain increments 
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3. From the energy output files of ABAQUS, the volume integrals 
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may be determined. In this way an exact implementation of the iterative method may 

be obtained. Implementation errors only occur in the integrations involved in the 



evaluation of the element and global stiffness matrices for the linear problem (13). 

This is achieved through standard Gaussian integration with a number a Gauss points 

that would yield exact integrals if the Jacobian [ ]J  were constant throughout an 

element. As [ ]J  is proportional to µ  which varies from Gauss point to Gauss point, 

there is an integration error. This observation applies equally to the evaluation of the 

volume integrals that make up the upper bound. Experience with the method indicates 

that this error is not significant if a sufficiently fine mesh is adopted. In all other 

respects the implementation is exact. 

 

6. The Finite Element model and loading condition for rolling and sliding 

contacts 

The above numerical procedure has been used to solve the rolling and sliding 

contact problem discussed by Ponter, Hearle and Johnson (1985). We consider an 

elastic-perfectly-plastic half-space over whose surface a prescribed traction is 

repeatedly traversed. In the general case, free rolling contact will be represented by a 

Hertzian distribution of pressure, 

              2/122
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acting on the elliptical area of semi-axes a and b where, here, x=y=0 corresponds to 

the centre of contact area. When sliding accompanies rolling an additional shear 

traction occurs, 

               2/122
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where f is the coefficient of friction and will be taken to act  in the direction of travel 

when ba ≠ .  Analytic linear elastic solution for the general elliptic case have been 

given by Sackfield and Hills (1983) and by Hamilton (1983) for a circular contact 

region. 

First we consider a circular contact problem where the frictional contact stresses 

may act at an angle to the direction of travel. Accepting the simplifications introduced 

by Hertz and Mindlin, the boundary stresses are given within a circle of radius a by 

Hamilton (1983): 
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where 222
ayx ≤+ . Here 032 pP = is the total normal load in the z-direction, F is 

the total tangential force in the y-direction, perpendicular to the direction of travel, 

and Q is the total frictional force in the direction of travel, the x-direction as shown in 

Figure 3. All the boundary stresses outside the circle of contact are zero.  A 

generalized coefficient of  friction  f  and the angle θ  between the x- direction and the 

resultant frictional force are given by 
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 The radius of the circle of contact a is given by the well known Hertzian expression: 
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where E and ν  are Young�s modulus and Poisson�s ratio of the half plane and R is the 

radius of curvature of the contacting sphere, assumed rigid. The analytical elastic 

stress field in the half-space for circular contact under the combined action of P, Q 

and F is obtained by supposition of the solution for the frictional force in the direction 

of travel (given by Hamilton (1984)) and the same solution rotated by 90 o  about the z 

axis. 

Considering the property of the half-space, we take a cuboid with the size of 

aaa 22040 ×× , discretize by 3-D 8-node isoparametric finite element. All cross-

sections of the half-space along x-axis experience the same distribution of 

displacement, which is therefore independent of x. In principle a solution could be 

obtained by using a mesh with only a single element in the x direction, but we find the 

best solutions are obtained by allowing a significant number of elements in the x 

direction. We then impose the boundary condition on the two faces x=constant that 

the nodal displacements at nodes with the same (y, z) co-ordinates have the same 



displacements. Such linked node boundary conditions are a standard feature of 

ABAQUS. Zero-displacement constraints are imposed on the remaining three surfaces 

except the top surface z=0.  The detailed mesh arrangements on three faces of the 

model are shown in Figure 4-6, respectively. The total number of the element is up to 

19200. It can be seen in these figures that in order to optimise the numerical 

efficiency and accuracy, the finite element mesh has been chosen to make the 

distribution of the elements near the contact area more dense than those distributed in 

other parts of the structure. Detailed discussion about the effects on the results of the 

mesh geometry and the number of time instants r during the material element loading 

history will be presented later. The total number of the load instance in the 

computation is up to 42.  

 

7. Numerical results for rolling and sliding point contacts 

 

Converged solutions for a circular contact region are presented in Figure 7 in the 

form of an interaction diagram where yk σ3= denotes the shear yield stress. 

Solutions for 0=θ  may be directly compared with the solution of Ponter, Hearle and 

Johnson (1985) reproduced here as Figure 2. For 15.0≤f  the shakedown limit is a 

reserve plasticity limit and the numerical solution reproduce the solution of Figure 2 

very accurately. In Figure 11 the optimal mechanism is shown for 1.0=f  as a 

contour plot of constant )( k

ijεε ∆ . The strain is concentrated at a single point 

corresponding to the maximum variation in effective stress in the elastic solution 

where the reverse plasticity mechanism occurs. For 15.0≥f  the numerical solutions 

indicate that a global ratchet mechanism is activated, similar in form to that assumed 

by Ponter et al.. For 2.0=f  the numerical solutions are slightly below the Ponter 

solution but lies slightly above for 6.0=f . The optimal mechanism for 25.0=f  is  

shown in Figure 12. The type of mechanism assumed by Ponter et al where 

deformation is confined to a slip band surrounding the loaded surface is clearly 

reproduced although there is a distinct gradient of strain, produced partially by the 

nature of the finite element displacement fields and partially by the averaging process 

involved in the standard ABAQUS plotting routines. Figure 13 shows strain contours 

for 6.0=f  showing the strain concentrated at the surface, again in accordance with 



Ponter et al.. The general nature of the Ponter solutions is clearly correct although the 

assumption that deformation only occurs in the direction of travel is clearly an 

approximation for intermediate values of f. However, the displacement fields 

generated by the finite element approximation cannot easily reproduce the slip 

surfaces assumed in the Ponter solution that are clearly optimal for higher values of f 

when the ratchet mechanism coincides with the surface. Figures 14, 15 and 16 show 

plots for Q=0, i.e. the frictional force acting in a direction perpendicular to the 

direction of rolling acting to the left. The nature of the mechanism is similar to the 

F=0 case, except that the distribution is biased towards to directional of the frictional 

force involving deformation in that direction. Figures 17, 18 and 19 shown strain plots 

for intermediate cases showing, again, similar behaviour. 

For the case of an elliptic contact area, elastic solutions given by Sackfields and 

Hills (1983) only include the case where the frictional force acts in the direction of 

travel. A complete set of optimal solutions for 4.00 ≤≤ f  and  425.0 ≤≤ ab  are 

shown in Figure 8 where the load is divide by the area of the ellipse. The same data is 

shown in Figure 9 in the form of contours of constant f . 

For large ab  the solutions would be expected to converge towards the line 

contact solution. The analytic solution, based upon the line contact elastic solution 

(Johnson 1996), is shown for comparison and lies below but close to the solutions for 

4=ab . There are, however distinct differences. For line contact and 0=f , a 

reverse plasticity mechanism and ratcheting below the surface yield identical 

shakedown loads. For 0≥f , the subsurface ratcheting mechanism yields a lower 

shakedown load. For 34.0≥f  the ratchet mechanism lies at the surface. For 4=ab  

a reverse plasticity solution dominates for a significant range of f  before a 

subsurface mechanism dominates. By inspection of the strain plots for the optimal 

mechanisms it is possible to identify regions of the interaction diagram where the 

three principal mechanism types operate, labeled as RP for reverse plasticity, R for 

subsurface ratchet mechanism and SR for surface ratchet mechanism. The boundary 

between these regions are shown in Figure 8; these boundaries are necessarily 

approximate. For large ab  the solution for 0=f  may be expected to converge to 

either the limit load solution or the reverse plasticity solution for the indentation 

problem. The lesser of these, the limit load solution assumed to be the Prandl solution, 



is shown as the case 0→ab . This solution is significantly greater than the solution 

for 25.0=ab .  

For all values of ab  the shakedown limits are near identical for 4.0=f  where 

the mechanism is localized ratcheting on the surface. 

 

 

8. Numerical Issues – Factors that affect the accuracies of solutions 

8.1 The effects of mesh arrangement  

 

The solutions discussed above were obtained for a finite element mesh and set of 

loading instants chosen as result of a process of optimization, described below. The 

convergence of the upper bound with iterations for three finite element models with 

differing mesh arrangement is shown Figure 10 with details in Table 1. For all three 

models, the total numbers of the elements exceeds 1000. However the final converged 

shakedown limit multipliers λ  differ significantly. Model 1, which yields the poorest 

result, differs from Models 2 and 3 by having only half the element number in the x-

direction, indicating the need for a significant number of elements in the direction of 

travel. The chosen Model 3, for the solutions described above, also involves a greater 

number of elements in the transverse y-direction. The rate of convergence in all three 

cases is similar and a converged solution for λ  was obtained in 30-70 iterations 

assuming no change in the 7
th

 significant figure for two consecutive iterations.  

 

8.2 The effects of the number of load instance 

 

Table 2 shows the variations of the shakedown multiplier, iteration number and 

total CPU time with the number of load instants r. The optimal upper bound reduces 

with r and reaches a stable value when r approaches 40. The value of 42=r  was used 

in the solutions described above as higher values increased the CPU time without 

significant change in the solution. It is evident from these studies that careful 

optimization of the mesh geometry and number of load instants have a significant 

effect on converged solutions 

 

 



9. Conclusions 

 

The paper describes a powerful and efficient numerical method for the evaluation 

of shakedown limits for rolling and sliding point contact problem based upon the 

Linear Matching Method, interpreted as a non-linear programming method for which 

strict convergence proofs exist.  

The analytic linear elastic solutions for elliptical and circular Hertzian contact 

problems provided by Sackfield and Hills (1983), and Hamilton (1983) form the basis 

for a series of calculations of least upper bound shakedown limits for the rolling 

contact of a half space for both a circular and an elliptic contact region. For accurate 

solutions we show that it is necessary to optimise the finite element mesh and the 

number of time instants during the loading sequence.  

For a circular contact area and a frictional force in the direction of travel, direct 

comparison was made with the semi- analytic solutions of Ponter, Hearle and Johnson 

(1986). The numerical solutions generally agree with these solutions. However, it is 

clear that the kinematic assumption of the Ponter, Hearle and Johnson solutions, that 

deformation only takes place in the direction of travel, is not always strictly correct 

but provides a very good first approximation when the frictional force is in the 

direction of travel. The numerical solutions produced optimal mechanisms associated 

with the shakedown limit that were very similar in form to those assumed by Ponter et 

al.. New solutions are presented where the direction of the frictional loading forms an 

angle to the direction of rolling. In all such cases the shakedown limit was increased 

when normalised with respect to the friction coefficient, the greatest increase 

occurring when the frictional force acts perpendicular to the direction of travel. 

Solutions are then presented for the case of an elliptic contact area and, again, 

with the frictional force in the direction of travel. These solutions show that the 

general character of the ratchet mechanisms is the same as the circular contact case. It 

is possible to describe the range of frictional coefficient f and ratio of principal axis 

ab for which reverse plasticity, subsurface ratchet mechanisms and surface ratchet 

mechanisms occur. When normalised with respect the average normal pressure over 

the contact area, the shakedown limit monotonically decreases with ab . For the 

largest value of 4=ab  the limit is very close to the line contact solution, the limit as 

∞→ab  and this solution forms a lower bound for all solutions. The variation with 



ab  decreases with increasing f . For 4.0=f  the shakedown limit is very 

insensitive to ab  and the ratchet mechanism involves very localised plastic 

deformation at the surface. 

The solutions presented in this paper demonstrate that it is possible to generate 

accurate shakedown solutions numerically for rolling contact problems using, 

essentially, standard finite element methods. Such solutions, when drawn together into 

interaction diagrams, provide broad insight into the factors that influence the onset of  

plastic strain growth and, therefore, are of use in design. 
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Model No. of element 

along y direction 

No. of element 

along x direction 

No. of element 

along z direction 

No. of element 

in the model 

Model 1 36 10 30 10800 

Model 2 40 20 20 16000 

Model 3 48 20 20 19600 

 

 

Table 1. The mesh arrangement in the different finite element models discussed in 

Figure 10. ( PQ 15.0= , PF 45.0= , 474.0=f ) 

 

 

 

 

 

 

 

No. of load instants Converged upper 

bound λ  

Iterations to 

convergence 

Total CPU time 

(seconds) 

4 3.6863 45 18858 

12 3.3771 50 21017 

22 3.3327 64 26832 

42 3.3267 71 30158 

 

 

Table 2. The effects of the number of load instants on the shakedown limit 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1. Rolling contact problem considered by Ponter, Hearle and Johnson (1985) 

 

 

 

 

 

Figure 2. Shakedown and Ratchet Boundary diagram for the Hertzian rolling circular 

contact problem (a=b); solution given by Ponter, Hearle and Johnson (1985) 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3. The model for point contact; the x axis is the direction of rolling 

 

 

 

 

Figure 4. The mesh arrangement in face 1 of  model 3 (48x20elements) 

 

 

 

 
 

 
 

Figure 5. The mesh arrangement in face 2 of  model 3 (48x20elements) 
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Figure 6. The mesh arrangement in face 3 of  model 3 (20x20) 
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Figure 7. Shakedown and elastic limit of a circular loaded region for different normal 

and tangential loads 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Shakedown limit of an elliptical loaded region for different normal and 

tangential loads ( 0=θ ) 
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Figure 9. Variation of Shakedown limits with shape of loaded ellipse (b/a) for 

different normal and tangential loads ( 0=θ ) 
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Figure 10. The convergence conditions for the three finite element models listed in 

Table 1 
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Figure 11. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force in direction of travel,  

F=0, ba = , 1.0=f  

 

 

 

 

 
 

Figure 12. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force in direction of travel,  

F=0, ba = , 25.0=f  
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Figure 13. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force in direction of travel,  

F=0, ba = , 6.0=f  

 

 

 

 
 

 

Figure 14. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force perpendicular to the direction of travel,  

Q=0, ba = , 1.0=f  
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Figure 15. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force perpendicular to the direction of travel,  

Q=0, ba = , 25.0=f  

 

 

 

 
 

 

Figure 16. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force perpendicular to the direction of travel,  

Q=0, ba = , 6.0=f  
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Figure 17. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force at o45=θ  to the direction of travel,  

 ba = , 1.0=f  

 

 

 

 
 

 

Figure 18 Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force at o45=θ  to the direction of travel,  

 ba = , 18.0=f  
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Figure 19. Contours of constant von Mises effective strain for the convergent mechanism; 

frictional force at o45=θ  to the direction of travel,  

 ba = , 4.0=f  
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