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In the topos approach to quantum theory of Doering and Isham the Kochen–Specker Theorem, which

asserts the contextual nature of quantum theory, can be reformulated in terms of the global sections

of a presheaf characterised by the Gelfand spectrum of a commutative C∗–algebra. In previous work

we showed how this topos perspective can be generalised to a class of categories typically studied

within the monoidal approach to quantum theory of Abramsky and Coecke, and in particular how one

can generalise the Gelfand spectrum. Here we study the Gelfand spectrum presheaf for categories of

quantale–valued relations, and by considering its global sections we give a non–contextuality result

for these categories. We also show that the Gelfand spectrum comes equipped with a topology which

has a natural interpretation when thinking of these structures as representing physical theories.

1 Introduction

The present work is part of an ongoing project [10, 11] to marry conceptually the monoidal approach

to quantum theory initiated by Abramsky and Coecke [3], and the topos approach to quantum theory

initiated by Butterfield, Doering, and Isham [9, 17]. Both of these approaches to quantum theory are

algebraic, in that they seek to represent some aspect of physical reality with algebraic structures. By

taking the concept of a “physical observable” as a fixed point of reference we cast the difference between

these approaches as internal vs. external algebraic perspectives; that is, algebras internal to a monoidal

category A vs. representations of algebras on A , a construction external to A . The topos approach to

quantum theory considers representations of commutative algebraic structures (for example C∗–algebras,

or von Neumann algebras [8]) on Hilb. The topos approach makes essential use of the fact that the sets

Hom(H,H) in Hilb carry the structure of a C∗–algebra. In [10] we showed that the categories consid-

ered in the monoidal approach have a similarly rich algebraic structure on their sets of endomorphisms

Hom(A,A), thus allowing one to take the “external perspective” for any such A , and not just Hilb.

There are various incarnations of the topos approach to quantum theory, here we follow a construc-

tion introduced in [9], which is developed in [12]. For a fixed Hilbert space H one takes Hilb-Alg(H) to

be the poset of commutative C∗–subalgebras of Hom(H,H) considered as a category, and Hilb-AlgvN(H)
its subcategory whose objects are the commutative von Neumann C∗–subalgebras of Hom(H,H). We

will briefly discuss a physical interpretation for this definition. Physical experiments have made clear

that quantum mechanical systems are faithfully represented by non–commutative C∗–algebras of the

form Hom(H,H). What nature does not make clear however is how to interpret this algebraic structure.

According to Bohr’s interpretation of quantum theory [5], although physical reality is by its nature quan-

tum, as classical beings conducting experiments in our labs we only have access to the “classical parts”

of a quantum system. Much of classical physics can be reduced to the study of commutative algebras;

this approach is carefully constructed and motivated in [23] where the following picture is given:

http://dx.doi.org/10.4204/EPTCS.266.24
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Physics lab → Commutative unital

R–algebra A

Measuring device → Element of the algebra A

State of the observed → Homomorphism of unital

physical system R–algebras h : A → R

Output of the → Value of this function h(a),

measuring device a ∈ A

Figure 1: Algebraic interpretation of classical physics

In [23] the author stresses that the choice of ground ring is somewhat unimportant to this construction

and interpretation, however R is a reasonable choice given that in classical physics most of the quantities

we want to measure, length, energy, time, etc., can be represented by real numbers. In quantum mechan-

ics one traditionally takes scalar values in C, but one can take any ring, or, as we will see, a semiring in

its place and the physical interpretation of Figure 1. remains valid.

According to Bohr’s interpretation of quantum theory, a quantum system represented by a non–

commutative algebra Hom(H,H), can only be understood in terms of of its classical components, that

is, the commutative subalgebras of Hom(H,H); in particular, we can only make observations on the

classical subsystems. Hence the category Hilb-AlgvN(H) is a collection of observable subsystems of a

physical system, and we consider all of these subsystems at one by considering the category of presheaves

[Hilb-AlgvN(H)
op

, Set], which is a topos. One presheaf of particular significance is the presheaf which

is characterised by the Gelfand spectrum. Recall the Gelfand spectrum of a commutative C∗–algebra A

is characterised by the set SpecG(A) = { ρ : A → C | ρ a C∗–algebra homomorphism } of characters

which defines a functor

Hilb-AlgvN(H)
op

Set
SpecG

with the action on morphisms given by restriction. By Figure 1. we interpret this functor as assigning to

each classical subsystem its set of possible states.

Remark 1.1. The prime spectrum SpecP(A) of a commutative C∗–algebra A is defined to be the set of

prime ideals of A, and is naturally isomorphic to the Gelfand spectrum. The correspondence comes from

the fact that an ideal J ⊂ A is prime if and only if it is the kernel of a character ρ : A → C. The prime

spectrum is also equivalent to the maximal spectrum, taken to be the collection of maximal ideals.

In a presheaf category one can generalise the notion of elements of a set by considering the mor-

phisms out of the terminal object. The terminal object T : C
op

→ Set in a presheaf category sends all

objects to the singleton set {∗} and all morphisms to the identity id : {∗} → {∗}. A global section (or

global element) of a presheaf F : C
op

→ Set is a natural transformation χ : T → F .

The Kochen–Specker theorem [21] asserts the contextual nature of quantum theory. The principle

of non–contextuality is that the outcome of a measurement should not depend on the context in which

that measurement is performed, that is, it should not depend on which other measurements are made

simultaneously. Classical physics is typically formulated as non–contextual [18, Chap. 4]. The Kochen–

Specker theorem states that it is a feature of quantum theory that one can find collections of measurements

for which the outcomes are context dependent. For a mathematical treatment of this theorem see in [18,

Chap. 9]. The following theorem was first shown in [9] but here we present it as in [12, Corollary 9.1].
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Theorem 1.2. The Kochen-Specker theorem is equivalent to the statement that for a Hilbert space H

with dim(H)≥ 3, the presheaf SpecG : Hilb-AlgvN(H)
op

→ Set has no global sections.

The monoidal approach to quantum theory of Abramsky and Coecke [3] is an entirely separate ap-

proach to quantum theory using very different mathematical structures. This approach begins with identi-

fying the essential properties of the category Hilb which one needs to formulate concepts from quantum

theory.

Definition 1.3. A †–category consists of a category A together with an identity on objects functor

† : A
op

→A satisfying †◦†= idA . A †–symmetric monoidal category consists of a symmetric monoidal

category (A ,⊗, I) which is a †–category such that † is a strict monoidal functor and all of the symmetric

monoidal structure isomorphisms satisfy λ−1 = λ †.

Definition 1.4. A category A is said to have finite biproducts if it has a zero object 0, and if for all

objects X1 and X2 there exists an object X1 ⊕X2 which is both the coproduct and the product of X1 and

X2. If A is a †–category and has finite biproducts such that the coprojections κi : Xi → X1 ⊕X2 and

projections πi : X1 ⊕X2 → Xi are related by κ†
i = πi, then we say A has finite †–biproducts.

In a category with a zero object 0, for every pair of objects X and Y we call the unique map X → 0→Y

the zero–morphism, which we denote 0X ,Y : X →Y , or simply 0 : X →Y .

For a category with finite biproducts each hom-set Hom(X ,Y ) is equipped with a commutative

monoid operation [22, Lemma 18.3] called biproduct convolution, where for f ,g : X → Y , we define

f +g : X →Y by the composition

X X ⊕X Y ⊕Y Y
∆ f ⊕g ∇

where the monoid unit is given by the zero–morphism 0X ,Y : X → Y .

Categories with finite †–biproducts admit a matrix calculus [22, Chap. I. Sect. 17.] characterised as

follows. For X =
n
⊕

j=1

X j and Y =
m
⊕

i=1

Yi a morphism f : X →Y is determined completely by the morphisms

fi, j : Xi →Yj, and morphism composition is given by matrix multiplication. If f has matrix representation

fi, j then f † has matrix representation f
†
j,i.

The category Hilb is the archetypal example of a category with these properties. A notion of “ob-

servable” in quantum theory can be axiomatised in terms of the monoidal structure of the category of

Hilbert spaces by Frobenius algebras [7] or H∗–algebras [4], and hence we can consider any †–symmetric

monoidal category as a categorical model for a toy theory of observables. For example, Spekkens Toy

Theory [26] is a toy physical theory exhibiting some quantum–like properties but which is given by a

local hidden variable model. This theory can be modelled in the category of sets and relations Rel using

Frobenius algebras to represent observables [6].

The monoidal approach provides general framework in which a broad class of physical theories can

be compared in a high–level but mathematically rigorous way. This is useful for exploring interdepen-

dencies of quantum or quantum–like phenomena, for example the many notions of non–locality and

contextuality. In particular, in [14] an abstract notion of Mermin–locality is formulated in the language

of Frobenius algebras, and the category of finite sets and relations FRel is shown to be Mermin–local.

In this work we present a completely abstract notion of Kochen–Specker contextuality and we show

that categories of quantale–valued relations do not exhibit this form of contextuality. This is done us-

ing abstract Gelfand spectrum introduced in [10]. In order to prove this non–contextuality result we

define the prime spectrum which we relate to the physical interpretation of Figure 1. by examining the

topological structure which these spectra carry.
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2 The Spectrum and Kochen–Specker Contextuality

In this section we review a construction introduced in [10], and we introduce an abstract definition of

Kochen–Specker contextuality. This is done using the language of semirings, semimodules [15] and

semialgebras.

Definition 2.1. A semiring (R, ·,1,+,0) consists of a set R equipped with a commutative monoid oper-

ation + : R×R → R with unit 0 ∈ R, and a monoid operation · : R×R → R, with unit 1 ∈ R, such that ·
distributes over + and such that s ·0 = 0 · s = 0 for all s ∈ R.

A semiring is called commutative if · is commutative. A ∗-semiring, or involutive semiring is one

equipped with an operation ∗ : R → R which is an involution, a homomorphism for (R,+,0), and satisfies

(s · t)∗ = t∗ · s∗ and 1∗ = 1.

As the notation suggests we will refer to the monoid operations of a semiring as addition and mul-

tiplication respectively. We say that a semiring R is zero–divisor free (ZDF) if for all s, t ∈ R we have

s · t = 0 implies s = 0 or t = 0. Many concepts associated with rings can be lifted directly to the level

of semirings in the obvious way, for example homomorphisms, kernels and direct sums. However, some

concepts have to be treated with care when generalising to semirings, for example ideals.

Definition 2.2. Let R be a commutative semiring. A subset J ⊂ R is called an ideal if it contains 0, is

closed under addition, and such that for all s ∈ R and a ∈ J, as ∈ J. An ideal is called prime if st ∈ J

implies s ∈ J or t ∈ J. A k–ideal is an ideal J such that if a ∈ J and a+b ∈ J then b ∈ J. A k∗–ideal of a

∗–semiring is a k–ideal closed under involutions.

The k–ideals are to a semirings what normal subgroups are to a groups; they are the ideals which one

can quotient by. For any ring considered as a semiring the ideals and k–ideals coincide.

Definition 2.3. Let (R, ·,1,+,0) be a commutative semiring, an R–semimodule consists of a commutative

monoid +M : M×M → M, with unit 0M, together with a scalar multiplication • : R×M → M such that

for all r,s ∈ R and m,n ∈ M:

1. s• (m+M n) = s•m+M s•n ;

2. (r · s)•m = r • (s•m) ;

3. (r+ s)•m = (r •m)+M (s•m);

4. 0•m = s•0M = 0M ;

5. 1•m = m.

Definition 2.4. An R–semialgebra (M, ·M,1M ,+M,0M) consists of an R-semimodule (M,+M,0M) equipped

with a monoid operation ·M : M×M → M, with unit 1M, such that (M, ·M,1M ,+M,0M) forms a semiring,

and where scalar multiplication obeys s • (m ·M n) = (s •m) ·M n = m ·M (s • n). An R–semialgebra is

called commutative if ·M is commutative.

The ideals and k–ideals of a semialgebra are defined in the obvious way. Notice that every semiring

R is an R-semialgebra, where the scalar multiplication by R is taken to be the usual multiplication in

R. Non–zero elements s, t of a semialgebra are orthogonal if s · t = 0. A subunital idempotent in a

semialgebra is an idempotent element p such that there is an orthogonal idempotent q where p+q = 1M .

A primitive subunital idempotent is a subununital idempotent p such that there exists no non–trivial

subunital idempotents s and t with s+ t = p.

Definition 2.5. Let R be a ∗–semiring. An R∗–semialgebra consists of an R–semialgebra (M, ·M,1M ,+M,0M),
such that M and R have compatible involutions, that is, one that satisfies (s•m)∗ = s∗ •m∗.
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A unital subsemialgebra i : N →֒ M of M is a subset N containing 0M and 1M closed under all the

algebraic operations. A subsemialgebra N ⊂ M is a subset N containing 0M which is closed under multi-

plication and which is a semialgebra in its own right, though may have a different unit from M. A (unital)

∗–subsemialgebra of a ∗–semialgebra is a (unital) subsemialgebra closed under taking involutions.

An R–semialgebra is said to be indecomposable if it cannot be expressed as a non–trivial direct sum

of R–semialgebras. An R–semialgebra is completely decomposable if it is isomorphic to the direct sum

of its indecomposable subsemialgebras.

The following two results are shown in detail in [10].

Theorem 2.6. For a locally small †–symmetric monoidal category (A ,⊗, I) with finite †–biproducts the

set S = Hom(I, I) is a commutative ∗–semiring.

Biproduct convolution gives us the additive operation on S while morphism composition gives us

the multiplicative operation, and the functor † provides the involution. It is shown in [20] that this

multiplicative operation is commutative.

Theorem 2.7. Let (A ,⊗, I) be a locally small †–symmetric monoidal category and let S = Hom(I, I).
For any pair of objects the set Hom(X ,Y ) is an S–semimodule, and Hom(X ,X) is a S∗–semialgebra.

Addition on the set Hom(X ,Y ) is given by biproduct convolution. For a morphism f : X →Y scalar

multiplication s• f for s : I → I is defined

X X ⊗ I Y ⊗ I Y
∼ f ⊗ s ∼

which gives a semimodule structure [16]. For Hom(X ,X) multiplication is given by morphism composi-

tion and the functor † provides the involution.

Definition 2.8. For (A ,⊗, I) a locally small †–symmetric monoidal category and X and object, we

define the category A -Alg(X) to be the category with objects commutative unital S∗–subsemialgebras

of Hom(X ,X), and arrows inclusion of unital subsemialgebras.

The for any subset of B ⊂ Hom(X ,X) the set B′ = { f : X → X | f ◦g = g◦ f for all g ∈ B } is called

the commutant of B [8, Sect. 12]. We define the full subcategory of von Neumann S∗–subsemialgebras

A -AlgvN(X) A -Alg(X)

to have objects those S∗–subsemialgebras A which satisfy A = A′′.

Example 2.9. If we take (A ,⊗, I) to be (Hilb,⊗, I) then the category Hilb-AlgvN(H) is precisely the

category considered in the topos approach [9, 12].

Remark 2.10. In [11] we showed that any special commutative unital Frobenius algebra, and any (pos-

sibly non–unital) commutative H∗–algebra µ : A⊗A → A in A generates an object A in A -AlgvN(A).
Furthermore, there is a natural correspondence between the set–like elements of the internal algebra

and the Gelfand spectrum of the semialgebra it generates. Hence the notion observable in the monoidal

approach naturally lifts to the notion of observable in our generalised topos approach.

We can generalise the spectrum of a commutative C∗–algebra to an S∗–semialgebra [10].

Definition 2.11. Let (A ,⊗, I) be a locally small †–symmetric monoidal category with finite †–biproducts,

and X an object. The Gelfand spectrum for X is the presheaf

A -AlgvN(X)
op

Set
SpecG
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defined on objects SpecG(A) = { ρ : A → S | ρ an S∗–semialgebra homomorphism } to be the set of

characters while the action on morphism is defined in the obvious way by restriction.

Definition 2.12. Let (A ,⊗, I) be a locally small †–symmetric monoidal category with finite †–biproducts,

and X an object. The prime spectrum for X is the presheaf

A -AlgvN(X)
op

Set
SpecP

defined on objects SpecP(A)= { J ⊂A | J a prime k∗–ideal} while for i : A →֒B the action on morphisms

is given by ĩ : SpecP(B)→ SpecP(A) is defined ĩ(K) = { x ∈ A | i(x) ∈ K }.

To see that ĩ(K) is a prime k∗–ideal one can see the proof of a similar statement [15, Proposition

6.13].

Remark 2.13. One can also define a functor which assigns to each A the collection of all prime ideals,

not just the prime k∗–ideals [15, Chap. 6], although for the purposes of this work k∗–ideals are a more

natural choice. One can define the maximal spectrum for an arbitrary semialgebra or semiring, although

this fails to be functorial in general, [25, Chap 2. Sect. 5].

We have already discussed that for Hilb the prime spectrum and Gelfand spectrum coincide. In

[10] we showed that the same is true for the category of sets and relations Rel, although we will see in

Example 3.12 that this is not the case in general.

The Gelfand spectrum presheaf formulation of the Kochen–Specker theorem justifies the following

definition.

Definition 2.14. Let A be a locally small †–symmetric monoidal category with finite †–biproducts. An

object X in A is said to be Kochen–Specker contextual if the presheaf SpecG on A -AlgvN(X) has no

global sections. We say X is Kochen–Specker non–contextual if SpecG does admit a global section.

Such a global section, if it exists, will pick out an element χA : {∗}→ SpecG(A) from each spectrum,

i.e. according to Figure 1. it would specify a state from each “classical subsystem” A. Naturality ensures

that these choices of states are consistent with measurement outcomes irrespective of which subsystem –

that is, which “context” – the measurement appears in.

There are more general formulations of contextuality and non–locality using the language of sheaves

and presheaves [2, 1]. Future work will show how the categories A -AlgvN(X) naturally generate empir-

ical models which can be examined within the framework of [1], and how the contextual nature of those

empirical models is related to the existence of global sections for the corresponding Gelfand spectrum.

This connection, together with Remark 2.10 will give us a means of applying the techniques of [1], for

example sheaf cohomology, to the Frobenius algebras in an arbitrary A .

3 Quantale–Valued Relations

We now turn our attention to a class of categories for which we will prove a non–contextuality result,

namely quantale–valued relations over a fixed quantale Q. A standard reference for quantales is [24].

Definition 3.1. A quantale (Q,
∨

, ·,1Q) is a complete join–semilattice (Q,
∨

) equipped with a monoid

operation · : Q×Q → Q with unit 1Q such that for any x ∈ Q and P ⊂ Q

x · (
∨

y∈P

y) =
∨

y∈P

(x · y) and (
∨

y∈P

y) · x =
∨

y∈P

(y · x)
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An involutive quantale in one equipped with an involution map ∗ : Q → Q which is a semilattice ho-

momorphism which is an involution (x∗)∗ = x satisfying (x · y)∗ = y∗ · x∗ and 1∗Q = 1Q. A commutative

quantale is one for which the monoid operation is commutative. A subquantale is a subset of Q closed

under all joins and the monoid operation and containing 1Q.

We are primarily interested in involutive commutative quantales, but note every commutative quan-

tale can be equipped with the trivial involution. A quantale has a least element ⊥, defined to be the join

of the empty set, and this is an absorbing element, i.e. for all x ∈ Q we have x ·⊥ = ⊥. We assume all

quantales are non–trivial, that is, ⊥ 6=⊤, where ⊤=
∨

x∈Q

x.

Remark 3.2. An involutive quantale Q is a ∗–semiring with addition given by the join and multiplication

given by the monoid operation. The bottom element ⊥ is the zero element of the semiring and will hence

be denoted 0. We say a quantale is zero–divisor free if it is zero–divisor free as a semiring.

Definition 3.3. For a commutative involutive quantale Q, the category of quantale–valued relations RelQ
has sets as objects and morphisms f : X → Y consist of functions f : X ×Y → Q. For f : X → Y and

g : Y → Z composition is defined where g◦ f : X ×Z → Q by g◦ f (x,z) =
∨

y∈Y

f (x,y) ·g(y,z). We say that

a morphism f : X →Y in RelQ relates x ∈ X to y ∈ Y if f (x,y) 6= 0.

The category RelQ is a †–symmetric monoidal category with †–biproducts. The monoidal product

is given by the cartesian product, with unit the one element set, the biproduct is given by disjoint union,

and the dagger is given by reordering and pointwise application of the involution f †(y,x) = f (x,y)∗.

Example 3.4. Any complete Heyting algebra or Boolean algebra is a quantale. In particular the two–

element Boolean algebra 2 = {0,1}, where the corresponding category Rel2 is the usual the category

of sets and relations Rel. The intervals [0,1] and [0,∞] are quantales when equipped with the usual

multiplication, and where
∨

S = sup S.

We now turn our attention to the category RelQ-AlgvN(X) for a set X . Clearly the scalars Hom(I, I)∼=
Q, and for each set X the Q–semialgebra Hom(X ,X) is a quantale, with the join given pointwise and

multiplication given by morphism composition.

Lemma 3.5. Each A in RelQ-AlgvN(X) is a subquantale of Hom(X ,X).

Proof. By definition A is a subsemiring, we need to show that A is closed under arbitrary joins. Let

B ⊂ A be any subset, we need to show that
∨

x∈B

x ∈ A. Let g ∈ A′ then for all x ∈ B we have g ·x = x ·g. So

we have g ·
(

∨

x∈B

x
)

=
∨

x∈B

(g ·x) =
∨

x∈B

(x ·g) =
(

∨

x∈B

x
)

·g and hence
∨

x∈B

x ∈ A′′, and since A is von Neumann
∨

x∈B

x ∈ A, as required. �

We now give an important structure theorem for these semialgebras.

Theorem 3.6. Let (Q,≤,
∨

,⊥, ·,1Q) be a commutative ZDF quantale and let A ∈RelQ-AlgvN(X). There

are primitive subunital idempotents {ei} such that A = ∏
i

eiA, a direct product of S∗–semialgebras.

Proof. Let f : X → X be a Q–relation. Let supp( f ) ⊂ X , the support of f be the set of elements x such

that there exits y ∈ X such that f relates x to y. Let cosupp( f ) ⊂ X , the cosupport of f be the set of

elements x such that there exists y ∈ X such that f relates y to x. First, we claim that for Q–relations

satisfying f ◦ f † = f † ◦ f we have supp( f ) = cosupp( f ). Suppose x ∈ supp( f ) then if Q is ZDF then

f † ◦ f relates x to itself. However if x 6∈ cosupp( f ) then clearly f ◦ f † cannot relate x to any other element
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and hence x ∈ supp( f ) iff x ∈ cosupp( f ). So X = supp( f )⊔ supp( f ) and f has a corresponding matrix

representation f =
(

f1 0
0 0

)

. For each f ∈ A let fsupp =
(

id 0
0 0

)

be the relation which is the identity on the

support of f and zero otherwise.

Let g =
(

g1 g2
g3 g4

)

∈ A′ then in particular g ◦ f = f ◦ g and hence
(

g1 f1 0
g3 f1 0

)

=
(

f1g1 f2g2

0 0

)

and so if Q

is ZDF then g2 = 0 and g3 = 0, and hence g =
(

g1 0
0 g4

)

. Then clearly
(

g1 0
0 g4

)(

1 0
0 0

)

=
(

1 0
0 0

)(

g1 0
0 g4

)

, i.e.

fsupp ◦g = g◦ fsupp, and hence we have shown that fsupp ∈ A′′, and hence by the assumption that A is von

Neumann we have fsupp ∈ A. By a similar argument fsupp =
(

0 0
0 id

)

also belongs to A.

Consider the collection of elements fsupp for all f ∈ A. Each fsupp corresponds with a subset of X and

hence this collection forms a Boolean subalgebra of P(X), the powerset of X . By Lemma 3.5 A has all

joins and hence this collection of subunital maps forms a complete Boolean subalgebra of P(X) which

by [13, Chap. 14, Theorem 8] is atomic. The atoms ei of this Boolean algebra are the primitive subunital

idempotents of A, and 1A =
∨

ei. For every element f ∈ A we have f =
∨

f ◦ ei for pairwise orthogonal

subunital idempotents, and hence A is the direct product of the subalgebras eiA. �

For a commutative ZDF quantale Q and for any set X Theorem 3.6 states that all semialgebras

in RelQ-AlgvN(X) are completely decomposable, that is, a direct sum of their indecomposable (non–

unital) subalgebras eiA ⊂ A. We call each eiA for ei a primitive subunital idempotent an indecomposable

component of A.

We now give a characterisation of the prime spectrum for semialgebras of quantale–valued relations.

Lemma 3.7. For Q a commutative ZDF quantale and A an object in RelQ-AlgvN(X), then J ⊂ A is a

k∗–prime ideal iff if it the kernel of some S∗–semialgebra homomorphism γ : A → 2.

Lemma 3.8. For each semialgebra homomorphism γ : A → 2 there is exactly one primitive subunital

idempotent ea in A such that γ(ea) = 1.

Proof. First we show there is at most one primitive idempotent ea such that γ(ea) = 1. Suppose there is

another eb such that γ(eb) = 1. Since ea and eb are orthogonal we have γ(ea)γ(eb) 6= γ(ea ◦eb), and hence

there is at most one ea such that γ(ea) = 1. Suppose however there are no primitive idempotents which

map to 1. We still have γ(1A) = γ(
∨

ei) = 1. If there is only a finite number of primitive idempotents

then we have γ(
∨

ei) =
∨

γ(ei), a contradiction, and hence there is exactly one primitive idempotent

satisfying γ(ea) = 1. Suppose then that there are an infinite number of primitive idempotents. Partition

the primitive idempotents into two infinite sets K and L. Then γ(1A) = γ(
∨

ei) = γ(
∨

K

ek)+ γ(
∨

L

el) = 1

but clearly γ(
∨

K

ek)γ(
∨

L

el) = 0 and hence either γ(
∨

K

ek) = 0 or γ(
∨

L

el) = 0. Suppose γ(
∨

L

el) = 0 then by

Lemma ker(γ) is a prime ideal, however there are elements ek1
and ek2

in K and therefore not in ker(γ)
and hence we have ek1

· ek2
= 0 contradicting the primeness of ker(γ), and hence for each semialgebra

homomorphism γ : A → 2 there is exactly one primitive idempotent such that γ(ea) = 1. �

Theorem 3.9. For Q a ZDF quantale and A in RelQ-AlgvN(X) with decomposition A = ∏
i

eiA. For each

indecomposable subalgebra eaA the complement eaA = ∏
i6=a

eiA of eaA is a prime ideal.

Proof. This follows directly form Lemma 3.8, simply define the map γa : A→ 2 with kernel eaA, sending

all other elements to 1. �

Although we will see in Example 3.12 that the prime spectrum and the Gelfand spectrum for RelQ
do not coincide in general, the following theorem shows that they are related.
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Lemma 3.10. For Q a commutative ZDF quantale there are natural transformations ξ : SpecG → SpecP

and τ : SpecP → SpecG such that ξ ◦ τ ∼= id.

Proof. For Q a quantale there is exactly one quantale homomorphism ! : 2 → Q. For Q a ZDF quantale

there is at least one homomorphism w : Q → 2, which sends all non–zero elements to 1. Since SpecP can

be characterised by the collection of homomorphisms γ : A → 2 let τ(γ) =!◦ γ . Similarly for ρ : A → Q

define ξ (ρ) = w◦ρ . Naturality is easy to check and clearly w◦!◦ γ = γ , as required. �

In Sect. 5 we discuss a topological interpretation of this map ξA : SpecG(A)→ SpecP(A), in partic-

ular how to relate the prime spectrum to the state space interpretation of the Gelfand spectrum of Figure

1.

The following theorem follows directly from Lemma 3.10.

Theorem 3.11. For a ZDF quantale Q, the Gelfand spectrum for RelQ-AlgvN(X) has a global section if

and only if the prime spectrum has a global section.

Example 3.12. Let Q be the commutative involutive quantale [0,1] with usual multiplication, trivial

involution, and where
∨

S = sup S. Let X be a two element set and consider A the von Neumann Q–

semialgebra A =
{(

p 0
0 q

)

| p,q ∈ Q
}

∼= Q⊕Q It is easy to see that there are four elements of SpecP(A):

J1 =
{(

p 0
0 0

)

| p ∈ Q
}

J2 =
{(

p 0
0 q

)

| p ∈ Q, q < 1
}

K1 =
{(

0 0
0 q

)

| q ∈ Q
}

K2 =
{(

p 0
0 q

)

| q ∈ Q, p < 1
}

There are three semialgebra homomorphisms from Q to itself: u : Q → Q defined u(x) = 1 for all

x 6= 0; d : Q → Q defined d(x) = 0 for all x < 1; and the identity id : Q → Q. Hence there are six

homomorphisms

ϕ1 = 〈d,0〉 : Q⊕Q → Q ϕ2 = 〈u,0〉 : Q⊕Q → Q ϕ3 = 〈id,0〉 : Q⊕Q → Q

θ1 = 〈0,d〉 : Q⊕Q → Q θ2 = 〈0,u〉 : Q⊕Q → Q θ3 = 〈0, id〉 : Q⊕Q → Q

corresponding to the six elements of SpecG(A).

4 A Proof of Non–Contextuality

We now show that for a ZDF quantale Q every object X in RelQ is Kochen–Specker non–contextual. We

do this by showing that picking an element from the underlying set X allows one to construct a global

section of SpecP. By Theorem 3.11 we can then conclude that SpecG has global sections and thus every

object in RelQ is Kochen–Specker non–contextual. We then show a partial converse to this result, that

every global section for SpecP in turn picks out an element from X .

Theorem 4.1. For Q a commutative ZDF quantale, and X a set, each x ∈ X determines a global section

of the prime spectrum SpecP : RelQ-AlgvN(X)
op

→ Set.

Proof. We show that each element x ∈ X determines a global section. By Theorem 3.6 each semialgebra

A in RelQ-AlgvN(X) has a decomposition ∏
i

eiA for subunital idempotents ei. Note that x is in the support

of exactly one of the primitive subunital idempotents, which we will denote ex. By Theorem 3.9 exA is a

prime ideal. Let x̃A : A → 2 be the map corresponding to this prime ideal defined x̃A(ex) = 1. The claim
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is that x̃ determines a natural transformation. We need to show that for each A →֒ B that the restriction

of x̃B so A is equal to x̃A. Let B = ∏
j

d jB with x̃B(dx) = 1. Since ex and dx both relate x to itself we

have ex ◦ dx 6= 0. Clearly then ex ◦ dx is a non–zero element of the subsemialgebra dxB ⊂ B and hence

x̃(ex ◦dx) = 1. This implies that x̃B(ex) = 1 and therefore x̃A(ex) = x̃B(ex). �

Central to the proof of Theorem 4.1 is reducing the problem to consider the partitions of the underly-

ing set X . The proof of the Kochen–Specker theorem also reduces the problem to a consideration of the

“partitions” on the Hilbert space H , that is, the orthonormal bases of H . At the heart of the difference

between the contextuality results for Hilb and RelQ is that given an element of a set X we can pick a

component from every partition of X in a canonical way. However, for a Hilbert space if we choose a

vector |ψ〉 ∈ H there is not a canonical way of picking an element from each orthonormal basis of H .

This non–contextuality result for RelQ is consistent with a theorem which states the category of finite

sets and relations is Mermin–local [14], lending some credibility to our definition of Kochen–Specker

contextuality. We now show a partial converse of Theorem 4.1, that is, every global section of SpecP

isolates some x ∈ X , although we do not claim that every global section is of the form x̃ as defined in the

proof of Theorem 4.1.

Lemma 4.2. For X a set, the set of relations E = { q• idX : X → X | q ∈ Q } belongs to RelQ-AlgvN(X).

We call E (as defined in Lemma 4.2) the trivial semialgebra on X . Clearly there is an inclusion

E →֒ A for every A in RelQ-AlgvN(X).

Lemma 4.3. Suppose A ⊂ Hom(A,A) belongs to RelQ-AlgvN(A) and suppose B ⊂ Hom(B,B) belongs

to RelQ-AlgvN(B) then A⊕B ⊂ Hom(A⊔B,A⊔B) belongs to RelQ-AlgvN(A⊔B).

Lemma 4.4. If A = e1A⊕ e2A belongs to RelQ-AlgvN(A) where e1 is the identity morphism on some

subset E ⊂ A then e1A viewed as a subsemialgebra e1A ⊂ Hom(E,E) belongs to RelQ-AlgvN(E).

Theorem 4.5. Let Q be a ZDF quantale and X an object in RelQ. Every global section χ : T → SpecP(−)
uniquely determines some x ∈ X.

Proof. By Lemma 3.8 for A = ∏
i

eiA there is one primitive idempotent element ea such that χ(ea) = 1.

For B = ∏
j

d jB there is one db such that χ(db) = 1. We claim that for ea and db we have ea ◦db 6= 0.

Let Ea = supp(ea) and Eb = supp(eb) and let E1 be the trivial semialgebra defined on the set X\(Ea⊔
Eb). Let E2 be the trivial semialgebra on X\Ea and E3 be the trivial semialgebra on X\Eb. Hence we

have unital subsemialgebra inclusions

eaA⊕E2

A eaA⊕dbB⊕E1

dbB⊕E3

B

By naturality, if χA(ea) = 1 then χeaA⊕ebB⊕E1
(ea) = 1 which implies that χeaA⊕ebB⊕E1

(eb) = 0, which in

turn implies that χB(eb) = 0, which is a contradiction. Since there is an algebra A = ∏
x∈X

Q, picking a

global section for this algebra amounts to picking a singleton from X . �

Remark 4.6. Spekkens toy theory [26] can be modelled in Rel using Frobenius algebras as a notion of

observable [6], and hence by Remark 2.10 can be modelled by commutative von Neumann semialgebras.

In Spekkens Toy theory the ontic states of the physical system, which represent local hidden variables,

are represented by the singleton elements of the underlying set, and hence we see a correspondence

between the ontic states of the theory and the global sections in the model.
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5 Topologising the State Space

The concept of the “spectrum” of an algebraic object is a broad one, appearing across many fields of

mathematics: it lies at the heart of a family of deep results connecting algebra and topology [19]; it is a

fundamental concept in algebraic geometry [25]; and it is central to the algebraic approach to classical

physics described in Figure 1. [23]. In each case one endows the spectrum of an algebraic object with a

topology called the Zariski topology. Here we extend the definition of Zariski topology to the k∗–ideals

of a semialgebra and to the characters on a semialgebra and hence to the prime spectrum and Gelfand

spectrum of S∗–semialgebras.

Definition 5.1. Let A be a locally small †–symmetric monoidal category with finite †–biproducts. Let

X be some object, and let A be an object in A -AlgvN(X). For each ideal J ⊂ A define the sets VP(J) =
{K ∈ SpecP(A) | J ⊂ K }. We take the collection of VP(J) to be a basis of closed sets for the Zariski

topology on SpecP(A). Consider the set SpecG(A). For each ideal J ⊂ A define the set VG(J) = {ρ ∈
Spec(A) | J ⊂ ker(ρ) }. We take the collection of VG(J) to be a basis of closed sets for the Zariski

topology on SpecG(A).

Hence, under the interpretation of Figure 1. we see that our sets of states are in fact topological

spaces. Recall, a space is T0 if all points are topologically distinguishable, that is, for every pair of points

x and y there is at least one open set containing one but not both of these points.

Theorem 5.2. For an S∗–semialgebra A the Zariski topology on SpecP(A) is compact and T0, and

for i : A →֒ B the function ĩ : SpecP(B) → SpecP(A) in continuous with respect to this topology. For

an S∗–semialgebra A the Zariski topology on SpecG(A) is compact, and for i : A →֒ B the function

ĩ : SpecG(B)→ SpecG(A) in continuous with respect to this topology.

Theorem 5.2 states the the prime spectrum and Gelfand spectrum give us functors of the form

A -Alg(A)
op

Top
SpecP

A -Alg(A)
op

Top
SpecG

Note the Gelfand spectrum need not even be T0 in general, as we will see in Example 5.4.

Theorem 3.11 relates the prime spectrum and the Gelfand spectrum for the case when A is the

category RelQ for a Q a ZDF quantale. The following theorem gives us an insight into the nature of this

relationship in terms of the topological structure on these spectra.

Theorem 5.3. For Q a ZDF quantale and A in RelQ-AlgvN(X), each ξA : SpecG(A) → SpecP(A), as

defined in Theorem 3.11, is a quotient of topological spaces where ρ1 ∼ ρ2 iff ρ1 and ρ2 are not distin-

guishable by the Zariski topology.

The map ξA identifies those characters which have the same kernel, which are precisely those char-

acters which the Zariski topology on SpecG(A) cannot distinguish.

Theorem 5.3 allows us to think of SpecP(A) as a coarse–graining of the state space SpecG(A) of our

physical system. To illustrate this we revisit Example 3.12.

Example 5.4. Let A be as in Example 3.12. The Zariski topology on SpecP(A) has a basis consisting of

the sets {J1,J2}, {K1,K2}, {J1}, and {K1}. It is easy to check that this topology is T0 but that it is not T1

and therefore not Hausdorff. For SpecG(A) the Zariski topology has a basis of closed sets {ϕ1,ϕ2,ϕ3},

{ϕ1}, {θ1,θ2,θ3}, {θ1}. It is easy to check that there is no open set distinguishing ϕ2 and ϕ3 from

one another, nor θ2 from θ3 as these respective pairs of characters have the same kernels and hence

SpecG(A) fails even to be T0. Note that ξA(ϕ2) = ξA(ϕ3) = K1 and ξA(θ2) = ξA(θ3) = J1, and hence the

topologically indistinguishable points are identified by ξA.
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