
This version is available at https://strathprints.strath.ac.uk/64947/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Manufacturing processes used to develop permanent magnets are time-consuming and demand very specific machinery to apply exceptionally high pressures, temperatures, and magnetic fields. Furthermore, these manufacturing processes generate by-products and hazardous waste, making the whole process environmentally-detrimental. On the other hand, the magnets produced using such approaches have the advantage of exhibiting extremely large magnetic fields. In this work we address this problem using 3D-printing technology to develop polymer-based permanent magnets, a much simpler technique that allows production in a more time-efficient and environmentally-friendly manner. This permits the development of different types of magnets by simply modifying specific parameters of both the matrix and the filler. Here we report the results of work to 3D-print magnetic materials on the micro-scale and their full magnetic characterization. 3D-printing materials with different magnetic properties at this scale, could allow their use in a wide range of applications in biomedicine, biotechnology, medical science, and information storage among many others. The M-H hysteresis loops, the curves of the change of magnetic moment and the surface plots of the magnetic field intensity and orientation of the 3D-printed samples before and after magnetic poling are shown in Figures 1 and 2, respectively.