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Abstract— The objective of this paper is to propose a re-
stricted structure non-linear generalized minimum variance
(RS-NGMV) controller for a two-link robot arm. The NGMV
control is a useful method for offering control solutions for non-
linear systems. The motivation is to provide the advantages of
NGMV control inside a low-order controller structure with an
intention to enable design simplicity and easy implementation
for engineers with classical training. The result will be an
optimal controller with simple tuning variables. Simulations of
the RS-NGMV controller are presented using Matlab/Simulink.

I. INTRODUCTION
It is the fifth decade of minimum variance (MV) con-

trollers since Åström first introduced them [1]. The strategy
was basically to minimize the variance of the stochastic
system output. Successful industrial applications of MV con-
trollers came out. However, the controller design was based
on the assumption that the plant is of minimum-phase. Re-
sults were unstable for non-minimum phase systems. Later,
Clarke and Hastings-James [2] proposed the generalized
minimum variance (GMV) control extending the MV control
law by introducing control costing terms to the cost function.
GMV controllers have proven useful in the industry and their
self-tuning versions are also available [3]. In 2004, a novel
GMV control algorithm was proposed by Grimble [4]. The
algorithm was derived for non-linear, multivariable, possibly
time varying systems and was called non-linear generalized
minimum variance (NGMV) control. It was succeeded by
the next generation of NGMV controllers [5 − 12] and has
shown potential for practical applications [13].

Restricted structure (RS) controllers are characterized by
their predefined order and structure. The order and structure
of the controllers are independent of the plant order. Typi-
cally, these controllers are of lower order than the plant and
appear in the form of phase lead, phase lag, phase lead-lag
or industrial PID controllers [16]. They are often viewed as
low-order approximations to high-order controllers. The fact
is, most optimal and predictive controllers are of high order
which may make them difficult to implement considering
the practical reasons. There comes the need to restrict such
advanced control strategies to simpler structures when the
design simplicity and the range of applications are taken into
account. As a consequence, researchers have taken initiatives
[14, 15] to use optimal and predictive control methods that
have restricted structures.

RS-NGMV control algorithm has been derived recently
by Grimble in [17] that is submitted for publication. The
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algorithm basically uses the same type of system with that of
the NGMV but restricted to the structure of either a general z-
transfer function or a PID. The cost function to be minimized
also remains the same. The task of optimization deals with
developing the optimal controller gains. As mentioned ear-
lier, the NGMV control is a powerful technique for handling
non-linear systems. It is indeed one of the simplest solutions
offered for the control of non-linear systems. Therefore,
providing an application of a novel NGMV controller with
a structure that engineers in the industry are familiar to has
been the driving force of this paper.

Linear Parameter Varying Systems (LPV Systems) are a
special type of non-linear systems which can be represented
as linear systems with parameters that change as the states
change. The parameters can either be measured or estimated.
A parameter is called exogenous if it is an external variable to
the system and called endogenous if it is already a function of
the state variables. The latter case is referred to as a quasi-
LPV (qLPV) system. They are often used to approximate
non-linear systems [22, 23].

Robot arms owing to their wide range of applications
from welding, assembly, painting, packaging in the industry
to space and surgical operation systems have attracted the
world wide attention of researchers and engineers. Due to
coupled dynamics and a highly non-linear nature, the control
of robotic arms might prove to be a tedious task. One way
of handling the non-linearities is to express the non-linear
system in what is called a state dependent form i.e. make
it look like a linear model while maintaining its non-linear
characteristics. For instance the qLPV representation of
robotic manipulators has examples in the literature [23− 26]
and has also been employed in this paper.

The paper is organized as follows. In Section II, the
state-space representation of the system is provided. It is
followed by the RS-NGMV control method in Section III.
Then, Section IV covers the 2-link robot arm model along
with the simulation studies comparing performances of PID
and RS-NGMV controllers in position tracking objective and
showing the time varying feedback gain deviations resulting
from the optimization. Lastly, conclusions are given.

II. STATE-SPACE SYSTEM DESCRIPTION
A. Augmented System Model

In this section, an augmented r×m multivariable system
is constructed using state dependent qLPV plant model and
linear disturbance, weighted error models. Therefore, the
state vector that corresponds to these models is represented as
x(t) =

[
x0(t), xd(t), xp(t)

]T
. Before going any further,



it should be noted that the models that compose the aug-
mented system will not be analyzed individually in this paper
as they are already available [12]. The elements of the state-
dependent qLPV system are functions of states, inputs and
parameters which are functions of the state variables. Thus
the qLPV system appears in the form of A0(x0(t), u0(t −
k), ρ(t)). However, in order to avoid notational complexity
it will be expressed by simply A0t. In the NGMV literature
[4−13], the total plant model including linear and non-linear
subsystems along with the delay operator is often denoted by
z−kW0k(W1ku)(t) which contains the input sub-system,

u0(t) = (W1u)(t) = z−k(W1ku)(t). (1)

For the analysis in this paper is only concerned with the
control of a qLPV system, W1k will be set to identity making
u0(t) = u(t). Taking into consideration these facts, the
augmented system model is demonstrated in the equation
below,

x(t+ 1) =

 A0t 0 0
0 Adt 0

−BptC0t −BptC0t Apt

x(t) +

 B0t

0
BptE0t

u0k(t− k)

+

D0t 0
0 Ddt

0 0

[ξ(t)
ω(t)

]
+

I 0
0 0
0 Bpt

[ d0d(t)
(r(t)− d(t))

]
.

(2)

The weighted error ep(t) = Pc(z
−1)e(t) equation is given

by,
ep(t) = dp(t) + Cptx(t) + Eptu0(t− k), (3)

where Pc is an r×m size weighting operator that introduces
the penalty on the errors.

III. RS-NGMV CONTROL METHOD

A. Controller Structure

The restricted structure controller is basically obtained
from the multiplication of user pre-specified functions by
some feedback gains. It can be formulated as follows:

u(t) =

Ne∑
j=1

fj(z
−1, kj(t))e0(t) =

(
f1(z−1, k1(t))e0(t) (4)

+ f2(z−1, k2(t))e0(t) + · · ·+ fNe(z−1, kNe(t))e0(t)
)
,

where fj(z
−1, kj(t)) denotes the pre-specified functions

and kj(t) represents the feedback gains. A typical example
is the restricted structure PID control for a SISO system.
In this case, the controller has Ne = 3 function terms that
can be chosen as f1(z−1) = 1, f2(z−1) = 1/(1 − z−1),
f3(z−1) = (1 − z−1)/(1 − αz−1) which stand for the
proportional, integral and the derivative terms respectively.
The PID control input can then be computed by,

u(t) = k1e(t) +
1

1− z−1
k2e(t) +

1− z−1

1− αz−1
k3e(t). (5)

For multivariable systems, it is much more rigorous to
derive the restricted structure controller form. Consider an

r×m multivariable system, under the assumption that r ≤ m,
the controller form in equation (4) expands as in,

u(t) =



Ne∑
j=1

r∑
l=1

{f j11(z−1)kj1le0l(t)}
Ne∑
j=1

r∑
l=1

{f j21(z−1)kj2le0l(t)}

...
Ne∑
j=1

r∑
l=1

{f jm1(z−1)kjmle0l(t)}


,

m×1

The procedure to parameterize the controller u(t) for
multivariable systems can become easier by introducing
following matrices of functions and gains. Re-arranging the
elements from the rows of u(t) starting from the first as in,
f11e
f12e

...
f1re

 =


f111(z−1)e01(t) f211(z−1)e01(t) . . . fNe

11 (z−1)e01(t)

f112(z−1)e02(t) f212(z−1)e02(t) . . . fNe
12 (z−1)e02(t)

...
...

. . .
...

f11r(z−1)e0r(t) f21r(z−1)e0r(t) . . . fNe
1r (z−1)e0r(t)

 ,
r×Ne

and the second,
f21e
f22e

...
f2re

 =


f121(z−1)e01(t) f221(z−1)e01(t) . . . fNe

21 (z−1)e01(t)

f122(z−1)e02(t) f222(z−1)e02(t) . . . fNe
22 (z−1)e02(t)

...
...

. . .
...

f12r(z−1)e0r(t) f22r(z−1)e0r(t) . . . fNe
2r (z−1)e0r(t)

 ,
r×Ne

and until the mth row,
fm1
e

fm2
e
...

fmr
e

 =


f1m1(z−1)e01(t) f2m1(z−1)e01(t) . . . fNe

m1(z−1)e01(t)

f1m2(z−1)e02(t) f2m2(z−1)e02(t) . . . fNe
m2(z−1)e02(t)

...
...

. . .
...

f1mr(z−1)e0r(t) f2mr(z−1)e0r(t) . . . fNe
mr(z−1)e0r(t)

 .
r×Ne

Then all they are all gathered in the matrix below,
ef1(t)
ef2(t)

...
efm(t)

 =


f11e f12e . . . f1re
f21e f22e . . . f2re

...
...

. . .
...

fm1
e fm2

e . . . fmr
e

 ,
m×r

(6)

and form the diagonal matrix Fe(t),

Fe(t) = diag{ef1(t), ef2(t), · · · , efm(t)}. (7)

Define a matrix gc(t) =
[
gc1(t) gc2(t) . . . gcm(t)

]
using elements of the gain kc(t) that consists of,

gc1(t) =


g11c (t)
g12c (t)

...
g1rc (t)

 =


k111(t) k211(t) . . . kNe

11 (t)

k112(t) k212(t) . . . kNe
12 (t)

...
...

. . .
...

k11r(t) k21r(t) . . . kNe
1r (t)

 ,
r×Ne

gc2(t) =


g21c (t)
g22c (t)

...
g2rc (t)

 =


k121(t) k221(t) . . . kNe

21 (t)

k122(t) k222(t) . . . kNe
22 (t)

...
...

. . .
...

k12r(t) k22r(t) . . . kNe
2r (t)

 ,
r×Ne

up until,

gcm(t) =


gm1
c (t)
gm2
c (t)

...
gmr
c (t)

 =


k1m1(t) k2m1(t) . . . kNe

m1(t)

k1m2(t) k2m2(t) . . . kNe
m2(t)

...
...

. . .
...

k1mr(t) k2mr(t) . . . kNe
mr(t)

 ,
r×Ne



which will help construct the (r×m×Ne)×1 size vector
of gains kc(t),

kc(t) =
[
kc1(t) kc2(t) · · · kcm(t)

]
. (8)

where kci(t) =
[
gi1c (t) gi2c (t) . . . girc (t)

]
with index

i = {1, 2, . . . ,m}. Finally, the control input for the multi-
variable system can be calculated by,

u(t) = Fe(t)kc(t) =


ef1(t)kc1(t)
ef2(t)kc2(t)

...
efm(t)kcm(t)

 .
m×1

(9)

B. Parallel Form of the Controller

The restricted structure controller gain kc(t) can be di-
vided into two components such as the constant component
kc and the time-varying deviation component k̃c(t). The RS
control input may then be re-arranged as in,

u(t) = Fe(t)kc(t) = Fe(t)kc + Fe(t)k̃c(t) (10)

=

Ne∑
j=1

fj(z
−1, kj)e0(t) +

Ne∑
j=1

fj(z
−1, k̃j(t))e0(t).

There are two special cases concerning the gains. If
kc = 0, it is the absolute gain case and kc(t) = k̃c(t). If
kc 6= 0, then kc(t) = kc + k̃c(t) and this is called the gain
deviation case. Once again, the PID implementation could
be considered as an example. The first case involves the
minimization of the total PID controller gains. The second
can resemble the case of having two parallel PID controllers
one with constant gains, the other with time-varying gains
which is especially practical if a PID controller is in hand
already. The task is then to compute the deviations from the
constant gains.

C. Optimal RS-NGMV Control Law

In this section the results from the analysis of the optimal
RS-NGMV control law are demonstrated. Let us define the
cost function to be minimized within the optimization task
as,

J = E{φpT (t+ k)φp(t+ k)}, (11)

which is the variance of the pseudo-output signal given by,

φp(t+ k) = Pp(t)ep(t+ k) + Fc0u0(t) + Fc1k̃c(t)

+ Fc2∆k̃c(t) + FT
e (t)(Fcku)(t). (12)

The signal φp(t + k) is composed of control and er-
ror weightings that are, Pp(t) = FT

e (t)ET
pt+kΛp

2, Fc0 =

FT
e (t)Λu

2, Fc1 = Λk
2, Fc2 = Λd

2, Fck. The dynamic
weighting on tracking error is weighted by the constant
matrix Λp

2 ∈ Rr×m, the constant weightings on the control
inputs is defined as Λu

2 ∈ Rr×m, the constant weightings
on the deviations in controller gains is defined as Λk

2 ∈
R(r×m)×Ne diagonal matrix and the cost weighting on the
increments on the deviations in gains is denoted Λd

2 ∈
R(r×m)×Ne diagonal matrix. The control weighting operator
Fck is supposed to be full rank and invertible and can be
non-linear. It takes the form (Fcu)(t) = z−k(Fcku)(t).

Under the assumption that the plant is of the qLPV and
W1k = I , the controller gain that will minimize the cost
function J will be calculated as,

kc(t) = −X0(t)
−1

(Pp(t)d0pd(t+ k)) + ψk(t)), (13)

where terms ψk(t) = −Λ2
kkc−Λ2

dkc(t− 1), d0pd(t+ k) =
dpd(t + k) + Cpt+kx̂(t + k|t) and X0(t) is a time-varying
real symmetric matrix defined by,

X0(t) = FT
e (t)(Fck + (ET

pt+kΛpEpt+k + Λu
2W1k)Fe(t)

+ Λk
2 + Λd

2. (14)

Then the optimal RS-NGMV controller u(t) = Fe(t)kc(t)
can be implemented as shown in Figure 1,

Restricted Structure Controller
Plant

Observations

+
-

Kalman Filter Gain Computations

Error Terms Disturbance

OutputReference

RS-NGMV Controller 

Figure 1: RS-NGMV control block diagram.

representing the algorithm. The full derivation and solu-
tion of the controller gains kc(t) will be available in [17],
submitted for publication.

D. Prediction Model

For the online gain computation of the RS-NGMV con-
troller, a Kalman filter is used to estimate states x̂(t|j). The
notation x̂(t|j) means that the estimate of x̂(t) based on
all information up to and including the time j. The Kalman
filter considers delays if they are present in the system thus
a prediction model is needed. The k-steps ahead predictor
may be implemented as in the equation,

x̂(t+ k|t) = Ak
t x̂(t|t) +

k∑
j=1

Ak−j
t+j Bt+j−1u0(t+ j − 1− k)

+ ddd(t+ k − 1), (15)

which is obtained by using (2) iteratively. The full derivation
process of the predictor is available in [12]. The k-steps ahead
prediction errors can be calculated in a similar fashion,

ê(t+k|t) = dp(t+k)+Cpt+kx̂(t+k|t)+Ept+ku0(t). (16)



IV. ROBOT ARM EXAMPLE

The robotic manipulator (see Figure 2) used for our exam-
ple is composed of two rigid links and two revolute joints.
Euler-Lagrange approach has been taken for modelling of
it’s dynamics as given more in detail in [18− 21]. With the
help of the Lagrangian equations robot’s dynamics can be
expressed by,

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τ, (17)

where M(q) represents the inertia matrix and C(q, q̇),
F (q̇), G(q) represent the Coriolis matrix, friction and gravity
vectors respectively. Torque is expressed by the vector τ
while q denotes the joint angle vector.

q1

l1

lc1 m1, I1

q2
lce

me, Ie

δe

Figure 2: Two-link robot arm.

A. System Model of the 2-link Robot Arm

In this study the forces of friction are neglected and it is
assumed that the robot is operating horizontally, i.e. moving
on 2-dimensional Euclidean plane which means that the
affect of gravitational forces can be further ignored. In this
regard, expanding the dynamics in the matrix form for the
2-link robot manipulator will yield to the equation,[
M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
hq̇2 hq̇1 + hq̇2
hq̇1 0

] [
q̇1
q̇2

]
=

[
τ1
τ2

]
. (18)

The 2-link robot has strong non-linear characteristics due
to the nature of equation (18). The non-linearity becomes
more apparent when the elements of the inertia matrix M
are analyzed,

M11 = ρ1 + 2ρ3cosq2 + 2ρ4sinq2,

M12 = M21 = ρ2 + ρ3cosq2 + ρ4sinq2,

M22 = ρ2,

with parameters,

ρ1 = I1 +m1lc1
2 + Ie +melce

2 +mel
2
1,

ρ2 = Ie +melce
2,

ρ3 = mel1lcecosδe,

ρ4 = mel1lcesinδe,

and finally h = ρ3sinq2 − ρ4cosq2 of the Coriolis matrix
C. Since, the inertia matrix M is invertible, after some re-
arranging of the equations it is possible to represent the
system in the state-space form by (note that q = [q1, q2]T

and τ = [τ1, τ2]T ),

ẋ =

[
q̇
q̈

]
=

[
0 I
0 M−1(q)C(q̇)

] [
q
q̇

]
+

[
0

M−1(q)

]
τ.

y = q =
[
I 0

] [q
q̇

]
. (19)

B. Simulation Results

Robot parameters used within this simulation study have
been adopted from example 9.1 in [20]. They are given by,
m1 = 1, I1 = 0.12, l1 = 1, lc1 = 0.5, me = 2, Ie =
0.25, lce = 0.6, δe = 30◦. The control objective is to have
the robot follow a desired position trajectory qd = [q1d, q2d]
which is specified in detail as,

qd =


[60◦, 90◦], for t ≤ 50

[45◦, 45◦], for 50 < t ≤ 100

[60◦, 90◦], for t > 100

by sending torque signals to the joints and saturation limits
±2Nm is applied to torque inputs. The inputs are subject to
the torque disturbance of Td = 0.4Nm. The sampling time
for the simulation is Ts = 0.005s.

In the design of the RS-NGMV controller, the second
case of the parallel form in equation (10) is used which
implies that a PID controller already exists for the robot
whose parameters are chosen as,

kc =

kpkI
kD

 =

 3
0.5
7

 .
In the implementation of the controller time-varying gain
deviations k̃c(t) will be calculated and added to the constant
gains.

The error and control cost weightings are specified,

Pc(z
−1) =

87.5
1− 0.97z−1

1− z−1
0

0 87.5
1− 0.97z−1

1− z−1

,

Fck(z−1) =

0.016
1− 0.9z−1

1− 0.4z−1
0

0 0.16
1− 0.9z−1

1− 0.4z−1

,
Λ2
k = 10−6 × diag{

[[
3, 0.5, 7

]
, · · · ,

[
3, 0.5, 7

]]
},

Λ2
d = 40× diag{

[[
1, 1, 1

]
, · · · ,

[
1, 1, 1

]]
},

Λ2
p =

[
10−4 0

0 10−4

]
,Λ2

u =
[
0.05 0

0 0.05

]
.



The simulation results are given in Figures 3 and 4. First,
the position tracking performances of RS-NGMV and PID
are compared in Figure 3.

Figure 3: Results for the position tracking.

It demonstrates the control efforts in following the refer-
ence angle trajectory for links 1 and 2 respectively. As can
be observed from the figure, the results show that both RS-
NGMV and PID controllers achieve the control objective
of the desired joint angle tracking for the 2-link robot
arm. RS-NGMV owing to the advantages inherited from
the NGMV as an optimal control solution, shows slightly
better performance compared to the PID with less overshoot.
The RS-NGMV controller also adapts easier to the set-
point changes thanks to the optimized feedback gains. It is
demonstrated that tuning procedure is actually familiar for
designers with background in PID control.

In Figure 4, the time varying gain deviations k̃c(t) result-
ing from the optimization process are illustrated. It is shown
that they are constantly updated for the feedback gains of the
RS-NGMV controller. For example, much calculation effort
is spent at and around time t = 0 as the link angles q1(t) and
q2(t) try to catch their reference angles. The deviations k̃c(t)

tend to slow down as the system output reaches the steady
state until the next reference angle signals are generated.
Then the same pattern is repeated.

Figure 4: Time varying gain deviations.

V. CONCLUSIONS

In this work, a multivariable RS-NGMV controller has
been designed for the qLPV model of a 2-link robotic arm.
The controller has been set to have the structure of a PID
and employs optimized time varying feedback gains that are
constantly updated. The gains help the RS-NGMV control
algorithm adapt to the changes such as reference trajectories
much easily. Performance comparison of the controller to
that of a classical PID controller has been made and the
results show that it works better.
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