Millar, Lindsay J and Murphy, Andrew J and Rowe, Philip J (2017)

This version is available at https://strathprints.strath.ac.uk/64918/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
INTRODUCTION
There is widespread agreement that motion analysis is currently the gold standard for measuring human movement in a non-invasive manner [1]. Current commercially available systems, such as Vicon Plug in Gait (PiG, Vicon Motion Systems, Oxford, UK) have been developed over a number of years and are capable of providing a biomechanical analysis which is robust enough to dictate complex treatment plans, such as multi-level surgery [1]. However, due to the vast capabilities of PiG, it is a time consuming and technically complex protocol to deliver. Additionally, there are currently limited options for delivering motion capture using other protocols which vastly limits the use of motion analysis in other aspects of clinical care, such as outpatient rehabilitation. Cluster based marker sets may provide a faster and less technically complex alternative to models such as PiG; however these are currently not commercially available and have thus far been restricted to research environments. Therefore, the aim of this study was to develop a bespoke cluster based motion analysis protocol (Strathclyde Cluster Model; SCM) capable of calculating lower limb kinematics which could be implemented in routine clinical care in order to expand the use of motion analysis beyond research and complex clinical cases. Further aims included an assessment of the kinematic output and reliability of SCM in comparison to PiG.

METHODS
The bespoke marker set comprised seven 3D printed, rigid plastic plates, each with 4 markers attached, for each segment of the lower body. Participant calibration was completed using a digitiser which negated the use of skin surface markers and thus allowed participants to wear their own clothing, providing anatomical landmarks could still be palpated. Anatomical reference frames were calculated in accordance with the International Society of Biomechanics recommendations [2] and the Grood and Suntay [3] method was used to calculate kinematics. To compare the kinematic output of SCM to PiG, five participants completed 10 overground walking trials each whilst wearing both marker sets and flexion/extension (flex/ext), ab/adduction (ab/ad) and internal/external rotation (int/ext) were compared for the hip and knee. Ankle plantar/dorsi flexion was also compared. To assess the reliability of SCM in comparison to PiG, the mean kinematic output, variability and coefficient of multiple correlation (CMC) were compared between and within assessors for six assessors using both models and one subject for all assessments.

RESULTS AND DISCUSSION
Results of the kinematic comparison revealed some significant differences between the two models (figure 1). Differences in flex/ext and ab/ad outputs are likely due to differences in anatomical reference frame definition and kinematic calculation. Differences in int/ext were more evident; however previous studies suggest that there are few similarities in this output when compared between models [4] and therefore this is not a surprising result.

CONCLUSIONS
SCM is a motion analysis protocol which has been developed for routine clinical use, such as outpatient rehabilitation and therefore application of markers and participant calibration is quicker and easier than current commercial alternatives. Further, kinematic output and reliability are comparable between SCM and the current clinical gold standard. Therefore, SCM is a suitable alternative for providing an objective assessment of function and outcome in routine clinical practice.

REFERENCES