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Melanin plays a crucial role as a pigment all through the animal kingdom. Being a The BU|Id|ng SiteS Of MEIanin

macromolecule just on the divide between an ordered crystalline or a purely amorphous form
melanin has proven a challenge to structure-function analysis.

Tacking the evolution of EEMs during the formation process of melanin
allows to identify specific sites where the absorption generates significant
fluorescence emission. Some of these area show a transient character
suggesting that fluorescent structures are later transformed or integrated
into non-fluorescent parts of the molecule.

Melanin assembles from small molecules much like a jigsaw and much like in a jigsaw the fine
detail quickly vanishes in the overall picture. With Melanin being first and foremost a photo-
active molecule we focus on spectral properties for the characterization of its structure using
linked measurements of excitation and emission to identify ‘areas of interest’ in the Excitation-
Emission Matrix (EEM). We then probe for characteristic fluorescence lifetimes in the identified
areas to track melanin building blocks through the formation pathway.

Figure 4: Areas of interest in the excitation-emission matrix

Recording EEMs at different times during the melanin formation process reveals regions of high excitation
)\ — and emission. We observe a characteristic area ‘A" where the initial L-Dopa molecule absorbs and
”’T&\S,\e fluoresces. Areas ‘B’ and 'C’ show a longer joint excitation wavelength around 325nm and emission at
e 2 e ' 415nm and 535nm respectively.
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generated melanin. The addition of micro-nutrients like transition metal ions to the reaction can alter
the characteristics of the melanin generated [5] (Figure below).
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Figure 6b: The effect of micro-

nutrients on EEMs

Comparing the EEM of laboratory
melanin (1) with that of natural
sepia melanin (2) we find
characteristic differences like a
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parameters: its absorbance (key to its purpose as our ‘natural sunscreen’), its fluorescence;
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Figure 3: The EEM of synthesised eumelanin

Joined recording of fluorescence excitation and emission yields References:
a characteristic ‘landscape’ of melanin fluorescence: a unique
spectral fingerprint.
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