
This version is available at https://strathprints.strath.ac.uk/64808/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Bilge Keel Design for the Traditional Fishing Boats of Indonesia’s East Java

Wendi Liu1*, Yigit Kemal Demirel1, Eko Budi Djatmiko2, Setyo Nugroho2, Tahsin Tezdogan1, Rafet Emek Kurt1, Heri Supomo2, Imam Baihaqi2, Zhiming Yuan1 and Atilla Incecik1

1Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK
2Department of Naval Architecture and Shipbuilding, Marine Technology Faculty, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

ABSTRACT

Seakeeping, especially for the roll motions, is of critical importance to the safe operation of fishing boats in Indonesia. In this study, a traditional East Java Fishing Boat (EJFB) has been analysed in terms of its seakeeping performance. Furthermore, a bilge keel was designed to reduce the roll motions of the EJFB using multiple stages approach. After installing the designed bilge keels, it was shown that up to 11.78 % and 4.87 % reduction in the roll response of irregular seaways and the total resistance under the design speed, respectively. It was concluded that the roll-stabilized-EJFB will enhance the well-being of the fisherman and contribute to the boats’ safe operation, especially in extreme weather conditions. Moreover, the total resistance reduction of the EJFB due to the installation of the designed bilge keels also resulted in increased operational efficiency and reduced fuel costs and fuel emissions for local stakeholders.

Keywords: East Java Fishing Boat; Bilge Keel; Roll Motion.

*Corresponding author. Tel: +44 548 4371
E-mail address: wendi.liu@strath.ac.uk
1. Introduction

Fishing is extremely important for Indonesia, with around 6.4 million people participating in fishing activities. Indonesia is reported to have approximately 700,000 fishing boats, of which 25% are dugout canoes and 50% are without motors (Liu et al. 2016). Currently, a fleet of traditional fishing boats made from solid woods has been in service for a long time. As an evidence, Figure 1 shows an illustration of fishing boats at the fishing port of Panceng in Gresik, which is a centre fishing port in East Java, Indonesia. Various types of traditional boats operate in the different regions of Indonesia, such as Begog boats in Madura, Lambo boats in South Sulawesi and Phinisi boats in some tourist attraction. East Java Fishing Boat (EJFB) is one of the most common types of fishing boats that services in the East Java. EJFB is widely used in East Java as a means of catching fish in the sea. EJFBs are still widely used by Indonesian fishermen, making up the majority of the fishing boat population in various Fish Landing Sites (FLS) in East Java.

![Fishing boat at fishing port of Panceng, Gresik, Indonesia](image)

The literature shows that the hydrodynamic performance of the traditional EJFBs has not been tested to date. There are many traditional boatbuilding companies in Indonesia, and most of them are still using outdated methods to design these traditional EJFBs, which are based on traditional practices and experiences. It is, therefore, necessary to perform hydrodynamic and seakeeping analyses for such local boats so that their safety, efficiency and performance can be enhanced and optimized.

Fishing is a labour intensive and difficult job, which generally attracts workers from the less privileged parts of society. Most fishermen work under harsh conditions with boats not completely fit for purpose (Arslan et al. 2016; OGP. 2010). This has a drastic negative impact on safety, and, as a result, most global maritime accidents occur in fishing boats, with many lives lost every year (Turan et al. 2016). In order to maximize the safety and efficiency of EJFBs, a major optimization and safety/performance enhancement of these boats is required. Such a large-scale optimization and safety/performance enhancement requires an extensive
study encompassing all aspects of boat design, such as hydrodynamics, structure, manufacturing and construction.

Roll motion has a significant impact on the safety and performance of operating boats by reducing the effectiveness of the fishermen as well as the onboard equipment (Perez and Blanke 2010). Furthermore, the boat has the risk of capsizing due to the large roll motion under extreme sea and weather conditions. Thus, there is a need to analyze the roll responses of EJFB and use roll stabilization techniques to reduce the roll amplitude if necessary. Roll damping is a key parameter when calculation roll displacements, especially if the boat operates in the moderate to extreme sea conditions (Bassler and Reed 2009). Roll damping is highly non-linear and is affected by several complex phenomena such as the interactions between boat hull and fluid flows, which are hard to predict (Chakrabarti 2001).

There are several devices designed to reduce roll motion including bilge keels, antiroll fins and antiroll tanks (Cox and Lloyd 1977). Among all roll stabilizers, bilge keels are the most suitable type for the EJFB since they are much simpler to design and install. Unlike the antiroll fin and the antiroll tank, bilge keels do not take up any cabin space and do not need to be actively operated during a boat’s operation. These features make bilge keels very suitable for the EJFB. Bilge keels are widely used for modern large ships, such as large cargo vessels. However, it is not a common practice to use bilge keels for a traditional small wooden boat. Therefore, a thorough design optimization study is necessary to obtain maximum benefit from a bilge keel to be installed to a traditional fishing boat such as EJFB in this study.

As reported by Cox and Lloyd (1977), a traditional bilge keel design method contains various steps. The first step is to determine the roll characteristics of the selected boat in a wide range of decay coefficient values. The second step is to determine the roll decay coefficient of the bilge keel for different combinations of the bilge keel length and span. Lastly, the parameter of fitted bilge keels for the boat could be obtained through the objective decay coefficient. This traditional bilge keel design method is based on empirical formulae. It is a fast and efficient way a bilge keel design but it contains large uncertainties for the performance of the bilge keel to be used. Our literature survey revealed that a modern design method, which employs high fidelity techniques, is required for bespoke bilge keels for any kind of ships.

In this study, a bilge keel was designed for a conventional fishing boat operating in Indonesia (EJFB). This can be seen as the first practice of using bilge keels for traditional small bamboo/wooden boats. In this study, an optimisation of a modern bilge keel design method that employs high fidelity techniques based on the total resistance and roll motions was presented and applied to the design of the roll-stabilized-EJFB. The present study also filled the gap of the lack of hydrodynamic and seakeeping analyses of the widely used traditional fishing boat, EJFB in Indonesia. The calm water total resistance of the EJFB was obtained using a state-of-the-art Computational Fluid Dynamics (CFD) technique. STAR-CCM+, which is a commercial CFD software package, was used as a RANS solver. In the interest of time, the seakeeping analysis (in regular and irregular waves) was performed using a potential flow-based software package (ShipX). The resistance of the roll-stabilized-EJFB and the bilge keel geometry were also modelled in STAR-CCM+ and ShipX as parts of the bilge keel design, respectively.

This paper is organized as follows. The methods, formulae, validation and verification used in the present study are presented in Section 2. The main characteristics of the EJFB and its seakeeping ability are given in Section 3. The procedure of bilge keel design is explained in every detail in Section 4. Section 5 presents the performance of the designed bilge keel in
terms of the roll stabilization ability in irregular waves and the resistance difference. Finally, concluding remarks are summarised in Section 6.

2. Methodology

The present study employs multiple stages for the bilge keel design. A flowchart on the procedure of the roll-stabilized EJFB (bilge keel) design is shown in Figure 2. The design methodology starts with the parameter determination to generate design cases through predetermined ranges for each parameter. The second step is to set several design criteria, based on published references, to screen out unsuitable design cases. The third step employs the conventional strip theory formulations to analyse the roll stabilization performance of every bilge keel design case in regular waves. The best-performed design case will be selected as the final bilge keel design. The seakeeping performance of the roll-stabilized-EJFB with the final bilge keel geometry in irregular waves will be analysed anew using the conventional strip theory formulations in step 4. In step 5, the calm water resistance of the roll-stabilized-EJFB will be calculated and compared with that of the EJFB bare hull by using CFD method.

ShipX software is used to implement the conventional strip theory formulations in step 3 and 4 for the seakeeping analysis of the EJFB in both regular and irregular wave conditions in the frequency domain. The detail formulations of the conventional strip theory used in the present study are presented in Section 2.1 and 2.2 for the regular and irregular wave conditions, respectively. In step 5, an Unsteady Reynolds-Averaged Navier-Stokes (URANS) method was used to solve the governing equations in this study. These mass and momentum conservation equations were solved by the commercial CFD software STAR-CCM+ (CD-Adapco 2014) and the details are presented in Section 2.3.
2.1. Boat response in regular waves

The seakeeping analysis in the present study assumes that the wave-amplitude is relatively small compared with the dimensions of the boat and the wave steepness is small enough to avoid wave breaking. As mentioned earlier, the seakeeping calculation was performed using ShipX, which is based on linear strip theory. It assumes a linear relationship between the wave loads/motions and the wave amplitudes. Steady-state conditions are also used so as to assume a harmonic oscillation of the boat’s linear dynamic loads that have the same frequency as the wave excited loads (Fathi and Hoff 2004). The linear coupled differential equations of boat motion are written as

\[
\sum_{k=1}^{6} \left(\left(M_{jk} + A_{jk}\right)\ddot{\eta}_k + B_{jk}\dot{\eta}_k + C_{jk}\eta_k\right) = F_j e^{i\omega t}, \quad j = 1, \ldots, 6
\]

where \(M_{jk}\) is the generalized mass matrix, \(A_{jk}\) is the added mass matrix, \(B_{jk}\) is the linear damping matrix, \(C_{jk}\) is the stiffness matrix and \(F_j\) is the complex amplitudes of the wave exciting forces and moments. \(F_1, F_2\) and \(F_3\) refer to the surge, sway and heave amplitude of exciting forces, while \(F_4, F_5\) and \(F_6\) refer to the roll, pitch and yaw amplitude of exciting moments, respectively. \(\omega\) is the angular frequency of encounter, which is calculated as
\[ \omega = \omega_0 + \frac{\omega_0^2 U}{g} \cos \beta \]  

(2)

where \( \omega_0 \) is the wave frequency, \( U \) is the speed of the boat and \( g \) is the gravitational acceleration. \( \eta_k \) is the motion responses. \( \eta_1, \eta_2, \eta_3, \eta_4, \eta_5 \) and \( \eta_6 \) refer to the surge, sway, heave, roll, pitch and yaw motions, respectively. \( \beta \) is the heading angle between the vessel and the wave propagation direction. Here \( \beta = 0^\circ \) is head seas, \( \beta = 90^\circ \) is beam seas and \( \beta = 180^\circ \) is following sea.

The linear coupled differential motion equation could be solved by substitutions of

\[ \eta_k = \tilde{\eta}_k e^{i\omega t}, \quad k = 1, \ldots, 6 \]  

(3)

where \( \tilde{\eta}_k \) is the complex motion amplitude.

The roll motion calculation is an important part of this study. The roll motion is calculated as

\begin{align*}
(M_{42} + A_{42})\ddot{\eta}_2 + B_{42}\ddot{\eta}_2 + (M_{44} + A_{44})\ddot{\eta}_4 + (B_{44}^p + B_{44}^{V1})\dot{\eta}_4 + B_{44}^{V2}\dot{\eta}_4 + C_{44}\eta_4 + (M_{46} + A_{46})\dot{\eta}_6 + B_{46}\ddot{\eta}_6 &= F_4
\end{align*}

(4)

where the superscripts \( P, V1 \) and \( V2 \) refer to the potential linear and quadratic viscous damping terms, respectively. Due to these terms, the roll equation is non-linear and an iteration method must be used to solve it. Generally, the roll damping includes three components: frictional damping, eddy damping and stabilizer (i.e. bilge keel) damping (Fathi and Hoff 2004; Himeno 1981).

The calculation of the bilge keel damping includes two components: damping generated by the normal forces of the bilge keel and the damping generated by the bilge keel induced hull pressure. The damping generated by the normal forces of the bilge keel is calculated based on Ikeda, Himeno, and Tanaka (1977) as follows:

\[ B_{44}^{V1} = \frac{8}{3\pi^2} \cdot 22.5 \cdot b_{bk}^2 \cdot r_{bk}^2 \cdot f \cdot \omega \]  

(5)

and

\[ B_{44}^{V2} = 2.4 \cdot b_{bk} \cdot f^2 \cdot r_{bk}^3 \]  

(6)

where \( b_{bk} \) is the width of the bilge keel, \( r_{bk} \) is the length between the roll axis, the bilge keel and \( f \) is the correction factor for the velocity increment at the bilge keel.

2.2. Boat response in irregular waves

The ship responses to an irregular seaway were calculated using the spectral technique of St Denis and Pierson (1953). The motion responses of the boat to the natural irregular seas (\( S_\xi \)) are calculated by using the seaway spectrum (\( S_\xi \)) and the transfer functions in the frequency domain with the linear superposition principle.
Based on the field study and literature review, the sea state in East Java follows the JONSWAP spectrum, with the wave height varying from 0.3 meters to 1.88 meters and the corresponding wave period varying from 7 seconds to 9 seconds (Djatmiko 2015; Tezdogan, Incecik, and Turan 2014). The peak-enhancement factor is taken to be 2 which reflects the real sea conditions in the East Java in Indonesia.

2.3. CFD calculations

CFD calculations were performed in the present study to calculate the resistance of the EJFB in calm water at its service speed. The averaged continuity and momentum equations for incompressible flows without body forces are shown in tensor form and Cartesian coordinates as follows (Ferziger and Peric 2002):

$$\frac{\partial (\rho \bar{u}_i)}{\partial x_i} = 0$$  \hspace{1cm} (7)

$$\frac{\partial (\rho \bar{u}_i)}{\partial t} + \frac{\partial (\rho \bar{u}_i \bar{u}_j + \rho \bar{u}_i ' \bar{u}_j ')}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \bar{\tau}_{ij}}{\partial x_j}$$  \hspace{1cm} (8)

where $\bar{\tau}_{ij}$ is the mean viscous stress tensor components as

$$\bar{\tau}_{ij} = \mu \left( \frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)$$  \hspace{1cm} (9)

$p$ is the mean pressure, $\bar{u}_i$ is the averaged Cartesian components of the velocity vector, $\rho \bar{u}_i ' \bar{u}_j '$ is the Reynolds stresses, $\rho$ is the fluid density and $\mu$ is the dynamic viscosity.

The finite volume method was employed to solve the Navier-Stokes equations. The continuity and momentum equations of the Navier-Stokes equations were linked by the predictor-corrector approach of the RANS solver.

The standard k-ε turbulence model is relatively economical in terms of CPU time compared with other two-equation turbulence models and has been used extensively for industrial applications (CD-Adapco 2014) and many other studies in the same area (Kim and Lee 2011; Enger, Peric, and Peric 2010). Thus, the standard k-ε model was selected for the present study. The VOF method was used to accurately capture the free surface with a second-order convection scheme. The segregated flow model was applied to the simulations. The unsteady term of the RANS formula was discretized by the first-order temporal scheme. Convection terms in the RANS formula were discretized by applying a second-order upwind scheme. The overall solution procedure was obtained according to a SIMPLE-type algorithm. A Dynamic Fluid Body Interaction (DFBI) model was used to simulate realistic boat behaviour, which allowed the boat to be free to move in the pitch and heave directions due to the exciting force and moments acting on the boat hull (CD-Adapco 2014).

In each cell of the present simulations, the Courant number (CFL), which is defined as below, was kept as less than or equal to one for numerical stability.
where $\Delta t$ is the physical time step, $\Delta x$ is the mesh cell dimension and $U$ is the mesh flow speed.

A general view of the computational domain with the EJFB model and the notations of selected boundary conditions are depicted in Figure 3. Only half of the hull (the port side) is represented to reduce the computational complexity and demand. The symmetry plane forms the centreline domain face in order to accurately simulate the other half of the model. The mirror image of the boat and domain in some figures given hereafter is reflected on the starboard side for plotting purposes.

As illustrated in Figure 3, the positive x-direction was set in the velocity inlet boundary condition. The pressure outlet was modelled in the negative x-direction. Velocity inlets were applied to the top and bottom boundaries. The symmetry condition was applied in the symmetry plane, and the side of the domain (the negative y-direction) has a velocity inlet boundary condition. These boundary conditions were used as they gave the quickest flow solutions for similar simulations carried out utilising Star-CCM+ (CD-Adapco 2014). The velocity inlet boundary condition was selected for the top and bottom boundaries so as to reflect the deep water and open sea conditions. Since the pressure outlet boundary condition prevents backflow from occurring and fixes static pressure at the outlet, it was applied to the boundary behind the boat. The locations of the boundaries are illustrated in Figure 4. The outlet boundary was located 2.5L (L represents the length between perpendiculars of the
EJFB) away from the boat hull to prevent any reflective waves by the boat, based on the recommendations in CD-ADAPCO (CD-Adapco 2014).

![Figure 4](image)

**Figure 4** The dimensions of the computational domain for the CFD simulations

The calculation mesh was generated using the automatic meshing facility in STAR-CCM+, which uses the Cartesian cut-cell method, resulting in a computational mesh of circa 2.2 million cells in total. A high-quality mesh formed primarily of unstructured hexahedral cells was obtained with the trimmed cell mesher. The area around the EJFB hull, the expected free surface and the wake of the EJFB were progressively refined in the mesh size so as to ensure the complex flow features could be appropriately captured. The cross-section of the computational mesh in both the x-y plane and the x-z plane is shown in Figure 5. The surface mesh on the EJFB hull is shown in Figure 6.
2.4. Validation and Verification

For the validation and verification of the methodology employed in this study, two approaches were utilised. The validation of ShipX (for seakeeping calculations) was carried out with a Wigley III hull against experimental data, which are freely available in the literature. The verification of this study’s CFD work was performed with the actual EJFB. As no experimental data are available for this boat, comparison of the simulated results with experiments was not possible. However, it should be noted that the CFD technique utilised in this study was validated earlier by the same authors with different ship geometries and under different conditions (Tezdogan et al, 2015).

Seakeeping calculations were performed for the case of Wigley III hull advancing in a head sea condition. The obtained numerical results were compared with published experimental (Journée 1992) and numerical results (Yuan, İncecik, and Jia 2014) as a validation. The Wigley III hull is modelled based on the equation below and corresponding particulars of the Wigley III model are shown in Table 1.

\[
y = \frac{B}{2} \left[ 1 - \left( \frac{z}{D} \right)^5 \right] \left[ 1 - \left( \frac{2x}{L} \right)^2 \right] \left[ 1 + 0.2 \left( \frac{2x}{L} \right)^2 \right]
\]  

(11)
### Table 1: General properties of Wigley III hull for validation purposes

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, $L_t$ (m)</td>
<td>3</td>
</tr>
<tr>
<td>Breadth, $B$ (m)</td>
<td>0.3</td>
</tr>
<tr>
<td>Draught, $D$ (m)</td>
<td>0.1875</td>
</tr>
<tr>
<td>Displacement, $V$ ($m^3$)</td>
<td>0.078</td>
</tr>
<tr>
<td>Centre of rotation above base, $KR$ (m)</td>
<td>0.1875</td>
</tr>
<tr>
<td>Centre of gravity above base, $KG$ (m)</td>
<td>0.17</td>
</tr>
<tr>
<td>Radius of inertia for pitch, $kyy$ (m)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Figure 7 Validation results on non-dimensional (a) heave and (b) pitch response amplitude at both $Fn=0.2$ and $Fn=0$

As can be seen from Figure 7, the heave and pitch RAOs calculated by ShipX agree well with the model test results of Journée (1992) and the numerical calculations of Yuan, Incecik, and Jia (2014), which proves the accuracy of the present seakeeping calculation method.

In this study, a proper verification study was undertaken to show the capability of the proposed CFD model and the software for particular calculations. As indicated in the literature (Richardson 1911; Richardson and Gaunt 1927; Celik et al. 2008; Demirel, Turan, and Incecik 2017), the Grid Convergence Index (GCI) Method was used to estimate the discretisation error. The Grid Convergence Index for a fine-grid is calculated as:

$$GCI_{fine}^{21} = \frac{1.25e_a^{21}}{r_{21}^{pa} - 1}$$  \hspace{1cm} (12)

where $e_a^{21}$ is the approximate relative errors. It is calculated by using the following equation

$$e_a^{21} = \left| \frac{\varphi_1 - \varphi_2}{\varphi_1} \right|$$  \hspace{1cm} (13)

and corresponding extrapolated relative error is calculated as

$$e_{ext}^{21} = \left| \frac{\varphi_{ext}^{12} - \varphi_1}{\varphi_{ext}^{12}} \right|$$  \hspace{1cm} (14)

$\varphi_k$ is the key variable in the $k^{th}$ grid. The $\varphi_k$ represents $C_T$ in the present study. The extrapolated value, $\varphi_{ext}$, is obtained by
The apparent order of the method, denoted as $p_a$, is obtained by

$$p_a = \frac{1}{\ln(r_{21}) |\ln\left(\frac{\varepsilon_{32}}{\varepsilon_{21}}\right) + q(p_a)|}$$  \hspace{1cm} (16)$$

where $q$ is calculated as

$$q(p_a) = \ln\left(\frac{r_{21}^p - s}{r_{32}^p - s}\right)$$  \hspace{1cm} (17)$$

and $s$ is calculated as

$$s = 1 \cdot \sin\left(\frac{\varepsilon_{32}}{\varepsilon_{21}}\right)$$  \hspace{1cm} (18)$$

with $\varepsilon_{32}$ and $\varepsilon_{21}$ obtained as

$$\varepsilon_{32} = \varphi_3 - \varphi_2$$  \hspace{1cm} (19)$$

and

$$\varepsilon_{21} = \varphi_2 - \varphi_1$$  \hspace{1cm} (20)$$

The refinement factors $r_{21}$ and $r_{32}$ take the value of $\sqrt{2}$ in the present study.

The values of parameters in the GCI calculation were obtained for the $C_T$ of the EJFB and are presented in Table 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$C_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{21}, r_{32}$</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>$\varphi_1$</td>
<td>0.028171</td>
</tr>
<tr>
<td>$\varphi_2$</td>
<td>0.028379</td>
</tr>
<tr>
<td>$\varphi_3$</td>
<td>0.028458</td>
</tr>
<tr>
<td>$p_a$</td>
<td>2.7933</td>
</tr>
<tr>
<td>$\varphi_{21}^{ext}$</td>
<td>0.028044</td>
</tr>
<tr>
<td>$e_3^{21}$</td>
<td>0.73835%</td>
</tr>
<tr>
<td>$e_3^{ext}$</td>
<td>0.45422%</td>
</tr>
<tr>
<td>$GCI_{21}^{fine}$</td>
<td>0.56521%</td>
</tr>
</tbody>
</table>

It is clear from Table 2 that numerical uncertainties for the $C_T$ of the EJFB are 0.56521%, which is acceptable for further EJFB simulations using the present CFD model.
3. Characteristics of the traditional EJFB

As mentioned in Section 1, the present study focuses on the roll amplitude reduction of EJFB, a traditional fishing boat in Indonesia. The body plan of the full-scale EJFB model is presented in Figure 8. Corresponding main properties of the boat are listed in Table 3.

The service speed of the EJFB is 8 knots (4.11 m/s), which corresponding Froude number \((Fn)\) is 0.57. After discussions with local fishermen and fishing-boat yard owners during a field study in Indonesia, the operational profile of the EJFB was obtained as follows: A typical sailing for the EJFB lasts about 12 hours in total, including sailing at the service speed for 9 to 10 hours and standby (at zero speed) for 2 to 3 hours. Since the duration of the accelerating, decelerating and standby stages of the EJFB are much smaller than the duration of the EJFB at its service speed, the safety of the EJFB during the cruising stage at its service speed is much more important. Thus, the present study focuses on the seakeeping analysis and bilge keel design under service speed (8 knots) condition.

The ship responses to regular waves were calculated in the frequency domain at the service speed. The Response Amplitude Operators (RAOs) were predicted for five different wave headings, varying from a head sea condition to a following sea condition. The results of six RAOs are shown in Figure 9. The linear responses, which are surge \((\eta_1)\), sway \((\eta_2)\) and heave \((\eta_3)\), all with units of metres, are rendered dimensionless by the wave amplitude \((A)\). The angular responses, which are roll \((\eta_4)\), pitch \((\eta_5)\) and yaw \((\eta_6)\), all with units of radians, are

---

**Figure 8** Body plan of the EJFB

**Table 3** EJFB general properties

<table>
<thead>
<tr>
<th>Main properties of the EJFB</th>
<th>(L) [m]</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth</td>
<td>(B) [m]</td>
<td>1.934</td>
</tr>
<tr>
<td>Loaded draft</td>
<td>(T) [m]</td>
<td>0.35</td>
</tr>
<tr>
<td>Displacement</td>
<td>(A) [t]</td>
<td>1.9</td>
</tr>
<tr>
<td>Block coefficient</td>
<td>(C_B) [-]</td>
<td>0.5367</td>
</tr>
<tr>
<td>Mid-boat section coefficient</td>
<td>(C_M) [-]</td>
<td>0.764</td>
</tr>
<tr>
<td>Prismatic coefficient</td>
<td>(C_P) [-]</td>
<td>0.7025</td>
</tr>
</tbody>
</table>
rendered dimensionless by the wave slope $(kA)$, where $k$ is the wave number. All responses in Figure 9 are plotted against the dimensionless wavelength $(\lambda/L)$, where $\lambda$ is the wavelength in metres and $L$ is the length between perpendiculars of the EJFB.

It can be seen from Figure 9 that the maximum sway, heave and yaw amplitudes are reached with a wave heading of $135^\circ$ and dimensionless wavelength around 1.1. The maximum surge and pitch amplitudes are excited by following sea conditions, but with dimensionless wavelengths of 1.75 and 2.35, respectively. It should be noted that in this study a wave heading of $0^\circ$ corresponds to a head sea condition.

From the roll response results at $Fn=0.57$, both head sea and following sea conditions are not excited by any roll motions, which is in line with common sense. The peak value of the roll response under the beam sea condition and wave heading of $135^\circ$ condition is around $\lambda/L=1.0$. The maximum roll response is achieved under wave heading of $45^\circ$ condition at $\lambda/L=2.35$, which is 1.5 and 2.4 times larger than that with the beam sea condition and wave heading of $135^\circ$ condition, respectively. Thus, there is a need to reduce such large roll amplitude of the EJFB, especially for the wave heading of $45^\circ$ condition, so as to enhance the safety of the EJFB during operation. In the following sections, a roll stabilizer, more specifically a bilge keel, will be designed with an aim to reduce the roll response.
A CFD simulation was run for the EJFB under calm water at service speed (8 knots). The free surface of the water (demonstrated as purple iso-surface) and flow streamlines (coloured by velocity magnitude of fluid particles) from bow to stern around the boat hull are illustrated in Figure 10. The flow run-up phenomenon can be seen from the boat bow. The streamlines around the boat hull should be carefully investigated for bilge keel design, which will be discussed in detail in the following sections.

4. Bilge keel design for the roll stability enhancement of the EJFB

As stated previously, this study focuses on the reduction of the roll motion of the EJFB by the instalment of a bilge keel. Compared with other active or passive roll stabilizers, such as anti-roll fins and anti-roll tanks, bilge keels are much easier in terms of construction, especially for EJFB builders, and they do not need any additional operations to be performed by
fishermen during the sailing course. In this section, the design stages of a bilge keel for the EJFB operating in the Indonesian seas are explained with all necessary details.

4.1. Design parameters of the bilge keel

A complete methodology for the parameter determination of the designed bilge keel is described in this section.

4.1.1. Shape and transverse location of bilge keel

It is widely accepted that the shapes of bilge keels have to follow the flow streamlines around a boat’s hull so as to achieve better performance and minimize the additional resistance of bilge keels caused by angle induced drag forces during its forward motion (Bhattacharyya 1978). Thus, the shapes of the bilge keels that were designed for the EJFB in the present study follow the flow streamlines of the boat hull around the bilge position. As indicated by Lloyd (1989), flow visualization techniques are usually performed for the boat model during the design stage to obtain the flow streamlines around the boat hull. In the present study, CFD simulations were carried out in calm water to obtain the flow streamlines of the EJFB, as outlined in Section 3. As the flow streamlines vary with the forward speed, such alignment between bilge keel shapes and flow streamlines can only be achieved for one forward speed, which is usually the service speed. Since during EJFB sailing about 80% of the time is spent at service speed (8 knots), the resistance penalty during its accelerating and decelerating stages can be ignored. The bilge keel design for the EJFB is focused on the cruising stage at service speed in the present study.

It is necessary to identify a transverse location for the bilge keel so as to enlarge the moment arm and the roll damping of the bilge keel. It is also worth mentioning that the transverse location of the bilge keel has to be fully immersed into the water so as to avoid any wave making resistance generated by the interaction between the bilge keel and the free-surface. Dove (1958) carried out a series of roll decay experiments at zero forward speed for a fine-form frigate model, reporting a large difference in the roll damping that was provided by the bilge keel at different transverse locations. In Dove’s study, it is stated that the maximum roll damping was achieved by the bilge keel when it was located one quarter along the girth from the free-surface to the baseline of the boat. Since the ideal transverse location of the bilge keel is highly related to the shape of the boat, Dove’s results may not apply for EJFB. In order to identify the best transverse location of the bilge keels for the EJFB, 12 locations were selected, which are evenly distributed from the free-surface to the baseline, for further calculation. As shown in Figure 11, twelve flow streamlines were selected as the candidate shape and potential transverse location of the bilge keels. A two-dimensional local coordinate system was established for these streamlines. The origin of this local system is located in the bottom of the stern. The x-axis follows the boat baseline and points to the boat bow and the z-axis direction is vertical up. The coordinates of the points that are located at each flow streamline were extracted within the aforementioned two-dimensional local coordinate system. With these extracted points/line data, 12 candidate combinations of bilge keel shape and transverse location were identified and are illustrated in Figure 12.
Figure 11 Streamlines extraction for bilge keel design of EJFB based on the CFD calculation at \( F_n = 0.57 \) in calm water.

Figure 12 Illustration of 12 bilge keel candidate locations and cut positions of 5 bilge keel candidate lengths.

In order to quantify these 12 transverse locations, \( L_{cbk}/T \) was defined where \( L_{cbk} \) is the averaged distance between the bilge keel and the baseline measured all along the bilge keel. Corresponding \( L_{cbk}/T \) values for each transverse location are listed in Table 4.

<table>
<thead>
<tr>
<th>Location name</th>
<th>Average distance from baseline ( L_{cbk}/T ) %</th>
<th>Maximum width allowed within the boat envelope ( B_{bk}/B ) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lc1</td>
<td>90.16%</td>
<td>10.33%</td>
</tr>
<tr>
<td>Lc2</td>
<td>77.97%</td>
<td>7.51%</td>
</tr>
<tr>
<td>Lc3</td>
<td>71.15%</td>
<td>6.10%</td>
</tr>
<tr>
<td>Lc4</td>
<td>64.53%</td>
<td>5.16%</td>
</tr>
<tr>
<td>Lc5</td>
<td>58.97%</td>
<td>4.23%</td>
</tr>
<tr>
<td>Lc6</td>
<td>52.14%</td>
<td>3.29%</td>
</tr>
<tr>
<td>Lc7</td>
<td>47.71%</td>
<td>2.82%</td>
</tr>
</tbody>
</table>

Table 4 Average distance from baseline for 12 bilge keel candidate transverse locations and corresponding maximum width allowed within the boat envelope.
4.1.2. Length and longitudinal location of bilge keel

The lengths of bilge keels are typically no less than 25% of the boat’s length to secure a satisfactory performance with regards to the roll stabilizing (Bhattacharyya 1978; Sabuncu 1983). The maximum length of bilge keels varies from 50% of the boat’s length (Bhattacharyya 1978) to 75% of the boat’s length (Sabuncu 1983). In the present study, five bilge keel lengths ($L_{bk}$) were selected for further investigation: 25%$L$, 37.5%$L$, 50%$L$, 62.5%$L$ and 75%$L$.

Following this, the longitudinal locations of each length option have to be defined. Generally, the bilge keel should be located within the middle one-third region of the boat length, when the length of the bilge keel is smaller than 33% of the boat’s length (Cox and Lloyd 1977). When the length of the bilge keel is larger than 33% of the boat’s length, the middle one-third region should be covered primarily, and then the bilge keel extended to both the bow and stern sides. Lofft (1973) and Cox and Lloyd (1977) reported an extreme case on bilge keel design for a boat, which extended the bilge keel significantly forward towards the bow to reduce heavy rolling. The roll motion of that boat was reduced as expected, but the pitch motion increased dramatically. After an investigation, they found the large pitch motion was caused by the longitudinal position of the bilge keel being installed one-quarter of the boat’s length from the bow. The large pitch motion fell back to the original value when they removed the bilge keels from the front one-quarter region. Thus, the position of one-quarter of the boat length from the bow of the EJFB is the front limit of bilge keel design of the present study. According to the recommendations above, the longitudinal locations of each length option are determined and shown in Figure 12.

4.1.3. Width of bilge keel

The width (or span) of bilge keels is normally between 3% and 5% of the boat’s breadth (Sabuncu 1983). Avalos et al. (2014) used 4% of the boat’s breadth for their roll damping decay experiment and simulations. Thiagarajan and Braddock (2010) tested the width effect of bilge keels on the roll damping from 1.2% to 10% of the boat’s breadth. When the widths of the bilge keels were too small (i.e. within 2% of the boat’s breadth), they may fully immerse into the boundary layer of the boat hull and significantly affect its performance with regards to roll stabilization (Sabuncu 1983). In the present study, the suggestion from Sabuncu (1983) is considered to select four bilge keel widths ($B_{bk}$) for further study, which are 2%$B$, 3%$B$, 4%$B$ and 5%$B$ in this paper.

4.1.4. Candidate bilge keel design cases

With the parameters discussed above, twelve transverse locations have been selected, five lengths and four widths, which results in 240 candidate bilge keel design cases for further investigation. The parameters of these 240 cases are summarized in Table 5.
Table 5 Parameter range for 240 bilge keel candidate design cases

<table>
<thead>
<tr>
<th>12 transverse locations</th>
<th>5 lengths</th>
<th>4 width</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{c_{bk}}/T$</td>
<td>$L_{t_{bk}}/L$</td>
<td>$B_{bk}/B$</td>
</tr>
<tr>
<td>25.0%;</td>
<td>2.0%;</td>
<td></td>
</tr>
<tr>
<td>37.5%;</td>
<td>3.0%;</td>
<td></td>
</tr>
<tr>
<td>50.0%;</td>
<td>4.0%;</td>
<td></td>
</tr>
<tr>
<td>62.5%;</td>
<td>5.0%;</td>
<td></td>
</tr>
<tr>
<td>75.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.2% - 12.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Further criteria for bilge keel design

In this section, further design criteria are applied to the 240 bilge keel candidate design cases, so as to screen out unsuitable designs.

4.2.1. Width criteria for bilge keel design

As a rule of thumb, the width of the bilge keel should not be so large that it exceeds the boat’s envelope (Cox and Lloyd 1977; Sabuncu 1983). The risk of grounding will be increased if the bilge keel exceeds the baseline of the boat. Rubbing accidents may occur during a boat’s encounters if the bilge keel exceeds the extreme breadth of the boat. With this criterion in mind, the maximum bilge keel width allowed within the boat envelope was calculated for each transverse location as shown in Table 4. The maximum bilge keel width allowed within the boat envelope for LC8 to LC12 is smaller than 2% $B$ - too small to have a remarkable roll stabilization performance. Thus, these five transverse locations and corresponding 100 design cases were removed from the candidate list. The maximum bilge keel width allowed within the boat envelope for LC5 to LC7 is between 2% $B$ and 5% $B$, thus screening out some of the cases with larger $B_{bk}/B$ values.

4.2.2. Resistance estimation and bilge keel design criteria for resistance

It is widely accepted that the major drawback of bilge keels is the increase in resistance during their operation at sea. However, the additional resistance from a bilge keel could be well controlled through precise and rigorous design. Due to that fact that bilge keels are designed to align with the flow streamlines, the resistance of bilge keels can be considered to consist solely of the frictional resistance due to the added wetted surface area of bilge keels, as reported by Taylor (1910); Bhattacharyya (1978) and Lloyd (1989). The alignment of bilge keels was achieved for all bilge keel candidate design cases in the present study through CFD simulations and corresponding post-process visualization technique as shown in Section 4.1.1.

Following the ITTC recommendation, the resistance increment due to bilge keels ($\delta R_{bk}$) is estimated by the following conceptual equation in the design stage of the present study (Molland, Turnock, and Hudson 2017):

$$\delta R_{bk} = \frac{S + S_{bk}}{S}$$  \hspace{1cm} (21)

where $S$ and $S_{bk}$ are the wetted surface area of the bare EJFB and bilge keels, respectively.
Taylor (1910) mentioned that the total appendages resistance (including bilge keels, struts and dockings) for a twin screw vessel should be around 20% of the resistance of bare hull. Molland, Turnock, and Hudson (2017) suggest that the resistance increased by bilge keels should be around 2% to 3% of the total resistance of the bare hull. In the present study, the resistance increases by bilge keels are maintained below 3% of the bare hull’s resistance. With estimations from the conceptual equation above, 20 bilge keel design cases were identified with a 2% resistance increase and 29 bilge keel design cases were identified with a resistance increase between 2% and 3%. Thus, these 49 cases were selected for the roll motion calculation to estimate the roll stabilization performance.

4.3. Roll stabilization of bilge keel design cases in regular waves

The equations presented in Section 2.1 were used to evaluate the boat roll responses in regular waves in the frequency domain for the 49 candidate bilge keel designs as selected in Section 4.2.1. The results of roll responses in regular waves for each case will serve as the primary basis for selecting the final bilge keel design. It is worth reiterating that ShipX was used as a numerical tool to calculate the seakeeping performance of the boat with and without bilge keel.

Figure 13 (a) shows typical calculation results of the roll responses in regular waves of the roll-stabilized-EJFB with bilge keel Case #1 ($L_{bk}/L=25\%$, $B_{bk}/B=2\%$ and $L_{c,bk}/T=90.2\%$) at service speed and compared with that of the bare EJFB. It can be seen that the peak roll response at $45^\circ$ wave heading has a 29.2% reduction. A 23.8% reduction in the peak roll response is also reached at $90^\circ$ wave heading. A little reduction in the roll response was achieved at $135^\circ$ wave heading. The roll responses for the EJFB were not affected by bilge keels at long waves for all wave headings. The roll motion reduction in the peak roll response at $45^\circ$ wave heading was chosen to be the most significant since it is the most dangerous condition for EJFB during its operation. The effectiveness of peak roll reduction at $45^\circ$ wave heading ($\eta_{r,45}$) is defined to quantify the performance of bilge keels (Cox and Lloyd 1977):

$$\eta_{r,45} = 1 - \frac{\eta_{4,s}}{\eta_{4,u}}$$

(22)

where both $\eta_{4,s}$ and $\eta_{4,u}$ represent the peak roll response at $45^\circ$ wave heading. Subscripts $s$ and $u$ indicate stabilized and unstabilized results, respectively, by the bilge keels.
Figure (a) shows the normalized wave height $|H_r|/L_A$ as a function of non-dimensional wavelength $\lambda/L$ for various Froude numbers ($F_r=0.57$) with and without bilge keels. The solid lines represent configurations with bilge keels, while the dashed lines represent configurations without bilge keels.

Figure (b) illustrates the efficiency $\eta_{L_r}$ for different bilge keel configurations (Lc1 to Lc5). Each data point is labeled with the corresponding efficiency percentage.
Figure 13 Results of the roll motion calculation in regular waves for the candidate bilge keel cases.

Figure 13 (b) shows the effectiveness of peak roll reduction at 45° wave heading against the width and transverse location at $L_{t/bk}/L = 25\%$. Figure 13 (c) shows the effectiveness of peak roll reduction at a 45° wave heading against the length and transverse location at $B_{t/bk}/B = 2\%$. The results indicate that the effectiveness of peak roll reduction increases with increasing bilge keel width and length, which is in agreement with the findings of Thiagarajan and Braddock (2010). Based on the obtained results, it can be said that the effectiveness of peak roll reduction increases with increased averaged transverse distance from baseline. Referring to the hull shape of the EJFB in Figure 8, the anti-roll moment arm of the bilge keel increases...
when moving it from the boat baseline towards the free surface along the girth line, which
could be the reason for the increase of $\eta_{r,45}$ for a larger $L_{c/b}/T$.

Figure 13 (d) illustrates the results of the effectiveness of peak roll reduction at a $45^\circ$ wave
heading against the increase of the resistance. The ideal design should have a large $\eta_{r,45}$ value,
but small $\delta R_{bk}$, which should be located at the left-top corner (Case #1). On the other hand,
the worst case has a completely opposite performance (Case #133) ($L_{t/bk}/L=62.5\%$, $B_{bk}/B=2\%$
and $L_{c/bk}/T=47.7\%$), with a relatively small $\eta_{r,45}$ value but large $\delta R_{bk}$. Since the bilge keel
cases are designed based on the flow streamline of the EJFB during the cruising stage at
service speed, some of the bilge keel design cases will cross the free surface and be out of
the water during accelerating, decelerating and standby stages when the boat has a small or even
zero forward speed. In Figure 13 (d), the result is marked as a green circle if that bilge keel
will fully immerse in the water at any speed. Otherwise, the result is marked as a red triangle.
As mentioned in Section 4.1.1, it is necessary to keep the bilge keel fully immersed in the
water at all times to avoid any additional wave-making resistance. Thus, Case #41
($L_{t/bk}/L=25\%$, $B_{bk}/B=2\%$ and $L_{c/bk}/T=71.2\%$) with a 26.4% roll motion reduction and a 1.17% resistance increase,
was selected for the final design instead of Case #1.

4.4. Final design of bilge keels for the EJFB

As discussed in Section 4.3, Case #41 was selected as the final bilge keel design of EJFB.
The starboard half of the section data of the final bilge keel design for the EJFB is listed in
Table 6. The sections of the bilge keel are numbered from the boat stern towards the boat
bow. The coordinate of each bilge keel section is defined relative to the local reference frame,
where the origin is located at the intersection of the aft-perpendicular, the centerline and the
baseline of the boat, with the x-axis pointing forwards from the stern to the bow, the y-axis
pointing from port to starboard and the z-axis pointing upwards.

<table>
<thead>
<tr>
<th>Section No.</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
<th>Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.94</td>
<td>0.75</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>2.04</td>
<td>0.75</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>2.15</td>
<td>0.76</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>2.26</td>
<td>0.77</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>2.37</td>
<td>0.77</td>
<td>0.21</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>2.48</td>
<td>0.78</td>
<td>0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>2.59</td>
<td>0.78</td>
<td>0.24</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>2.69</td>
<td>0.78</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>9</td>
<td>2.8</td>
<td>0.78</td>
<td>0.27</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>2.91</td>
<td>0.78</td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>11</td>
<td>3.02</td>
<td>0.78</td>
<td>0.31</td>
<td>0.04</td>
</tr>
</tbody>
</table>
5. Analysis of the roll-stabilized-EJFB with the final designed bilge keel

In this section, the roll-stabilized-EJFB with the designed bilge keel is analyzed on the roll stability of the real sea state with irregular waves in East Java. The resistance difference due to the installation of bilge keels is also calculated precisely using CFD simulations.

5.1. Performance of the roll-stabilized-EJFB in irregular waves

As mentioned in Section 2.2, the sea state in East Java was modelled by the JONSWAP spectrum with a $\gamma$ value of 2; the wave height varies from 0.3 metres to 1.88 metres and the corresponding wave period varies from 7 seconds to 9 seconds (Djatmiko 2015). The standard deviation of roll response to the roll-stabilized-EJFB with the final designed bilge keel (Case #41) in aforementioned sea states at the 45° wave heading condition was calculated and are presented against different significant wave heights with a comparison to a bare EJFB in Figure 15. The performance of the bilge keel in reducing RMS roll motions was calculated using ShipX for varying sea states, as shown in Table 7. Table 7 gives the percentage reduction in the roll displacement of the boat, compared to the ship performance without a bilge keel.
As can be seen in Table 7, a remarkable decrease in the standard deviation of roll response was achieved for the roll-stabilized-EJFB with the designed bilge keel at small significant wave heights ($H_s<4m$) in the East Java sea. Up to 11.78% reduction could be achieved in the standard deviation of roll response in sea state 2. The results also revealed that the effect of the bilge keel on the roll motion lessens as the number of sea states increases.

Table 7 Standard deviation decrease in the roll response at each significant wave height for the roll-stabilized-EJFB with the final designed bilge keel (Case #41)

<table>
<thead>
<tr>
<th>Sea State No</th>
<th>Significant wave height, $H_s$ [m]</th>
<th>Std. dev. roll decrease [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.3</td>
<td>11.78%</td>
</tr>
<tr>
<td>3</td>
<td>0.88</td>
<td>11.41%</td>
</tr>
<tr>
<td>4</td>
<td>1.88</td>
<td>10.60%</td>
</tr>
<tr>
<td>5</td>
<td>3.25</td>
<td>6.15%</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0.30%</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>0.04%</td>
</tr>
</tbody>
</table>

The results displayed in Table 7 have proved the effectiveness of the designed bilge keel on the roll stability enhancement. The results also indicate that the designed bilge keel fully meets the objectives and expectations of the present study.

5.2. CFD simulations on the resistance of roll-stabilized-EJFB

During the design stage, an ITTC recommended empirical equation was used to estimate the resistance increase of the roll-stabilized-EJFB compared with the bare EJFB. Since the estimation equation does not take into account any complex interactions between fluid flow and the boat hull, there is a need to accurately calculate/simulate the resistance increase of the
roll-stabilized-EJFB. In this section, CFD simulations are used to precisely calculate the influence of bilge keels in terms of the resistance increase at the service speed in calm water.

Figure 16 (a) shows the simulated total resistance coefficient results for five different cases. Apart from the bare EJFB and the roll-stabilized-EJFB with the final design (Case #41), three other bilge keel designs (Case #1, Case #133 and Case #133_UA) were also calculated for comparison purposes, where Case #133_UA represents the modified design of Case #133 with the shape of the bilge keel unaligned with the flow streamlines. The total resistance coefficient of the boat is defined as

$$ C_T = \frac{R_T}{z\rho U^2 S} $$  \hspace{1cm} (23)

where $R_T$ is the total resistance of the boat, including the resistance from bilge keels if installed, $\rho$ is the density of the water; $U$ is the service speed of the boat and $S$ is the wetted surface of the boat.

As can be seen from Figure 16 (a), the total resistance coefficient of EJFB shows a 4.87% reduction after being roll stabilized by bilge keel Case #41. Figure 16 (b) – (d) illustrates the breakdown of the resistance components for the entire roll-stabilized-EJFB boat with the bilge keel of Case #41, bilge keel of Case #41 only and the EJFB hull form only, respectively. Both shear and pressure components of the total boat resistance decreased with the installation of bilge keel Case #41. The pressure component plays a dominant role in the total resistance of the entire boat and has a larger resistance decrease than that of the shear component. The shear component accounted for 52% of the resistance from the bilge keels only and showed positive contributions to the resistance increase of the entire boat. The pressure component accounted for 91% (i.e. the major part) of the total resistance of the hull form only. It has a 1.19% smaller on the resistance decrease than that of the shear component. Since the resistance increased by the bilge keels is smaller than the resistance decrease from the hull form, the total resistance of the entire boat decreases as shown in Figure 16 (b) and (a).

Figure 16 (e) shows the sinkage and hydrodynamic forces in the z-axis direction of the roll-stabilized-EJFB with the bilge keel of Case #41 and compared with the bare EJFB. It can be seen that by installing the bilge keel, an extra hydrodynamic force in the z-axis direction is provided, which is about 4.5 times the z-axis hydrodynamic forces for the bare EJFB. As a result, the sinkage of the roll-stabilized-EJFB with the Case #41 bilge keel reduces by 8.2%. Figure 16 (f) shows the wetted surface area of the roll-stabilized-EJFB with the bilge keel of Case #41 and compared with the bare EJFB. Despite the wetted surface area increasing due to the installation of bilge keels, the overall wetted surface area of the roll-stabilized-EJFB is reduced compared with the bare hull with the extra hydrodynamic force in the z-axis direction. This reveals the reason for the total resistance decreasing for the roll-stabilized-EJFB as in Figure 16 (a).

It can be seen from Figure 16 (a) that by installing the bilge keels of Case #1 and Case #133, the total resistance coefficient of the EJFB has decreased as well, because of the same wetted surface reduction effect as that of the bilge keel Case #41. The bilge keel Case #41 has the lowest total resistance coefficient among these three bilge keel design cases, which is consistent with the recommendations made by the ITTC suggested formula for the bilge keel added resistance.
Compared with bilge keel Case #133, the total resistance coefficient of the roll-stabilized-EJFB with bilge keel Case #133_UA has a value of 0.02860, which is 1.55% larger than the bare EJFB. The extra resistance generated by bilge keel Case #133_UA comes from the pressure forces acting on the unaligned bilge keel due to the angle between the bilge keel and the fluid flow. This proves the importance of the alignment of the bilge keel to the flow streamlines.
6. Concluding Remarks

In this paper, a state-of-the-art bilge keel design method was applied using numerical and semi-empirical formulae to design bilge keels for EJFB. 240 different design cases for bilge keels were assessed and shortlisted for the EJFB based on parameter selection. By applying the formulae, roll amplitudes of the EJFB with these candidate bilge keel cases in the
frequency domain were calculated. The added resistance of the EJFB with these candidate bilge keel cases was also estimated by applying the semi-empirical formula, as recommended by ITTC, during the design stage. With the conceptual calculations above, the present study identified the final design of the bilge keel, which can contribute to significant roll damping but provide only a small added resistance to the boat hull. After installing the bilge keels, up to 26.4% reduction could be achieved for the roll motion for the roll-stabilized-EJFB in regular waves and up to 11.78% reduction in the standard deviation of roll response could be reached in irregular seas. The total resistance has a 1.17% increase following installation of the bilge keel, which was estimated by the semi-empirical formula.

The present study also employed a state-of-the-art CFD method, which involves numerical simulations offering higher accuracy than semi-empirical formulae, to accurately simulate the total resistance increment of the fishing boat with the designed bilge keel. The results show that the bilge keel could provide extra forces to reduce the sinkage of the boat, so as to reduce its wet surface and the total resistance coefficient. Thus, the installation of bilge keels results in a 4.87% reduction of the total resistance coefficient. The results also demonstrated the necessity of aligning the bilge keel with the flow streamline, so as to reduce the resistance of the bilge keel.

This study established the best practices for a seakeeping analysis on the EJFB and designed bilge keels for this fishing boat to enhance its safety level in terms of roll stability, especially in some extreme weather conditions. Moreover, reduced roll-motion can lead to a decrease in the number of capsize accidents observed yearly. The bilge keel, which was designed in the present study, not only increased the safety of the fishing boat by reducing the roll motion but also reduced the total resistance of the EJFB, leading to reduced fuel consumption for local stakeholders in Indonesia.

By using the new EJFB with bilge keels that designed in the present paper not only enhanced the boats’ safety but also reduced the total resistance of the boats, resulting in increased operational efficiency and reduced fuel costs as well as emissions for local stakeholders.

The present study employed the state-of-the-art bilge keel design method with numerical simulations and semi-empirical formulae for EJFB. Due to the limited budget and resources of this present project, future studies will investigate bilge keel design and analysis using model tests, and large-scale and full scale tests will also be carried out.

ACKNOWLEDGMENTS

This research project is funded by the Institutional Links Grants (Grant ID: 217539254) of the British Council.

The authors would like to thank the valuable discussions and suggestions provided by Prof Mehmet Atlar and valuable help from Mr Anthony Romanowski. The authors would like to thank Dr Holly Yu for her help with the final proofreading.

CFD results were obtained using the EPSRC funded ARCHIE-WeSt High-Performance Computer (www.archie-west.ac.uk). EPSRC grant no. EP/K000586/1.

REFERENCES


OGP. 2010. ‘Water transport accident statistics.’, *International Association of Oil & Gas Producers*.

Perez, Tristan, and Mogens Blanke. 2010. ‘Ship roll motion control.’ In *IFAC Conference on Control Applications in Marine Systems*.

Richardson, L. F. 1911. ‘The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a Masonry dam’, *Philosophical Transactions of the Royal Society of London Series A-Containing Papers of a Mathematical or Physical Character*, 210: 307-57.


Sabuncu, Tarık. 1983. ‘Gemi hareketleri (İTÜ)’, In *Published Book*.


